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Protein kinase C (PKC) is a family of serine/threonine protein kinases, the

activation of which plays an important role in the development of diabetic

microvascular complications. The activation of PKC under high-glucose

conditions stimulates redox reactions and leads to an accumulation of redox

stress. As a result, various types of cells in the microvasculature are influenced,

leading to changes in blood flow, microvascular permeability, extracellular

matrix accumulation, basement thickening and angiogenesis. Structural and

functional disorders further exacerbate diabetic microvascular complications.

Here, we review the roles of PKC in the development of diabetic microvascular

complications, presenting evidence from experiments and clinical trials.
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Introduction

Diabetes mellitus (DM) is widespread globally, and the complications of diabetes are

the main causes of morbidity and mortality (1, 2). In patients with DM, hyperglycemia is

a major risk factor for the development of microvascular complications (3). Long-term

DM affects the function and structure of blood vessels, causing diabetic macrovascular

and microvascular complications. Diabetic nephropathy, diabetic retinopathy and

diabetic peripheral neuropathy are thought to be the main types of diabetic

microvascular complications (4). According to the Outcome Reduction with an Initial

Glargine Intervention (ORIGIN) trial, for patients with a baseline HbA1c of more than

6.4%, interventions to normalize normal fasting glucose significantly reduced the risk of

diabetic microvascular complications (5). In patients with type 2 diabetes mellitus

(T2DM), antihyperglycemic therapy also demonstrated a favorable effect in reducing

the risk of microvascular complications (6). However, despite glucose-lowering therapy, a

high residual risk of diabetic microvascular complications remains in patients with DM
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(7). In addition, the interaction of genetic, environmental and

metabolic factors is involved in microvascular complications.

Thus, there is still an unmet need for a better understanding of

the pathogenesis of diabetic microvascular complications (8).

Protein kinase C (PKC) participates in various cellular

responses associated with DM (9). Activation of PKC is

significantly increased under conditions of elevated glucose

levels (22 mM) in vitro (10). Hyperglycemia triggers the

glycolysis pathway and further enhances the synthesis of

diacylglycerol (DAG), which activates PKC (11). Activation of

PKC then facilitates activation of NADPH oxidase, after which

the redox reaction starts and redox stress accumulates. As a

consequence, reactive oxygen species (ROS) and advanced

glycation end products (AGEs) accumulate in cells, leading to

cell death and apoptosis (12, 13). The promotion of redox stress

is observed in various vascular cells, including pericytes,

endothelial cells, smooth muscle cells, podocytes and others

(14). Therefore, vascular dysfunction generated by the

aforementioned mechanism promotes diabetic microvascular

complications, which mainly influence alterations in blood

flow (15), extracellular matrix synthesis and basement

membrane thickening (16, 17), vascular permeability (18), and

angiogenesis (19). In this review, we focus on the roles of PKC

and PKC isoforms in the development of diabetic

microvascular complications.
PKC: classification and structures

PKC is a family of serine/threonine protein kinases, which

was discovered over 30 years ago (20). According to the pattern

of activation, PKC can be divided into three subgroups,

including classical/conventional PKCs (cPKCs): PKC-a, bI,
bII, g; novel PKCs (nPKCs): PKC-d, ϵ, q, h, m; atypical PKCs
Frontiers in Endocrinology 02
(aPKCs): PKC-z, l/t (21, 22) (Figure 1). The activation of

cPKCs requires both calcium and DAG or phorbol esters,

while nPKCs are activated by DAG or phorbol esters but not

by calcium. The aPKCs are not activated by either calcium or

DAG/phorbol esters. aPKCs are regulated by protein–protein

interactions through the PB1 domain (22, 23). All of the PKC

isozymes comprise an N-terminal regulatory region and a C-

terminal catalytic region, and the two regions are linked by a V3

hinge (24). In cPKCs and nPKCs, the regulatory region contains

the C1 domain, which can be further divided into the tandem

C1A and C1B subdomains, which are duplicates and are rich in

cysteine sequences (25). In addition, cPKCs contain a C2

domain, which is able to bind to calcium. However, this C2

domain is not present in nPKCs, which have a C2-like domain

(cannot bind to calcium) instead. Therefore, nPKCs are not

activated by calcium (26). Once the C1 domain binds to DAG, a

pseudosubstrate is removed from the catalytic domain, leading

to enzyme activation (25, 26).
Pathogenesis and the role of PKC in
diabetic microvascular
complications

Diabetic nephropathy

Diabetic nephropathy (DN) is characterized by proteinuria

and a decline in glomerular filtration rate (GFR). If DN is

untreated, the resulting end-stage renal failure and uremia are

fatal (27). Various kinds of renal cells, including podocytes,

endothelial cells, smooth muscle cells, mesangial cells and

inflammatory cells, are affected under hyperglycemia (28).

