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ABSTRACT

Motivation: High-throughput experimental techniques have produced

a large amount of protein–protein interaction (PPI) data. The study of

PPI networks, such as comparative analysis, shall benefit the under-

standing of life process and diseases at the molecular level. One way

of comparative analysis is to align PPI networks to identify conserved

or species-specific subnetwork motifs. A few methods have been

developed for global PPI network alignment, but it still remains chal-

lenging in terms of both accuracy and efficiency.

Results: This paper presents a novel global network alignment algo-

rithm, denoted as HubAlign, that makes use of both network topology

and sequence homology information, based upon the observation that

topologically important proteins in a PPI network usually are much

more conserved and thus, more likely to be aligned. HubAlign uses

a minimum-degree heuristic algorithm to estimate the topological and

functional importance of a protein from the global network topology

information. Then HubAlign aligns topologically important proteins first

and gradually extends the alignment to the whole network. Extensive

tests indicate that HubAlign greatly outperforms several popular meth-

ods in terms of both accuracy and efficiency, especially in detecting

functionally similar proteins.

Availability: HubAlign is available freely for non-commercial purposes

at http://ttic.uchicago.edu/�hashemifar/software/HubAlign.zip

Contact: jinboxu@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

High-throughput experimental techniques such as yeast-two-

hybrid (Kayarkar, 2009) and protein co-immunoprecipitation

(Aebersold and Mann, 2003) have produced a large amount of

protein–protein interaction (PPI) data for several organisms such

as Homo sapiens (Radivojac et al., 2008) and Saccharomyces

cerevisiae (Collins et al., 2007). PPI networks contain a signifi-

cant amount of information about modular organization of cells

and protein functions. Comparative analysis such as alignment

of PPI networks can help identify evolutionarily conserved path-

ways/complexes that may be structurally or functionally import-

ant and species-specific pathways/complexes, and infer protein

functions.

Similar to sequence alignment, we can also align PPI networks

either locally or globally. Local network alignment (LNA)

such as NetworkBlast (Sharan et al., 2005), Mawish (Koyut€urk

et al., 2006) and AlignNemo (Ciriello et al., 2012) aims to find

small isomorphic subnetworks corresponding to pathways and

protein complexes (Wang and Gao, 2012) and thus may yield a

many-to-many mapping between the proteins. These methods

search for conserved subnetworks using an alignment graph, in

which nodes correspond to groups of orthologous proteins and

edges to conserved interactions. These methods mainly differ in

building alignment graphs, the definition of dense clusters and
search algorithms.

Different from LNA, global network alignment (GNA) aims

to maximize the overall match between the input networks. Such

methods such as IsoRank (Singh et al., 2008a,b), Mawish,
MI-GRAAL (Kuchaiev and Przulj, 2011), GHOST (Patro and

Kingsford, 2012), PISwap (Chindelevitch et al., 2013) and

NETAL (Neyshabur et al., 2013) are designed for pairwise align-

ment while others such as NetworkBlast, Graemlin 2.0 and

IsoRankN for multiple alignment. In addition to network top-

ology information, all network alignment algorithms excluding

NETAL and MAGNA (Saraph and Milenković, 2013) make use

of sequence similarity to help improve alignment accuracy.
IsoRank aligns two PPI networks by exploiting the observation

that two proteins are good match if their interacting partners can

match well. IsoRankN is an extension of IsoRank and mainly

for multiple network alignment. It applies IsoRank to compute

the alignment score between each pair of networks, and then

employs a PageRank-Nibble algorithm to cluster all the proteins

by their alignment score (Liao et al., 2009). Graemlin2.0 inte-

grates network topology and phylogeny information and uses a

hill-climbing algorithm to generate alignments (Flannick et al.,
2008; Kuchaiev et al., 2010). MI-GRAAL, an improved version

