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In response to potential bioterrorism with smallpox, members of the Japanese Self-Defense

Forces were vaccinated with vaccinia virus (VACV) strain LC16m8, an attenuated smallpox

vaccine derived from VACV strain Lister. The serological response induced by LC16m8 to four

virion-surface proteins and the intracellular mature virus (IMV) and extracellular enveloped virus

(EEV) was investigated. LC16m8 induced antibody response against the IMV protein A27 and the

EEV protein A56. LC16m8 also induced IMV-neutralizing antibodies, but unlike the VACV strain

Lister, did not induce either EEV-neutralizing antibody or antibody to EEV protein B5, except after

revaccination. Given that B5 is the only target for EEV-neutralizing antibody and that neutralization

of both IMV and EEV give optimal protection against orthopoxvirus challenge, these data suggest

that immunity induced by LC16m8 might be less potent than that deriving from strain Lister. This

potential disadvantage should be balanced against the advantage of the greater safety of

LC16m8.

Smallpox was eradicated in 1979 by widespread vaccination
with vaccinia virus (VACV) and thereafter smallpox
vaccination was discontinued (Fenner et al., 1988).
However, due to the potential threat of bioterrorism,
limited smallpox vaccination programmes have been
restarted, and the World Health Organization (WHO)
and several nation states are replenishing their smallpox
vaccine stockpiles.

The WHO reference smallpox vaccine was the strain Lister,
but several other VACV strains were also used including
New York City Board of Health (NYCBH/Dryvax), EM-63
and Tian Tan (Fenner et al., 1988). Although these strains
protected against smallpox, they could also cause adverse
reactions and eczema, immunodeficiency and pregnancy
were recognized as contraindications for smallpox vac-
cination (Lane et al., 1969). The concern about vaccine
safety led to the development of attenuated vaccines by
empirical passage, such as LC16m8 (Hashizume et al.,
1985) or modified vaccinia virus Ankara (MVA) (Stickl &
Hochstein-Mintzel, 1971), or by genetic engineering, such

as NYVAC (Tartaglia et al., 1992). However, these strains
were not used in countries where smallpox was endemic
and, consequently, evidence that they protect against
smallpox is lacking. Nonetheless, in animal models, they
can protect against disease caused by other orthopoxviruses
(OPVs), such as monkeypox virus (Earl et al., 2004; Saijo
et al., 2006). Here, we have examined the immunogenicity
of LC16m8 by evaluating the neutralizing antibody
response to both intracellular and extracellular virions
and four individual proteins on the surface of these virions.
These results were compared with the immunogenicity of
the VACV strain Lister.

LC16m8 is a small plaque variant of the VACV strain Lister
(Elstree) obtained by repeated passage of Lister in primary
rabbit kidney cells at low temperature (Hashizume et al.,
1985). LC16m8 is attenuated in animal models and in man
(Hashizume et al., 1985; Saito et al., 2009) and was used to
vaccinate over 50 000 children in Japan in the 1970s and
members of the Japanese Self-Defense Forces between 2002
and 2005 (Kenner et al., 2006; Saito et al., 2009). The small
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plaque phenotype of LC16m8 is due to a mutation of the
B5R gene, resulting in the truncation of the ORF after
codon 91 (Takahashi-Nishimaki et al., 1991) and expres-
sion of a truncated B5 protein (Meseda et al., 2009). This
mutation and additional alterations elsewhere in the
genome contributed to the attenuated phenotype of
LC16m8 (Takahashi-Nishimaki et al., 1991). Spontaneous
mutations in the LC16m8 B5R gene that restore the plaque
size to normal and increase virulence can occur, but this
could be prevented by deletion of the entire gene
(Kidokoro et al., 2005). Recently, it was demonstrated that
whereas T-cells are needed to prevent development of
progressive vaccinia in macaques immunized with
ACAM200 (a plaque purified derivative of Dryvax),
LC16m8 was unable to spread and cause disease even in
the absence of T-cells, demonstrating its greater safety
(Gordon et al., 2011).