Hemodynamic changes play an important role in the

pathogenesis of DN, which arises from vasoactive factor
FIGURE 1

Classification and structural of protein kinase C.PKC: protein kinase C; cPKC: conventional protein kinase C; nPKC: novel protein kinase C;
aPKC: atypical protein kinase C.
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release, signal transduction and metabolic changes under

hyperglycemic conditions. In the early stage of DN, increased

plasma flow and glomerular capillary pressure cause an increase

in GFR, termed hyperfiltration (29). Hyperfiltration also

precipitates thickening of the glomerular basement membrane

(GBM) (hyperplasia) and the detachment, loss, and death of

podocytes (30). Moreover, renin and angiotensin-II synthesis in

mesangial cells were found to be promoted under high-glucose

conditions, which further gave rise to an increase in glomerular

capillary pressure, microvascular permeability, and renal cell

proliferation (31, 32). As a result, proteinuria and

glomerulosclerosis were substantially induced (33). Moreover,

with the feedback of hypertrophy and hyperplasia, the proximal

tubule length significantly increases, leading to an increased

reabsorption of glucose, fatty acids, amino acids, growth factors

and cytokines (34). This metabolic production in turn leads to

energetic imbalance, such as redox abnormalities and fibrosis.

The aforementioned pathological processes ultimately result in

extracellular matrix (ECM) deposition in the tubules, which is

deemed to be the major determinant in the development of DN

(35). Consequently, the GFR is eventually decreased owing to

progressive glomerular and tubular injury (36).

The activation of PKC is involved in microvascular

contraction within the kidney, affecting the function of

glomeruli and contributing to the progression of diabetic

nephropathy (Figure 2). The microvascular contraction of

glomeruli is enhanced under high-glucose conditions, and

blood flow is consequently decreased. This is mainly caused by
Frontiers in Endocrinology 03
changes in the levels and sensitivity of contraction factors. Under

high-glucose conditions, the levels of vascular contraction

factors, such as prostaglandin E2 and prostaglandin F2 alpha,

are elevated (15). In addition, the sensitivity of vascular

contraction factors is increased in diabetic nephropathy. In

diabetic mice, phenylephrine-induced interlobar artery (ILA)

contraction was significantly enhanced, which caused ILA

dysfunction. ILA dysfunction further reduced blood flow in

the glomerulus and induced the progression of diabetic

nephropathy. Treatment with rottlerin, a calcium-independent

protein kinase C (PKC-d) inhibitor, alleviated basal

overcontraction (37, 38). Similar results were observed in

diabetic Zucker rats; the nonselective PKC agonist phorbol-

12,13 dibutyrate (PDBU) significantly reduced renal cortical

blood flow and increased the mean arterial pressure (39). The

results indicate that PKC activation is associated with decreased

blood flow and increased renal perfusion pressure, causing

glomerulosclerosis and reducing glomerular filtration.

Impaired barrier function is associated with the

deterioration of diabetic nephropathy, during which

proteinuria is usually observed. The role of PKC in the

vascular permeability of diabetic nephropathy mainly focuses

on the glomeruli. Nephrin is one of the most well-studied

proteins involved in vascular permeability. Nephrin is essential

for podocytes to sustain the integrity of the slit diaphragm to

maintain filtration (40, 41). The expression levels of nephrin

mRNA and protein were significantly reduced in streptozotocin

(STZ)-induced DM mice. However, in global PKC-a knockout
FIGURE 2

Protein kinase C (PKC) in diabetic nephropathy. PKC activation in diabetic nephropathy impairs glomerular blood flow and filtration, leads to
albuminuria, causes extracellular matrix accumulation and collagen deposition particularly. DAG, diacylg lycerol; OAG, oleoyl acetyl glycerol;
PKC, protein kinase C; MCP-1, monocyte chemoattractant protein-1; TGF-b1, transforming growth factor b1; CTGF, connective tissue growth
factor; PLC-g1, phospholipase Cg1; HAS2, Hyaluronan synthase 2; HA, hyaluronan; ERK, extracellular signal-regulated kinase; VEGF, vascu lar
endothelial growth factor; NOX, nicotinamide adenine dinucleotide phosphate oxidase.
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mice, nephrin expression was unaffected in the mice with DM

(42). Thallas-Bonke et al. also found that PKC-a and PKC-b
were overexpressed in DM mice, whereas deletion of NOX4

(nicotinamide adenine dinucleotide phosphate oxidase) reversed

the overexpression of PKC-a and PKC-b, with normalized

nephrin expression observed (43). In addition, mediation of

RhoA downstream of C3aR in endothelial cells by PKC resulted

in kidney damage and increased blood vessel permeability (44).

Moreover, VEGF plays an important role in increased capillary

permeability. Diabetic mice treated with calphostin C showed

reduced expression of VEGF in their mesangial cells compared

to mice that were not treated with calphostin C (45). Mima et al.

explored the interaction of PKC-d and VEGF in diabetic

nephropathy. The expression of VEGF was induced under

high-glucose conditions, whereas loss of VEGF signaling was

observed, which indicated VEGF resistance. Notably, VEGF

signaling glomerular endothelial was not inhibited in global

PRKCD knockout mice. In addition, less extracellular matrix

and albuminuria were also observed (46). The results suggest

that activation of different PKC isoforms is involved in increased

vascular permeability and that PKC-a and PKC-b are interesting
molecules in the maintenance of glomerular filtration function.