of GRAAL, integrates network topology information such as

graphlet signature and sequence similarity to align two nodes

(Kuchaiev and Przulj, 2011). GHOST uses graph spectrum to

measure the topological similarity of proteins (Patro and

Kingsford, 2012). Both MI-GRAAL and GHOST use a seed-

and-extend strategy to build an alignment. MI-GRAAL fulfills

this by solving a weighted bipartite matching, while GHOST by

solving a quadratic problem. PISwap refines an alignment gen-
erated by other tools such as IsoRank. It iteratively swaps the

edges in an alignment until reaching an optimum (Chindelevitch

et al., 2013). MAGNA uses a genetic algorithm to search for the

best alignment (Saraph and Milenković, 2013). NETAL aligns

two proteins based upon their interacting partners.
Current global network alignment methods have two major

issues. One is that existing algorithms run slowly, especially in

aligning very large PPI networks. The other is that the alignment

accuracy is still low. This motivates us to develop a new method

for global network alignment to significantly improve both align-

ment accuracy and computational efficiency.
This paper presents a novel global network alignment algo-

rithm, denoted as HubAlign, to align two PPI networks using

both network topology and sequence homology information,

based upon the observation that topologically and functionally*To whom correspondence should be addressed.
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important proteins (such as hubs and bottlenecks) in a PPI net-
work are more conserved and thus, shall be aligned. We use a
minimum-degree heuristic method to estimate the relative im-

portance of one protein from the global network topology infor-
mation. Such a score reflects the topological and functional
importance of one protein in a PPI network. Then, we use a

greedy algorithm to align two proteins based upon the combin-
ation of their importance scores and sequence similarity. That is,
we align more important proteins first and then gradually less

important. Such a procedure is more biologically meaningful and
leads to a much faster and more accurate alignment algorithm.
We have tested HubAlign on both prokaryotic and eukaryotic

PPI networks, showing that HubAlign greatly outperforms sev-
eral popular methods such as IsoRank, MI-GRAAL, GHOST

and PISwap in terms of both alignment accuracy and running
time.

2 METHODS

Main idea. A biological network usually contains some topo-
logically and functionally important proteins such as hubs and

bottlenecks. Hub proteins have many connections, may be
involved in various biological modules and play a central role
in all biological processes. In Han’s work (Han et al., 2004),

proteins with more than five interactions are defined as hubs,
while those with fewer interactions are peripheral nodes.

Bottlenecks refer to those proteins with a high betweenness cen-
trality (i.e., the number of shortest paths passing through a node)
(Yu et al., 2007). These proteins usually connect functional clus-

ters, so removing them can divide a PPI network into several
subnetworks and disrupt the cooperation between functional
modules (Dunn et al., 2005). Because hubs and bottlenecks are

topologically and functionally important, they tend to mutate
more slowly and thus, are more conserved. That is, they are
more likely to be aligned. To make use of this observation, we

assign a score or weight to each node and edge of a PPI network
using an iterative minimum-degree heuristics algorithm, measur-
ing the topological and functional importance of a node (i.e., the

likelihood of being a hub or bottleneck) and an edge in the PPI
network with respect to the global network topology. Such an
importance score reflects the global topological property of a

protein. Then we calculate an alignment score for a pair of pro-
teins using two properties: their relative importance scores (i.e.,

global topological property) and sequence information.
Meanwhile, the global topological property is the most import-
ant and informative. Finally, we construct a global network

alignment by picking those protein pairs with high alignment
scores using a greedy method.
Definition. We represent a protein–protein interaction (PPI)

network by an undirected graph G= V;Eð Þ where V is the set
of vertices (proteins) and E the set of edges (interactions). Let N
ðuÞ denote the neighbors of a node u 2 V and jNðuÞj is the size of

NðuÞ. Let degðuÞ denote the degree of vertex u, i.e.
deg uð Þ=NðuÞ. Each edge e=ðu; vÞ 2 E may be associated with
a score indicating the interaction strength. A global alignment of

two networks G1=ðV1;E1Þ and G2=ðV2;E2Þ is a function g=
V1 ! V2 that maps node set V1 to V2. Without loss of general-
ity, we assume jV1j � jV2j where jVj is the number of vertices in

set V.