There are two infectious forms of VACV, the intracel-
lular mature virus (IMV) and the extracellular enveloped
virus (EEV), which have different numbers of mem-
branes and distinct surface antigens (Roberts & Smith,
2008). IMV has a single membrane, whereas EEV has a
second membrane and promotes spread within an
infected host. Despite studies showing that antibodies
against EEV are important for protection against disease
(Boulter & Appleyard, 1973; Law et al., 2005), immune
responses against EEV have been less intensively studied
than those against IMV. There are multiple targets for
neutralizing antibodies on the IMV surface, including
A27 and H3 (Davies et al., 2005; Pütz et al., 2006), but B5
is the only target of EEV-neutralizing antibodies (Bell
et al., 2004; Pütz et al., 2006), and is conserved in all
strains of variola virus that have been sequenced (Aguado
et al., 1992; Massung et al., 1994; Shchelkunov et al., 1994,
1995; Esposito et al., 2006). B5 is also important for virus
spread from cell to cell and for virulence (Engelstad et al.,
1992; Isaacs et al., 1992; Engelstad & Smith, 1993; Wolffe
et al., 1993). The production of only a truncated B5 protein
by LC16m8 is therefore relevant to the efficacy of this virus
as a vaccine for smallpox, although, in animal models,
LC16m8 induces neutralizing antibodies against both
IMV and EEV and can protect from a lethal orthopoxvirus
challenge (Empig et al., 2006; Meseda et al., 2009). A recent
study of the immunogenicity of LC16m8 in man, investi-
gated the seroconversion rate of vaccinees and IMV-
neutralizing antibody titres (Saito et al., 2009), but
the immunity to individual antigens, including those
specific to EEV, and the ability to neutralize EEV remain
unknown.

Here, the antibody responses to four VACV antigens
were measured by ELISA and the IMV- and EEV-
neutralizing titres were determined by plaque reduction
assay, as described previously (Pütz et al., 2005, 2006).
The antigens selected were the IMV-surface proteins
(A27 and H3) and the EEV-surface proteins (B5 and
A56), which were produced and purified from bacterial
(A27 and H3) or mammalian (B5 and A56) expression

systems (Pütz et al., 2006; Midgley et al., 2008). The total
anti-VACV antibody titre was also measured by ELISA
against the VACV strain Western Reserve (WR)-infected
cell lysates (Pütz et al., 2006; Midgley et al., 2008). Serum
samples (pre-vaccination and 1 and 5 months after
vaccination) were obtained from 42 primary vaccinees
and 43 persons vaccinated previously, most likely with
the VACV strain Lister (revaccinees), as described
previously (Saito et al., 2009). The pre-vaccination sera
from primary vaccinees were used to calculate cut-off
titres defining seropositivity, defined as three times the
geometric mean titre (GMT) of the pre-vaccinated sera.
The cut-off titre for each antigen was defined as the
maximum dilution of serum that gave a positive-
antibody response; these were: B5, 1 : 28; A56, 1 : 63;
A27, 1 : 145; H3, 1 : 254; VACV, 1 : 82 and are shown by
the dashed line in Fig. 1. The vast majority of pre-
vaccination sera were below the cut-offs, with the
following specificities: B5, 81 %; A56, 98 %; A27, 83 %;
H3, 83 %; VACV, 90 %. Any values below this cut-off
were deemed seronegative and given an arbitrary value of
one-half of that titre to allow calculations of GMT and to
determine effective seroconversion or boosting.

Following vaccination the greatest increase in antibody
titre was for antibodies against A56, and VACV-infected
cells in which there was a statistically significant increase in
mean antibody titre from the pre-vaccination serum to the
1 and 5 months post-vaccination sera in both primary
vaccinees and revaccinees (Fig. 1). There were also
significant increases in mean titre for antibodies against
A27 and H3, although increases were lower than for A56-
and VACV-infected cells. In contrast, no antibody response
was detected against B5 in primary vaccinees (P50.1).
However, there was a boosting of B5 responses in
revaccinees from pre-vaccination to 1 month post-vac-
cination (P50.02). GMTs for each antigen also increased
following vaccination of primary vaccinees, with the
exception of B5 where no increase was seen (Table 1).
An increase in GMTs was seen for all antigens in
revaccinees, including B5.