PKC-d may play an important role in the regulation of VEGF

expression and prevention of resistance to VEGF in

the glomeruli.

Structural abnormalities are the most well-studied pathology

in diabetic nephropathy. It has been shown that expansion of the

basement membrane and ECM accumulation are induced by

high-glucose conditions (47). The synthesis of ECM proteins,

such as fibronectin, laminin, and types I, III, and IV collagen,

was found to be increased in renal glomerular mesangial cells,

accompanied by upregulated activation of PKC (48–50). PMA

(PKC activator) and the cell-permeable DAG analog oleoyl

acetyl glycerol (OAG) also mimicked these effects (48).

Treatment with the PKC inhibitor chelerythrine reduced the

expression and synthesis of fibronectin and prevented basement

membrane thickening (51). In addition, elements of the ECM

regulated by activation of PKC have also been studied.

Hyaluronan (HA), a key element of the ECM, was

incrementally secreted under hyperglycemia, and inhibition of

PKC-b reduced the expression of HAS2 (hyaluronan synthase 2)

mRNA and secretion of HA (52). A general PKC inhibitor also

reversed the hyperglycemia-induced elevated synthesis of

collagenous and total ECM proteins and decreased gelatinase

activity in endothelial cells (53). The results suggest that PKC

activation is involved in the synthesis of ECM proteins and

degradation of the ECM in diabetic nephropathy. Furthermore,

studies on the activation of PKC isoforms in DN have also been

conducted. PKC-a and PKC-b activation was increased in

mesangial cells under high concentrations of glucose, and the

synthesis of fibronectin and IV collagen paralleled their activity

(54, 55). LY333531 (a specific PKC-b inhibitor) prevented the

hyperglycemia-induced expression of ECM components in
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mesangial cells (55). The same results were observed in global

PKC-a/PKC-b double knockout mice, accompanied by

alleviation of the development of albuminuria (56). However,

despite a reduction in the albumin/creatinine ratio, the ratio was

not completely reversed (56). Tokuyama et al. found that a PKC-

b inhibitor might enhance reductions in mesangial cell (3) H-

thymidine and (3) H-proline incorporation, which reduced the

synthesis of collagen by mesangial cell (57). The nPKCs PKC-d
and PKC-ϵ also participate in ECM protein synthesis. The

synthesis of ECM proteins in mesangial cells was reduced in

PKC-d-/- and PKC-ϵ-/- STZ-induced DM mice and in mice with

exogenous PKC-d inhibition (46, 58, 59). Interestingly, PKC-ϵ-/-

mice did not show a profibrotic phenotype in any organ other

than the kidney (58). Of note, Baccora et al. reported that

activation of PKC-d, rather than PKC-a or PKC-b, was

increased in mesangial cells under high-glucose conditions

(59). The membrane association of PKC-z was confirmed to

be prevented by rosiglitazone, along with decreased expression

of collagen IV in cultured mesangial cells (60). Nevertheless, the

role of aPKCs still needs more exploration. Moreover, other

fibrotic factors and pathways that interact with PKC are

discussed. Transforming growth factor b1 (TGF-b1) is one of

the most important factors that causes basement thickening and

ECM accumulation in diabetic nephropathy (61). PKC

activation and the expression of TGF-b1 in mesangial cells

and glomerular endothelial cells were increased under

treatment with glycated albumin and advanced oxidation

protein products (the level of glycated albumin and advanced

oxidation protein products are elevated under high glucose,

which mimics the alternations in vivo) (62–64). Inhibition of

PKC-a and PKC-b attenuated the expression of TGF-b1 and

connective tissue growth factor (CTGF) in glomerular

endothelial cells and mesangial cells (54, 55, 62, 64–66).

Interactions between other molecules and PKC in terms of

ECM protein synthesis and basement thickening have also

been explored. Global Akr1b3 knockout mice showed

inhibition of PKC activation, with reduced ECM accumulation

and glomerular hypertrophy in renal cortical tissue (67). The

homologous genes NOX2, NOX4, and NOX5 were also found to

inhibit PKC-a and PKC-b activation, followed by decreases in

hyperglycemia-induced ROS and expression of TGF-b1 and

monocyte chemoattractant protein-1 (MCP-1), which

prevented ECM accumulation and basement membrane

thickening in mesangial cells and podocyte, and thus

decreased albumin excretion (68–70). Extracellular signal-

regulated kinase (ERK) is also involved in ECM accumulation.