Computing the topological and functional importance of

proteins. We calculate the relative importance of a node or

edge based upon only the network topology information of a

PPI network. Such a relative importance shows the role of a

node or edge in maintaining network structure or function

(Zhao et al., 2006). Although high-degree nodes play an import-

ant role in maintaining the structure and function of a network

(Zotenko et al., 2008), we do not simply use the degree of one

node to calculate its relative importance, as the degree is only a

local property. We want a global topological property reflecting

the structure of the entire network.
We do not use existing measures such as edge-betweenness

(Ellens, 2011) either, which defines the number of the shortest

paths going through an edge in a network. That is, edge-

betweenness takes into consideration only the shortest paths in

a graph. Nevertheless, for the robustness of a network the longer

alternative paths are also important (Ellens, 2011). In addition, it

is also observed that (i) edges connecting high-degree nodes are

more important, as they connect many nodes and may be rele-

vant to the global structure property of the network (H., 2006);

and (ii) a pair of two nodes with a large number of common

neighbors are more likely to be related (Liu, 2009).
Here we use a minimum-degree heuristics algorithm to calcu-

late the topological importance of nodes and edges, starting from

the nodes with degree one and stopping at those with degree d.

The value of d cannot be very large, as the deletion of very high-

degree nodes (e.g. hubs) may destroy the whole network func-

tionally or structurally while random deletion of a fraction of

peripheral nodes may cause only a small damage to the network

(Wang, 2007; Zhao et al., 2006). Empirically d=10 yields a good

result. To calculate the relative importance of nodes, we assign

an initial weight to nodes and edges as follows.

w eð Þ=
1 e 2 E

0 otherwise
;w uð Þ=0 8u 2 V

(

Where wðeÞ and w uð Þ represent the weight of edge e and node u,

respectively. We may initialize the edge weight by the PPI con-

fidence score if it is available in the PPI data.
We update the weight by always removing one of the nodes

with minimum degree. When one node is removed, its adjacent

edges are also removed and the weight of the removed node and

edges are allocated to their neighboring nodes and edges. In this

way, the topological information is propagated from a node to

its neighbors. In particular, when removing node u 2 V, we

update the weights as follows.

(1) If deg uð Þ=1, 8v 2 NðuÞ, set w vð Þ=w vð Þ+w uð Þ+w u; vð Þ.

(2) If deg uð Þ41, 8v1; v2 2 NðuÞ, set

w v1; v2ð Þ=w v1; v2ð Þ+
w uð Þ+

P
v2NðuÞwðu; vÞ

jNðuÞjjN uð Þ � 1j

2

Figure 1 shows for a small example PPI network how an edge

gains more weight after the removal of some peripheral nodes.

For example, when nodes d; c; e and f are removed, their own

weight and those of their adjacent edges are transferred to the

edge ða;bÞ, which indicates that this edge is important in main-

taining the network connectivity. After calculating the weights,
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we assign an importance score as follows to each node by com-

bining both node and edge weight to indicate its topological

importance in the network.

S vð Þ=w vð Þ+�
X
u2V

w u; vð Þ

Where SðvÞ is the score of node v, � controls the importance of

the edge weight relative to the node weight. Empirically �=0:2
yields a biologically more meaningful alignment. Finally, we

normalize SðvÞ as follows to reduce the impact of network size.