Rates of seroconversion in primary vaccinees and boosting
in revaccinees, defined as a fourfold increase in end-point
titre from the pre- to post-vaccination sera, varied for each
antigen. In primary vaccinees, the IMV antigens A27 and
H3 and total VACV had seroconversion rates of 19.0, 2.4
and 76.2 %, respectively. For the EEV antigens, only 2.4 %
of primary vaccinees seroconverted to B5, compared with
85.7 % for A56. For revaccinees, the antibody response
against IMV antigens A27 and H3 and total VACV were
boosted in 16.7, 9.5 and 69.0 % of vaccinees, respectively.
For EEV antigens B5 and A56, an effective booster response
was seen in 28.6 and 76.2 % of revaccinees, respectively.
The observation that B5 responses are boosted in
revaccinees, despite little or no antibody response in
primary vaccines, is interesting and is likely attributable to
the production of a short fragment of the B5 protein up to
aa 91 (Meseda et al., 2009).
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Fig. 1. Antibody responses in humans after LC16m8 vaccination.
Antibody end-point titres against (a) IMV and (b) EEV proteins
were detected pre-vaccination (0) and 1 and 5 months post-
vaccination for primary vaccinees (filled circles) and revaccinees
(open circles) by ELISA as described in Pütz et al. (2006). IgG
end-point titres were defined as the reciprocal serum dilution
giving twice the average optical density obtained from BSA. A
control serum from an individual vaccinated multiple times was
used to normalize end-point titres between plates and assays
(titres: B5, 1 : 809; A56, 1 : 1213; A27, 1 : 563; H3, 1 : 394;
VACV, 1 : 5785). Median values of whole population (black bars),
cut-off titres for seropositivity (dashed line) and significant
differences between groups, as determined by Mann–Whitney
test (*P,0.05, **P,0.005, ***P,0.0001) are shown.

Human antibody response to LC16m8
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Some sera were also tested for their ability to neutralize
IMV and EEV from the VACV strain WR by plaque-
reduction neutralization assay (Pütz et al., 2006). A
statistically significant increase in neutralizing antibody
titres against IMV was seen from the pre-vaccination sera
to the 1 month post-vaccination sera for both primary
vaccinees and revaccinees (P50.0002 and P50.0043,
respectively; Fig. 2). There was also a significant increase
in IMV-neutralizing antibody titres from the pre-
vaccination sera to the 5 months post-vaccination sera for
primary vaccinees (P50.018). However, there was not a
significant increase for revaccinees for this time point
(P50.13). Neutralizing antibody titres correlated well with
end-point titres against IMV antigens. In contrast, sera from
primary vaccinees did not neutralize EEV, except for one
sample that showed a very weak response (Fig. 2b). This
correlated with the weak or no anti-B5 responses and was in
contrast to the high titres of anti-A56 antibodies. It was also
consistent with the prior observation that B5 is the only
target for EEV-neutralizing antibody (Bell et al., 2004; Pütz
et al., 2006). Several sera from revaccinees neutralized EEV
before and after vaccination with LC16m8 (Fig. 2b). In
individuals for whom pre-, 1 and 5 months post-vaccination
sera were tested, four of eight showed effective boosting of
EEV-neutralizing antibodies following LC16m8 vaccination
(Fig. 2c), perhaps due to the presence of a truncated B5
protein. It is worth noting that non-neutralizing antibodies
against EEV, such as those against A56, may activate the
complement system (Benhnia et al., 2009).

A comparison of antibody titres in pre-vaccination sera
between primary vaccinees and revaccinees showed residu-
al antibody from prior immunization. Differences in the
median end-point titres were seen for A56 (P50.029),
VACV (P,0.0001) and B5, although the latter was not
statistically significant (P50.085). Pre-existing antibodies
were not detected for A27 (P50.40) or H3 (P50.86)
although these sera did neutralize IMV and EEV, as seen by
high titres of neutralizing antibodies in pre-vaccination
sera from some revaccinees (Fig. 2). The smallpox
eradication campaign in Japan ceased in 1976, showing
that these immune responses are still active at least 35 years
after vaccination.