PKC-d expression was increased in the membranous fraction

under high-glucose conditions. Treatment with the PKC-d
inhibitor rottlerin, but not the cPKC inhibitor Gö6976,

abrogated ERK expression and decreased hyperglycemia-

induced responsiveness to TGF-b1 in mesangial cells, blocking

the fibrotic response (71). In contrast, Tuttle et al. discovered

that PKC-b inhibition caused decreased expression of ERK1 and
frontiersin.org

https://doi.org/10.3389/fendo.2022.973058
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pan et al. 10.3389/fendo.2022.973058
ERK2 in mesangial cells (72). Moreover, Wu et al. reported the

involvement of phospholipase C g1 (PLC-g1) in the development

of diabetic nephropathy. PLC-g1 inhibition suppressed PKC-b-
induced protein kinase B (Akt) S473 phosphorylation in

mesangial cells under high-glucose conditions, and collagen I

upregulation was also prevented by the PLC-g1 inhibitor

U73122 (73). In summary, current studies indicate that

overexpression of PKC is involved in the accumulation of the

ECM, and mesangial cells account for most of the ECM

accumulation; however, regarding PKC isoforms, some studies

have shown contradictory results (56, 57, 59). The results may be

influenced by the duration of cell culture. The authors suggest

that in the development of diabetic nephropathy, specific PKC

isoforms may participate in the early process of exacerbation.

However, with the development of diabetic nephropathy, more

PKC isoforms may be involved in its pathogenesis when high-

grade proteinuria occurs. Consequently, it is also vital to explore

different PKC isoforms in various types of cells in the kidney and

stages of diabetic pathogenesis. In addition, VEGF plays an

important role in the development of diabetic nephropathy, the

role of VEGF in ECM accumulation may also be a promising

topic to be explored in the future.
Diabetic retinopathy

Oxidative stress is considered an important factor in the

pathogenesis of diabetic retinopathy (DR), and accumulated

reactive oxygen species ultimately result in the impairment of

retinal tissue and vessels. PKC activation is one of the main
Frontiers in Endocrinology 05
factors involved in accumulated oxidative stress (74, 75). High

glucose concentrations cause damage to the function and

structure of the retina, including loss of pericytes, increased

vascular permeability, thickening of the retinal capillary

basement membrane, tissue ischemia, etc. (Figure 3) (74). The

processes mentioned above give rise to the initial stage of DR,

termed nonproliferative diabetic retinopathy (NPDR). In the

NPDR stage, visual impairment is not always noticed, whereas

sight-threating DR and blindness are preventable (76). However,

if NPDR is left untreated, vascular endothelial growth factor

(VEGF) protein levels are upregulated due to ischemia/hypoxia

through hypoxia-inducible factor 1 (HIF-1) activation (77).

Upregulation of VEGF causes the formation of new blood

vessels, which is called neovascularization. This drives DR into

the proliferative diabetic retinopathy (PDR) stage. In this phase,

newly formatted permeable vascular tufts and macular edema

appear and ultimately cause loss of vision (78, 79).

Activation of PKC mediates the progression of decreased

retinal blood flow in DM. The mean circulation time (MCT) in

diabetic rats was significantly increased. In contrast, when the

rats were treated with intravitreal injection of LY333531, the

MCT was shortened to half the MCT of those that were not

treated (80). PKC-mediated inflammation may be one of the

factors of decreased blood flow. In the retinal microcirculation of

diabetic rats, an increased number of leukocytes were trapped,

leading to blood flow disturbances in the re t inal

microvasculature. LY333531 significantly reduced the number

of trapped leukocytes and increased the retinal blood flow of

diabetic rats (81). In addition, the activation of PKC may cause

the overexpression of endothelin-1 (ET-1), which can also
FIGURE 3

Protein kinase C (PKC) in diabetic retinopathy. PKC activation in diabetic retinopathy influences blood flow, causes retinal microvascular
constriction, induces angiogenesis and increases microvascular permeability. ET-1, endothelin-1; NO, nitric oxide; MMP, matrix
metalloproteinase; ERK, extracellular signal-regulated kinase ; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth
factor receptor 2; ZO, zonula occludens; HIF-1, Hypoxia-inducible factor 1.
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explain the decrease in retinal blood flow. The expression of ET-

1 and activation of PKC were increased in parallel by 2-fold in

bovine retinal endothelial cells (BRECs) under high-glucose

conditions. The overexpression of ET-1 was inhibited by the

general PKC inhibitor GF109203X. It was further discovered

that PKC-b and PKC-d were significantly overexpressed in

membranous fractions, which indicated that the activation of

PKC-b and PKC-d mediated ET-1 expression (82). Moreover,

nitric oxide (NO) insufficiency participates in the alteration of

retinal blood flow. The synthesis of NO from retinal

microvascular endothelial cells (RMECs) was downregulated

under high-glucose conditions, whereas a PKC inhibitor

increased the accumulation of NO and restored the blood flow

in the retina (83). PKC-b and PKC-d are two main isoforms that

have been studied regarding blood flow in the retina, and studies

on other isoforms are in progress.

It has also been proven that retinal vascular permeability is

increased under high-glucose conditions, along with levels of

reactive oxygen species (84, 85). The application of a PKC

inhibitor reduced high glucose-induced albumin leakage (85).

VEGF is mainly studied in terms of retinal vascular permeability.