S vð Þ=SðvÞ=maxv2VfS vð Þg

The way we calculate the relative importance of nodes and edges

is inspired by graph tree-decomposition, which is used to simplify

a graph as a tree in which each vertex represents a highly

connected subgraph component and each edge represents the

intersection between two adjacent components. The size of the

highly connected components reflects the topological complexity

of a graph and also importance of nodes. Several simple heuris-

tics methods such as the minimum-degree heuristic method

(Bodlaender and Koster, 2010; Robertson and Seymour, 1984)

are developed to tree-decompose a general graph.
Remark.To validate that the resultant importance score (i.e., S)

makes biological sense, we examine the top 50 proteins with the

highest S scores in the human PPI network.Meanwhile, all the top

10 proteins have a very high degree, which indicates they are vital

hubs of the network. The two example proteins are P62993 with

degree 663 and Q9H0R8 with degree 491. See Figure 2a for the

subnetwork containing P62993.On the other hand, among the top

50 proteins there are also some low-degree proteins, such as

Q9UPN3 with degree 7. As shown in Figure 2c, although

Q9UPN3 is not a hub, it is a bottleneck connecting several func-

tionalmodules. This protein is also related to breast cancer disease

(Rohan, 2009). Another interesting example is P04156with degree

52 and betweenness 0.005. As shown in Figure 2b, this protein is a

hub connecting several other hubs. Removal of this protein can

disrupt the cooperation of the hubs connecting to it.
Building alignment. The normalized S score measures the

relative importance of one protein with respect to the whole

PPI network. It reflects the global topological properties of

one protein in a network. If two nodes have similar S scores,

they may be similarly important in their respective networks.

Thus, they are more likely to be aligned. We calculate the

topological similarity between two nodes u 2 V1 and v 2 V2 as

follows:

A u; vð Þ=minðS uð Þ;S vð ÞÞ

We also incorporate sequence homology information (i.e.,

sequence similarity) into our alignment score. Let B u; vð Þ denote

the normalized BLAST bitscore for two proteins u and v. The

final alignment score is defined as follows.

A� u; vð Þ= ��A u; vð Þ+ð1� �Þ � Bðu; vÞ

Where 0 � � � 1 is a parameter that controls the contribution

of sequence similarity relative to topological similarity.

Meanwhile, �=1 implies that only topological information is

used, while �=0 implies that only sequence information is

used. Tuning � allows us to find the relative importance of se-

quence information in aligning the networks. In our implementa-

tion, we set � to 0.7 by default. That is, our method uses much

more network topology information than sequence information.
Our algorithm identifies the pair of nodes with the highest

alignment score as a seed alignment and gradually extends it

using a greedy algorithm. After aligning a pair of nodes u and

v, we then consider aligning their neighbors, which is reasonable

because functional modules and protein complexes are densely

connected and tend to be separated from other subnetwork mod-

ules. Algorithm continues to align neighboring nodes until their

alignment score is relatively high (more than the average of the

alignment scores). When the subnetwork alignment resulting

from the initial seed is terminated, the next best unaligned pair

is chosen as a new seed. This procedure is repeated until all

proteins of the smaller network are aligned with the proteins of

the larger network.
Time complexity. Let n=max jV1j; jV2jf g. At the first step, it

takes OðnÞ to find the node with minimum degree. As we men-

tioned before, we only remove the nodes with degree less than 10.

Thus, updating the weight of the neighbors can be done in Oð1Þ.

Further, as we can remove up to n nodes from a network, the

total time complexity for the first step is Oðn2Þ. At the second

step, we calculate the alignment score for each pair of nodes of

the input networks. Because there are at most n2 pair nodes, this

step takes Oðn2Þ. At the final step, a seed can be selected in

Oðn2Þ. Then for extension, we use a priority queue to save the

Fig. 2. Three example proteins (in yellow) with high importance scores in

the human PPI network. (a) Protein P62993, which has the largest degree;

(b) Protein P04156, which connects to some hubs (in red); (c) Protein

Q9UPN3 with low degree that performs as a bottleneck

(1) (2)

aa

e

f

b

d

c

b

Fig. 1. Illustration of the algorithm for the calculation of topological

importance score. (1) the original graph; and (2) the graph resulting

from removing nodes d, c, e and f. The thickness of an edge shows its

weight
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neighbors of each pair of aligned nodes. Because each node of

the graph has at most n neighbors, updating the priority queue

takes OðnlogðnÞÞ. Extracting the pair with highest score from this

queue can be done in constant time. That is, the final step for

aligning n nodes takes Oðn2logðnÞÞ. As such, the total time com-

plexity is Oðn2logðnÞÞ.