Antibody responses to LC16m8 were qualitatively and
quantitatively different from those seen for Lister, the
VACV strain used most widely in the smallpox eradication
campaign. In primary Lister vaccinees, the fold-increases in
GMT against antigens B5, A27, H3 and VACV were 13.7,
10.0, 1.8 and 17.1, respectively (Pütz et al., 2006); all but
H3 were higher than the responses to LC16m8 (Table 1).
LC16m8 also induced lower responses than those following
primary Dryvax inoculation [fold increases of B5, 18.8;
A27, 17.2; H3, 5.7; VACV, 18.1 (Midgley et al., 2008)].
However, LC16m8 performed favourably compared to the
attenuated vaccine NYVAC (B5, 2.2; A27, 1.0; H3, 1.8;
VACV, 1.9), apart from in its anti-B5, and therefore anti-
EEV, responses (Midgley et al., 2008). In comparison, the
human antibody responses to MVA are lower than those to
Dryvax in primary vaccinees, but similar in revaccinees
(Davies et al., 2007; Parrino et al., 2007). Overall, LC16m8
induces quantitatively lower antibody responses in primary
vaccinees than Lister or Dryvax, but stronger responses
than NYVAC. LC16m8 also induces qualitatively different
responses to each of these vaccines, as shown by the
absence of B5- or EEV-neutralizing antibodies in primary
vaccinees. It is important to note that LC16m8 has an
excellent safety record with less complications and contra-
indications than either Lister or Dryvax.

In summary, an analysis of the serological responses
induced by VACV LC16m8 in primary vaccinees showed
that IMV-neutralizing antibodies were induced and there
was a good response to the A27 IMV-surface proteins and
total VACV antigen from infected cells. In primary
vaccinees, LC16m8 failed to induce EEV-neutralizing
antibody and consistent with this antibodies to EEV
protein B5 were not produced; however, a boosting
response against B5 protein was observed in revaccinees.
Since B5 is the only EEV antigen that is the target for EEV-
neutralizing antibody, and since it is conserved in all strains
of variola virus, these data suggest that immunity induced
by LC16m8 might be less potent than that deriving from
the VACV strain Lister. Nevertheless, several studies
showed that, similar to Lister, LC16m8 can protect animals
against disease caused by some orthopoxviruses (Empig et
al., 2006; Meseda et al., 2009). In addition, it should be

Table 1. IgG GMTs

GMTs and 95 % confidence intervals are given for each VACV antigen and the total VACV antigen in infected cells in ELISA before and after

vaccination for primary vaccinees and revaccinees. The fold increase in GMT from pre-vaccination to 1 month post-vaccination is also given.

Antigen Primary vaccinees Revaccinees

Pre 1 month 5 months Fold increase Pre 1 month 5 months Fold increase

B5 9 (1–17) 9 (0–20) 18 (9–26) 1.0 16 (0–34) 43 (0–109) 30 (0–97) 2.7

A56 21 (11–31) 288 (189–386) 75 (38–111) 13.7 36 (1–72) 436 (248–624) 166 (89–242) 12.1

A27 48 (18–78) 150 (76–223) 86 (41–132) 3.1 42 (6–79) 115 (57–173) 76 (48–104) 2.7

H3 75 (36–114) 173 (130–215) 145 (95–195) 2.3 82 (45–119) 240 (182–297) 127 (78–176) 2.9

VACV 24 (18–31) 267 (120–414) 130 (0–407) 11.1 122 (40–204) 942 (309–1575) 356 (47–665) 7.7
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noted that the exact correlates of protection against
smallpox remain uncertain, and that there is evidence for
involvement of both antibodies and cellular immunity in
protection against orthopoxviruses, for review see Moss
(2011). The potential disadvantage of reduced immuno-
genicity of LC16m8 should be considered together with the
advantage of increased safety of this vaccine.
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