The expression of PKC-b and VEGF were both significantly

increased under high-glucose conditions, and the inhibition of

PKC-b and PKC-b mutant mice showed attenuated vascular

barrier function and less albumin leakage (86–88). PKC-b
activation induced occludin Ser490 phosphorylation, which led

to the ubiquitination required for VEGF-induced permeability

and exacerbated retinal barrier dysfunction (89). In addition to

PKC-b, activation of PKC-a, PKC-z, PKC-d and aPKC induced

by VEGF is involved in impaired tight junctions and activation

of inflammatory pathways and causes hyperpermeability (90–

94). PKC-b, PKC-a, and PKC-d levels were found to be

increased in membranous fractions. However, treatment with

a PKC-b inhibitor rescued 95% of the VEGF-induced increase in

vascular permeability, indicating that PKC-b plays a major role

in VEGF-induced hyperpermeability in diabetic retinopathy (90,

91). Moreover, studies focusing on gap junctions were also

conducted. Gap function is impaired due to the loss of zonula

occludens (ZO)-1, ZO-2, etc. Inhibition of PKC-d blocked

translocation from the cytosol to the membrane and restored

the loss of gap junction proteins (95). However, PKC was not

found to participate in claudin-1 (another gap junction protein)

expression (96). In summary, PKC-b is thought to be the most

crucial PKC isoform that participates in increased retinal

microvascular permeability, and most related clinical trials

have also focused on PKC-b (see below). The role of PKC in

specific gap junction proteins still needs further exploration.

PKC is also promising for detecting structural impairment in cell

junctions visually.

Basement thickening is also one of the most common

features in the early stage of diabetic retinopathy (95). As

mentioned above, PKC-b overexpression was observed in

STZ-induced rats. Treatment with hesperetin (Hsp)
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suppressed PKC-b expression, abolished DM-induced retinal

capillary basement membrane thickness, and prevented retinal

microvascular dysfunction (88). Giordo et al. reported an

association between PKC activation and endothelial-to-

mesenchymal transition (EndMT). In high glucose-exposed

human retinal endothelial cells, the general PKC inhibitor

chelerythrine significantly reduced ROS levels and EndMT.

Moreover, the researchers also observed attenuated fibrotic

processes (97). However, due to the correlation between

structural and functional changes in diabetic retinopathy (98),

more studies on the association between PKC activation and

ECM augmentation are expected.

Activation of PKC enhanced angiogenesis in diabetic

retinopathy. As mentioned above, PKC activation enhances

the expression of VEGF in the retina. Nonetheless, vascular

permeability is increased, which exacerbates the development of

diabetic retinopathy. The activation of PKC accelerates

migration, tube formation, and cellular proliferation in

diabetic retinopathy, and the PKC-mediated upregulation of

extracellular signal-regulated kinase (ERK) 1/2 and matrix

metalloproteinase (MMPs) may account for the enhanced

angiogenesis (99, 100). Although enhanced angiogenesis is

observed in the retina under high-glucose conditions, the

newly formed microvasculature shows impaired function,

which accelerates the progression of diabetic retinopathy.
Diabetic neuropathy

Diabetic neuropathy is a syndrome that affects the peripheral

nervous system, and both the somatic and autonomic divisions

are impaired. It is mainly thought to be the result of thickening

of the capillary basement membrane and endothelial

hyperplasia, as mentioned above (101, 102). Sensory axons,

autonomic axons and, rarely, motor axons are mainly

influenced in diabetic neuropathy. Moreover, the spinal cord is

damaged in diabetic neuropathy (31, 103, 104). Damage to

sensory axons usually causes symptoms that are easy to notice,

such as hyperalgesia, paresthesia, and allodynia. Notably, the loss

of nerve conduction velocity and nerve terminals tends to occur

in long nerve fibers, which is called a fiber length-dependent

pattern. Thus, numbness, nighttime pain, dysesthesia, and

sensory loss always appear on the feet and then ascend to the

hands, which is called the ‘stocking and glove pattern’

distribution (105). In addition, autonomic axons are also

affected. In patients with DM, several autonomic nervous

system symptoms can be observed. One of the most common

symptoms is orthostatic hypotension, and the autonomic

nervous system fails to regulate heart rate and blood flow;

consequently, upright position blood pressure cannot be well

maintained (106). Other autonomic nervous system symptoms,

including gastroparesis, nausea, bloating, and diarrhea, should

be considered evidence of the development of diabetic
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neuropathy. In addition, symptoms such as depression and sleep

disturbance should be differentiated and emphasized (107).

Motor neurons are located inside the blood–brain barrier,

which may explain why damage to motor axons is rarely

observed (108). The symptoms of diabetic neuropathy mostly

refer to motor dysfunction, including falling, body sway, and

dorsiflexion of fingers or toes (109, 110).

Studies concerning activation of PKC in diabetic neuropathy

mainly focus on blood flow and conduction velocity. The blood

flow in sciatic motor and saphenous nerve sensory were

significantly decreased in diabetic rats, along with higher

response to noxious mechanical and thermal stimuli. What’s

more, NO synthase was also found to be inhibited in diabetic

rats. LY333531 treatment attenuated the impaired blood flow

and NO synthase activity (111). WAY151003 (general PKC

inhibitor) and cremophor (an agent that prevents PKC

activation) were also found to be effective in improving motor

conduction velocity and correcting blood flow deficits in the

sciatic motor and saphenous areas (112, 113). In addition,

basement membrane thickening is associated with nerve

damage in patients with diabetic neuropathy (114).