3 RESULTS

We compare our algorithm HubAlign with several popular

and publicly available global network alignment methods

IsoRank (Singh et al., 2008a,b), MI-GRAAL (Kuchaiev and

Przulj, 2011), GHOST (Patro and Kingsford, 2012) and

PISwap (Chindelevitch et al., 2013). Following Chindelevitch

et al. (2013), we use the alignment produced by GRAAL and

IsoRank as input of PISwap. We do not compare HubAlign

with Graemlin 2.0 (Flannick et al., 2008), because the latter

requires the knowledge of phylogenetic relationship among

species. We do not compare HubAlign with GRAAL because

MI-GRAAL is an improved version of GRAAL. Following

Kuchaiev’s work (Kuchaiev et al., 2010), we evaluate network

alignment quality by five measures including edge correctness

(EC), largest common connected subgraph (LCCS), symmetric

substructure score (S3), functional consistency (FC) and average

of functional similarity (AFS). Meanwhile, EC, LCCS and S3

reflect network topological similarity of an alignment, but not

biological significance. FC and AFS reflect biological signifi-

cance by measuring the consistency of the GO (gene ontology)

terms assigned to the aligned proteins. FC and AFS shall be

more important metrics than EC, LCCS and S3. The alignment

accuracy of two PPI networks depends not only on the evolu-

tionary distance of two respective species, but also on the quality

of the PPI data. That is, the closer the two species are or the

higher quality the PPIs are, the better alignment we may obtain.

Edge correctness (EC). It is calculated as the percentage

of edges in the first network that are aligned to edges in the

second network. Here we assume the first network is

smaller than the second one. Let ðV1;E1Þ and ðV2;E2Þ denote two

networks under alignment where V and E denote nodes

and edges, respectively and g : V1 ! V2 be an alignment.

Mathematically, EC is defined as follows.

EC=
j u; vð Þ 2 E1 : ðg uð Þ; gðvÞÞ 2 E2

� �
j

jE1j
� 100

Symmetric substructure score (S3). The intuition underlying S3 is

to penalize the alignments that map sparse regions of the

network to denser ones and vise-versa (Saraph and

Milenković, 2013). Let G½V� denote the induced subnetwork

of G with node set V and EðGÞ denote the edge set of

network G. Let f E1ð Þ= g uð Þ; g vð Þð Þ 2 E2 : u; vð Þ 2 E1

� �
and

f V1ð Þ= gðvÞ 2 V2 : v 2 V1

� �
. Mathematically, S3 is defined as

follows.

S3=
jfðE1Þj

jE1j+jE G2 fðV1Þ½ �ð Þj+jfðE1Þj
� 100

Largest common connected subgraph (LCCS). It is calculated as

the number of edges in the largest connected subgraph in an

alignment. Larger and denser subgraphs give more insight into

common topology of the network (Kuchaiev and Przulj, 2011). In

addition, the larger and denser subgraphs may be more biologic-

ally important (Hu et al., 2005), as Bader and Spirin have shown

that a dense PPI subnetwork may correspond to a vital protein

complex (Bader and Hogue, 2003; Spirin and Mirny, 2003).
Functional consistency (FC). We use GO (gene ontology) terms

to measure the functional consistency of two aligned proteins.

GO terms describe some biological properties of a protein such

as Cellular Component (CC), Molecular Function (MF) and

Biological Process (BP). We exclude root GO terms from the

analysis. Proteins with similar GO terms are supposed to be func-

tionally similar. To analyze the biological significance of an align-

ment, we calculate the fraction of aligned proteins sharing

common GO terms. The fraction is calculated with respect to

the size of the smaller network because in a global alignment all

nodes of smaller network are aligned to nodes of larger network.