Nonetheless, as a small number of studies have been

conducted on microvascular functional and structural damage

in diabetic neuropathy, addressing microvascular problems is

thought to be an adjunct therapy in treating diabetic neuropathy.
Clinical trials of PKC inhibition in
diabetic microvascular
complications

As mentioned above, in vivo and in vitro experiments have

demonstrated that various PKC isoforms participate in the

development of diabetic microvascular complications. Since

different general and specific PKC inhibitors have been

explored, clinical trials have also been conducted to evaluate

the efficacy and safety of PKC inhibitors in patients with diabetic

microvascular complications (Table 1). One clinical trial showed

that the general PKC inhibitor PKC412 reduced macular edema

and improved visual acuity. However, gastrointestinal side

effects (diarrhea, nausea, and vomiting) were associated with

PKC412, along with dose-related liver toxicity, indicating that

general PKC inhibitors may not be an appropriate choice for

clinical application due to their side effects (115).

Because of unsatisfactory safety, general PKC inhibitors have

not been widely used in clinical trials. Hence, specific PKC

inhibitors have been developed. The PKC inhibitors used in

trials on diabetic microvascular complications were mainly

PKC-b isoform inhibitors, including RBX and LY333531.

The effect of RBX has been evaluated mostly in patients with

diabetic retinopathy. The PKC-DES trial evaluated the effect of

RBX in patients with severe to very severe nonproliferative
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diabetic retinopathy. After 36-46 months of treatment with

RBX, 32 mg/d RBX significantly reduced the risk of moderate

visual loss compared with placebo and was well tolerated.

However, the progression of diabetic retinopathy was not

deferred (116). Another study (PKC-DRS2) recruited patients

with moderate to severe nonproliferative diabetic retinopathy

and evaluated the effect of RBX on vision loss. The trial was

conducted for 36 months, and retinopathy status was assessed

every 6 months. After treatment with RBX for 36 months,

significant alleviation of visual loss was observed in the RBX

group. In addition, the need for laser treatment and macular

edema progression were also improved in the RBX group in

patients with nonproliferative retinopathy (117). The PKC-

DES2 group also conducted a 2-year open-label extension of

PKC-DES2 and found that patients with the most exposure to

RBX experienced less sustained moderate vision loss (SMVL)

than those in the original placebo group (118). Moreover, two

phase 3 trials (MBDL and MBCU) demonstrated similar results:

RBX is effective in preventing SMVL by 50% in comparison with

standard care; however, a significant difference was not achieved

(P=0.06). Moreover, diabetic macular edema (DME)

morphology-related measures did not show a trend in favor of

or against RBX (119). PKC-DMES recruited patients with

diabetic macular edema. Treatment with RBX for 30 months

also did not show a satisfactory result in delaying the progression

of sight-threatening DME (120). In contrast, Strøm et al. found

that for patients with DME, 18 months of RBX treatment

significantly prevented retinal vascular leakage compared to

placebo, particularly in those with elevated leakage at baseline

(121). In summary, the PKC-b inhibitor RBX did not show

beneficial results in ameliorating the worsening of diabetic

retinopathy. However, comparing PKC-DES with PKC-DES2,

we found that RBX might be effective in patients with moderate

to severe nonproliferative diabetic retinopathy, in which

treatment with 32 mg/d RBX showed a satisfactory effect after

3 years. In addition, RBX may be a promising treatment for

DME patients with elevated retinal vascular leakage.

Clinical trials on DM-induced endothelial dysfunction were

also conducted. Beckman et al. conducted a randomized

controlled trial that included healthy subjects. LY333531 or

placebo was administered for 7 days before vascular function

testing. Forearm blood flow was significantly reduced in patients

treated with placebo, and impaired endothelium-dependent

vasodilation was also observed. Pretreatment with LY333531

recovered blood flow and attenuated the blood flow response to

methacholine chloride during hyperglycemia (122). Moreover, it

was found that 8 weeks of treatment with 32 mg/d RBX blunted

the effect of hyperglycemia on flow-mediated vasodilation in

patients with type 1 DM (123). However, as most clinical trials

have focused on diabetic retinopathy, more clinical trials,

especially those on diabetic nephropathy, are expected to

translate the results of these experiments to clinical applications.
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TABLE 1 Clinical trials of PKC inhibitors on diabetic microvascular complications.

Author
Year

Participants
(n)

Intervention
group (n)

Placebo
group
(n)

Inclusion criteria Intervention Dose&Duration Results Reference

Campochiaro
2004

141 32 (50mg/d)
38 (100mg/d)
37 (150mg/d)

34 18-85 years of age;
diagnosis of type 1 or type
2 diabetes mellitus with
nonproliferative diabetic
retinopathy or no more
than mild proliferative
diabetic retinopathy, as
defined by ETDRS level
61; retinal thickening in
the study eye within 3000
mm of the foveal center
with an area of at least 0.5
disc areas or a posterior
edge of retinal thickening
(or of hard exudates
adjacent to the retinal
thickening) 500 mm or
less from the foveal
center; best corrected
visual acuity score of at
least 55 letters on the
ETDRS chart
(approximately equivalent
to 20/80 or better).

PKC412 50, 100, 150mg/d; 12
months

Orally
administered
PKC412 at
doses of 100
mg/d or higher
may
significantly
reduce macular
edema and
improve visual
acuity in
diabetic subjects

(115)

PKC-DRS
Study Group
2005

252 60 (8mg/d)
64 (16mg/d)
67 (32mg/d)

61 an Early Treatment
Diabetic Retinopathy
Study (ETDRS)
retinopathy severity level
between 47B and 53E
inclusive (moderately
severe to very severe
nonproliferative diabetic
retinopathy [NPDR]);
best-corrected visual
acuity of 44 letters using
ETDRS visual acuity
protocol (Snellen
equivalent of 20/125 or
better); no history of
scatter (panretinal)
photocoagulation for DR;
no evidence of glaucoma.

RBX 8, 16, 32mg/d;36-46
months

RBX was well
tolerated and
reduced the risk
of visual loss
but did not
prevent DR
progression.

(116)

PKC-DRS2
Group 2006

685 340 345 (1) Early Treatment
Diabetic Retinopathy
Study (ETDRS)
retinopathy levels of 47A
and 53E, (2) best-
corrected visual acuity
(BCVA) score of 45 letters
as measured by the
ETDRS visual acuity (VA)
protocol (20/125 Snellen),
(3) no history of
panretinal
photocoagulation (PRP)
for DR, (4) no evidence of
glaucoma, and (5) no
history of conditions
affecting DR progression.

RBX 32mg/d; 36 months Oral
ruboxistaurin
treatment
reduced vision
loss, need for
laser treatment,
and macular
edema
progression,
while increasing
occurrence of
visual
improvement in
patients with
nonproliferative
retinopathy.

(117)

(Continued)
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TABLE 1 Continued

Author
Year

Participants
(n)

Intervention
group (n)

Placebo
group
(n)

Inclusion criteria Intervention Dose&Duration Results Reference

Sheetez 2011 203 103 100 (1) Early Treatment
Diabetic Retinopathy
Study (ETDRS)
retinopathy levels of 47A
and 53E, (2) best-
corrected visual acuity
(BCVA) score of 45 letters
as measured by the
ETDRS visual acuity (VA)
protocol (20/125 Snellen),
(3) no history of
panretinal
photocoagulation (PRP)
for DR, (4) no evidence of
glaucoma, and (5) no
history of conditions
affecting DR progression.

RBX 32mg/d; 24 months Patients with
greatest RBX
exposure
experienced less
SMVL
compared with
those in the
original PBO
group

(118)

Sheetz 2013 1028 520 508 diagnosis of type 1 or 2
diabetes, age≥ 18 years,
hemoglobin A1c (HbA1c)
11%, and blood pressure <
160/90 (MBCU) or mean
arterial pressure 113
(MBDL).

RBX 32mg/d; 36 months RBX reduces the
relative risk of
SMVL from
DME by 40% to
50%, with a
lesser benefit on
morphologic
severity.

(119)

PKC-DMES
Study Group
2007

686 168 (4mg/d)
174 (16mg/d)
168 (32mg/d)

176 type 1 (18%) or type 2
(82%) diabetes mellitus
who were aged 22 to 87
years and had a
hemoglobin A1c (HbA1c)
level of 5.1% to 13.1%

RBX 4, 16, 32 mg/d; 30
months

Although
progression to
the primary
outcome was
not delayed,
daily oral
administration
of RBX may
delay
progression of
DME to a sight-
threatening
stage.

(120)

Strøm 2005 55 17 eyes (4mg/d)
11 eyes (16mg/d)
14 eyes (32mg/d)

13 eyes the presence of one sixth
or more of disc area (DA)
of definite retinal
thickening within two disc
diameters (DD) of the
center of the macula and
ETDRS severity of
retinopathy level ≤47A, as
determined by
stereoscopic fundus
photograph grading

RBX 4, 16, 32 mg/d; 18
months

RBX treatment
was associated
with a reduction
of retinal
vascular leakage
in eyes that had
diabetic macular
edema and
markedly
elevated leakage
at baseline.

(121)

Beckman
2002

14 7 7 healthy volunteer LY333531 32mg/d; 7 days Inhibition of
protein kinase
Cbeta prevents
the reduction in
endothelium-
dependent
vasodilation
induced by
acute
hyperglycemia

(122)

(Continued)
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Conclusions and further
perspectives

Given the role of PKC in structural and functional changes

in diabetic microvascular complications, it might be a promising

target in the treatment of diabetic microvascular complications.