The larger the fraction, the more biologically meaningful the

alignment is.
Average of functional similarity (AFS). It is calculated based on

the semantic similarity of the GO terms, which depends on the

distance between them in the ontology. We can use semantic

similarity measures to calculate the functional similarity in

each category of BP, MF and CC. Schlicker’s similarity,

based on the Resnik ontological similarity, is one of the best

performing methods for computing the functional similarity be-

tween proteins (Pesquita et al., 2009; Schlicker et al., 2006). Let

scðu; vÞ denote the GO functional similarity of proteins u and v in

category c (i.e., BP, MF or CC). AFS is defined as follows.

AFSc=
1

jV1j

X
u2V1

sc u; gðuÞð Þ

3.1 Alignment of the yeast and human PPI networks

We apply our algorithm HubAlign to align the yeast and human

PPI networks, which are taken from IntAct (Kerrien et al., 2012).

The yeast PPI network has 5673 nodes and 49 830 edges and the

human network consists of 9002 nodes and 34 935 edges. We ran

IsoRank and PISwap with the default parameters. MI-GRAAl

was run using the degree, signature similarity and sequence simi-

larity. The parameters for GHOST are automatically determined

or set to default.
As shown in Table 1, our algorithm HubAlign produces an

alignment with much larger EC, LCCS and S3 than the other

Table 1. The EC, LCCS and S3 of the human–yeast alignments generated

by six methods

Method EC LCCS S3 AFSBP AFSMF AFSCC

IsoRank 2.12 44 1.23 0.76 0.63 0.77

MIGRAAL 13.87 4832 8.12 0.63 0.52 0.72

GHOST 17.04 7000 13.59 0.82 0.66 0.83

PISwap 2.16 62 1.23 0.77 0.63 0.77

NETAL 28.65 9695 20.16 0.58 0.46 0.71

HubAlign 21.59 7240 14.67 0.95 0.81 0.88
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methods except NETAL. To measure the FC and AFS of an

alignment, we extract the GO annotations for all the involved

proteins from the Gene Ontology database (Ashburner et al.,

2000). Some proteins may not have any GO annotations, so

we just take into consideration the aligned pairs in which both

proteins have GO annotations. Table 1 show that HubAlign

yields alignments with significantly higher AFS than the other

methods, especially when BP and MF are considered. We also

calculate the percentage of aligned pairs in which two proteins

share at least one, two, three, four and five GO terms, respect-

ively. As shown in Table 2, HubAlign greatly outperforms the

others in terms of FC. The advantage of HubAlign becomes

larger when more shared GO terms are required to determine

FC. NETAL yields more aligned proteins and interactions, but

many aligned proteins are not functionally similar.

3.2 Alignment of PPI networks of human, yeast, fly,

worm and mouse

We also apply HubAlign to align PPI networks of H.sapiens

(human), S.cerevisiae (yeast), Drosophila melanogaster (fly),

Caenorhabditis elegans (worm) and Mus musculus (mouse). All

these networks are obtained from IntAct (Kerrien et al., 2012).

Table 3 lists the AFS of all the pairwise alignments generated by

five different methods: HubAlign, IsoRank, PISwap, MI-

GRAAL and GHOST. The human–yeast alignment is already

analyzed in the preceding section, so it is not included here.

Table 3 shows that the alignments produced by HubAlign

outperform those by the other methods in term of AFS under

all three categories BP, MF and CC. HubAlign also produces

alignments with higher FC than all the other methods (see

Supplementary Table S1). Specifically, the more common GO

terms required to determine FC, the more advantage

HubAlign has over the other methods. For example, if only

one shared GO term is required, HubAlign greatly outperforms

the second best method GHOST for five of nine alignments

(i.e., human–fly, fly–yeast, mouse–worm, mouse–fly and

Table 3. Performance of HubAlign and the other methods in terms of AFS of the alignments in categories BP, MF and CC. MI-GRAAL

and GRAAL do not produce any result for human–fly and yeast–fly alignment

Alignment AFS IsoRank MI-GRAAL GHOST PISwap NETAL HubAlign

Human–mouse BP 1.32 0.84 1.58 1.32 0.73 2.02

MF 1.23 0.84 1.50 1.23 0.70 1.74

CC 1.08 0.76 1.20 1.08 0.66 1.49

Mouse–fly BP 0.73 0.62 0.84 0.73 0.50 1.07

MF 0.61 0.50 0.75 0.61 0.33 0.97

CC 0.53 0.42 0.54 0.53 0.34 0.72

Mouse–yeast BP 0.71 0.60 0.85 0.70 0.47 0.96

MF 0.64 0.54 0.80 0.64 0.36 0.91

CC 0.77 0.67 0.84 0.40 0.57 0.91

Fly–yeast BP 0.48 0 0.54 0.48 0.38 0.68

MF 0.35 0 0.42 0.35 0.23 0.58

CC 0.40 0 0.44 0.40 0.36 0.50

Human–fly BP 0.53 0 0.61 0.53 0.41 0.72

MF 0.43 0 0.54 0.43 0.28 0.65

CC 0.38 0 0.41 0.37 0.30 0.48

Mouse–worm BP 0.63 0.50 0.67 0.63 0.42 0.76

MF 0.64 0.46 0.67 0.64 0.31 0.81

CC 0.40 0.31 0.41 0.40 0.25 0.49

Human–worm BP 0.52 0.43 0.60 0.52 0.40 0.64

MF 0.34 0.25 0.40 0.34 0.23 0.70

CC 0.34 0.27 0.40 0.34 0.25 0.44

Worm–fly BP 0.51 0.34 0.55 0.50 0.31 0.57

MF 0.48 0.22 0.52 0.47 0.18 0.54

CC 0.26 0.14 0.28 0.25 0.13 0.31

Worm–yeast BP 0.38 0.31 0.41 0.37 0.26 0.43

MF 0.34 0.25 0.40 0.34 0.23 0.41

CC 0.30 0.25 0.31 0.30 0.24 0.32

Table 2. Functional consistency of the yeast–human alignments gener-

ated by HubAlign and the others

No. of

shared

GO terms

IsoRank MI-GRAAL GHOST PISwap NETAL HubAlign

�1 33.98 29.02 35.42 34.03 26.03 47.56

�2 15.02 7.02 15.74 14.84 2.95 28.23

�3 8.73 2.81 8.69 8.65 0.67 17.41

�4 4.49 1.06 4.04 4.46 0.24 9.52

�5 1.97 0.26 1.77 2.00 0.14 4.77
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mouse–yeast) and slightly outperforms GHOST for the remain-

ing four alignments. If at least two shared GO terms are used to

determine FC, HubAlign greatly outperforms GHOST for all the

alignments. Moreover, HubAlign produces alignments with

larger EC, LCCS and S3 than the others except NETAL (see

Supplementary Fig. S1). The NETAL alignments again have

very low FC and AFS. These results indicate that HubAlign is

able to align more functionally similar proteins and find larger

complexes that are significant either topologically or biologically.

3.3 Alignment of bacterial PPI networks

We also apply HubAlign to align the PPI networks of two bac-

terial species Campylobacter jejuni and Escherichia coli, which

have the most complete PPI networks among all bacteria. The

PPI network for Bacterium C.jejuni has 1111 nodes and 2988

edges (Parrish et al., 2007). Escherichia coli is a model organism

for studying the fundamental cellular processes such as gene ex-

pression and signaling. The E.coli PPI network has 1941 nodes

and 3989 edges (Peregr�ın-Alvarez et al., 2009). As shown in

Table 4, HubAlign produces an alignment with larger EC,

LCCS and S3 than the other methods except NETAL. In

terms of AFS, HubAlign outperforms the other methods al-

though all the AFS values are pretty small due to insufficient

GO annotations of the bacterial proteins. The average number of

GO terms associated with the proteins of E.coli and C.jejuni is

much smaller than that of the other species. In addition,

HubAlign produces alignments with larger FC (see

Supplementary Table S2).