However, although many studies have revealed the potential

effects of PKC inhibition in alleviating the progression of

diabetic microvascular complications, only RBX has shown

application potential in diabetic retinopathy, and other PKC

inhibitors have not shown satisfactory results in clinical trials.

Hence, some challenges and limitations should still be noted in

studies at present, as discussed below.

First, many in vivo studies used inappropriate disease

models. Diabetic microvascular complications are induced by

uncontrolled blood glucose over a long period, which is not well

mimicked in current studies. In in vivo studies, DM is mostly

induced by STZ intraperitoneal injection, with or without high-

sugar and high-fat feed. STZ targets and destroys islet b cells,

causing damage to the regulation of blood glucose. Nevertheless,

the mechanisms that drive DM in humans are different from the

mechanism of STZ-induced DM. Other factors, such as lipids

and the genome, affect the development of DM and obvious

diabetic microvascular complications. In addition, current

experiments focus on certain inbred species, such as Rattus

norvegicus and Mus musculus. Therefore, the experiment

cannot perfectly explain the role of different PKC isoforms in

diabetic microvascular complications in humans due to

homogeneity. Therefore, the authors suggest that more species,

or at least more animals in a group, should be considered in

studies of metabolic diseases such as DM.

Second, there is still a lack of biomarkers to evaluate the

effect and pharmacodynamics of PKC inhibitors. In terms of

evaluating the effect and safety of PKC inhibitors for diabetic
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microvascular complications, clinical outcomes are the only

evidence. This leads to a heavier economic burden. Thus, there

is an urgent need to explore new biomarkers to reflect the role

and bioavailability of PKC inhibitors in clinical trials, so that the

application prospects of PKC inhibitors can be foreseen to be

easier and less expensive.

Third, there are still few clinical trials on specific PKC

isoform inhibitors other than RBX. As mentioned before,

general PKC inhibitors showed poor bioavailability and

tolerability in trials, which makes them unacceptable. In

addition, PKC inhibitors may also affect other protein kinases,

which cause unintended results (124). Hence, specific PKC

isoform inhibitors are vital in clinical application. Despite the

satisfactory results of specific PKC isoform inhibitors in

animal experiments, PKC-b is the main focus of clinical trials.

Inhibitors of PKC-a and PKC-dmay also be promising in terms

of the results observed in experiments. However, only a few

clinical trials on cancer used PKC inhibitors such as rottlerin

(125), and diabetic microvascular complications are not being

studied. More studies on the effect and safety of other PKC

inhibitors are expected to be conducted to determine

their applicability.

Finally, studies of new PKC inhibitors with increased

selectivity and sample sizes are anticipated. PKC, a kinase

family, influences many types of cells and contributes to

different cell responses. As we have reviewed, the activation

of PKC influences different downstream molecules, and

inhibiting the activation of PKC prevents the exacerbation of

diabetic microvascular complications. Nevertheless, unwanted

effects of PKC isoform inhibitors should also be noted. For

example, inhibition of PKC-b may rescue aggravated

angiogenesis in diabetic retinopathy, but delayed wound

healing may also be induced. In addition, current clinical

trials on diabetic microvascular complications have recruited
TABLE 1 Continued

Author
Year

Participants
(n)

Intervention
group (n)

Placebo
group
(n)

Inclusion criteria Intervention Dose&Duration Results Reference

in healthy
humans in vivo.

Cherney 2012 20 13 7 age >18 years; type 1 DM;
glycated hemoglobin
(HbA1C) 6% to 10%;
nephropathy (defined as
urinary albumin to
creatinine ratio of >2.1
mg/mmol in men and
>2.8 mg/mmol in
women); and estimated
GFR ≥ 80 mL/min.

RBX 32mg/d; 8 weeks PKCb may
modulate
endothelial
function in type
1 DM, the effect
may act through
non-RAS
pathways in
humans with
DM.

(123)
fro
Ang, angiotensin; DM, diabetic mellitus; DME, diabetic macular edema; DR, diabetic retinopathy; ETDRS, Early Treatment Diabetic Retinopathy Study; RAS, renin-angiotensin system;
RBX, ruboxistaurin; SMVL, sustained moderate visual loss.
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low numbers of participants. As we mentioned before, due to

high heterogeneity among humans, many factors influence the

effect of trials. Patients of different ages and races and with

different lifestyles are differentially affected by the bioavailability

of drugs (e.g., clopidogrel resistance in Asian individuals).

However, the number of multicenter clinical trials with large

sample sizes on diabetic microvascular complications is still

unknown. Thus, it is also vital to conduct trials with more

patients and take into account high heterogeneity across

human subjects.

In terms of quantities of experiments and clinical trials, PKC

can be thought of as a promising and attractive target in the

treatment and prevention of diabetic microvascular

complications. However, owing to the effects of PKC isoforms

in various tissues and organs, it is necessary to develop new

chemicals that are tissue- or organ-specific to better prevent

adverse effects. The development of new highly selective and

well-tolerated drugs that regulate PKC and ultimately translate

into clinical medicine is expected to treat and prevent diabetic

microvascular complications.
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