3.4 Evaluation of parameters � and �

Our algorithm makes use of two parameters � and �. � deter-

mines the relative importance of edge and node weight, while �
determines the relative importance of sequence and topological

similarity. In this section, we study the relationship between these

two parameters and network alignment quality. We apply

HubAlign to PPI networks of yeast and human and report

EC, LCCS, S3 and AFS of their alignment for different values

of parameter � between 0 and 1. As shown in Figure 3, AFS

increases as � gets close to 1. The underlying reason could be that

the higher values of � give more importance to the edge weights

which in turn, makes the proteins with important interactions

align together. On the other hand, by increasing the value of �,
we put less emphasis on the node weight and therefore, it is less

likely that the hubs be aligned together. As a result, the topo-

logical qualities (i.e. EC, LCCS and S3) decrease. Figure 3 shows

that increasing � from 0 to 0.2 improves the AFS significantly

but does not change the EC much. However, as we continue to

increase � further, the EC decreases sharply. We also observe a

slight increase in the biological quality. There are similar plots

for the S3 and the LCCS (see the Supplementary Fig. S2). Thus,

we can achieve a good trade-off between the topological and the

biological quality by setting � in the range (0.1, 0.2).

We also compute the yeast–human alignment for different

values of �. As shown in Figure 4, increasing � from 0 to 1

decreases AFS. This is because a larger value of � reduces the

effect of sequence information. Moreover, in line with our ex-

pectations as � goes up, so does the topological quality of the

alignment. Figure 4 shows that increasing � from 0 to 0.7 does

not change AFS much but improves the EC significantly.

However, as we continue to increase � further, the AFS decreases

sharply. There are similar plots for the S3 and the LCCS (see the

Supplementary Fig. S3). Thus, we can achieve a good trade-off

between the topological and the biological quality by setting � in

the range (0.7, 1).

Fig. 4. Performance of HubAlign in terms of AFS and EC with respect to

�. Each curve consists of 11 points corresponding to 11 different � values:

0, 0.1, . . . , 1 from bottom to top

Fig. 3. Performance of HubAlign in terms of AFS and EC with respect to

�. Each curve consists of 11 points corresponding to 11 different � values:

0, 0.1, . . . , 1 from top to bottom

Table 4. The EC, LCCS and AFS of the alignments by different algo-

rithms for the bacterial PPI networks

Method EC LCCS S3 AFSBP AFSMF AFSCC

IsoRank 8.50 11 1.51 0.20 0.16 0.07

MI-GRAAL 23.86 400 15.89 0.14 0.12 0.04

GHOST 23.86 440 15.03 0.19 0.14 0.06

PISwap 17.87 289 1.83 0.11 0.08 0.02

NETAL 32.36 661 19.54 0.10 0.07 0.02

HubAlign 24.56 474 16.51 0.25 0.22 0.07

i443

HubAlign

-
4
2
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu450/-/DC1
Campylobacter 
Escherichia 
Escherichia 
Campylobacter 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu450/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu450/-/DC1
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu450/-/DC1


3.5 Running time

Our method HubAlign is much more computationally efficient

than the others. Tested on the yeast–human alignment on a
1400MHz Linux system with 2GB RAM, it takes NETAL,
HubAlign, IsoRank, MI-GRAAL and GHOST 80, 412, 7610,
78 525 and 3037 s, respectively, to terminate. PISwap has almost

the same running time as IsoRank because the former only
slightly refines the result generated by the latter.

4 CONCLUSION

This paper has presented a new method HubAlign for global
alignment of two PPI networks by making use of topological
importance of proteins in a PPI network. We have implemented

and tested HubAlign using quite a few PPI networks and eval-
uated the resultant alignments using different performance met-
rics. We have also compared HubAlign with currently popular

global network alignment algorithms such as IsoRank, MI-
GRAAL, NETAAL, GHOST and PISwap. Experimental results
indicate that our algorithm greatly outperforms the others in

terms of both alignment accuracy and running time. In particu-
lar, our algorithm can align many more functionally similar
proteins.
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