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Abstract
Different high-level robotics tasks require the robot to manipulate or interact with objects that are in an unexplored part of
the environment or not already in its field of view. Although much works rely on searching for objects based on their colour
or 3D context, we argue that text information is a useful and functional visual cue to guide the search. In this paper, we
study the problem of active visual search (AVS) in large unknown environments. In this paper, we present an AVS system
that relies on semantic information inferred from texts found in the environment, which allows the robot to reduce the search
costs by avoiding not promising regions for the target object. Our semantic planner reasons over the numbers detected from
door signs to decide either perform a goal-directed exploration towards unknown parts of the environment or carefully search
in the already known parts. We compared the performance of our semantic AVS system with two other search systems in
four simulated environments. First, we developed a greedy search system that does not consider any semantic information,
and second, we invited human participants to teleoperate the robot while performing the search. Our results from simulation
and real-world experiments show that text is a promising source of information that provides different semantic cues for
AVS systems.

Keywords Semantic information · Active search · Visual search problem

1 Introduction

Searching for objects or regions of interest (ROI) in large-
scale environments is a daily activity for human beings,
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in which visual recognition is a necessary and essential
skill [14]. In this type of real situation, it is not prudent to
assume that the desired object or ROI, is always present
in the human’s field of view since the beginning. The
environment navigation is also a constant requirement of life
for humans, and it must be as intelligent as possible, even in
unknown places [32]. In such cases, humans must actively
navigate and search for objects in the environment, relying
on their visual recognition abilities [14, 30].

Similar to humans, autonomous robots are also dealing
with tasks related to object searching, such as home
assistance, delivery of packages, manipulation in factories,
and fetch and carry. This progress is possible thanks to
the late advances in the field of mobile robotics, more
specifically in the localisation, mapping, navigation, and
exploration ones [5]. Similar to humans in the context
of object searching tasks, robots can also not rely on
the assumption that objects are already within their field
of view. Hence, they have to find objects in large-scale
environments based on primarily visual sensors, which is
known as an active visual search (AVS) problem [5, 30],
and the main problem addressed in this paper. In more
details, an AVS aims to calculate a set of sensing actions to
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bring the target object into the mobile robot’s sensor field
of view.

The search strategy is one of the critical factors of
an AVS system since it directly impacts the efficiency
of the system [5]. It is responsible for maximising the
probability of detecting the target object in the environment
and minimising the total cost of the task [30]. There are
different approaches to measure this cost, and the most
common options are the time or distance travelled, and
the movements of the robot (each type of movement has
a different value). For example, imagine that a courier
robot is responsible for delivering a package to a specific
room within a large-scale and unknown building. The
most straightforward search strategy would be the robot
visiting all places in the environment, and visually checking
whether every new room is the target one. Even though
many robot sensors have a limited field of view, it is very
inefficient and time consuming to make the robot visit all
the existing rooms of a building to accomplish its task. In
contrast to this simple strategy, semantic information about
the environment could be collected and used by a more
efficient planner. Therefore, instead of making the robot to
exhaustively visit all the existing rooms in a building to
deliver the package at the target room, the search strategy
would be able to reason over the semantic information and
extract important cues to improve the searching.

The research community has proposed essential and use-
ful works related to AVS problem [5, 15, 25, 30, 31].
However, despite these contributions, the problem is proven
to be NP-Complete [33, 37]. Then, the optimal search solu-
tion can be computed by approximation [30], minimising
the search cost as much as possible. In the example of the
courier robot previously introduced, taking advantage of
semantic information of the environment provides search
cues for this approximation. Then, the robot should be able
to reason over their sensor readings, infer new knowledge,
and increase their level of abstraction of the environment
over time [8].

However, making the robot able to acquire such infor-
mation from real scenarios, i.e. unexplored environments,
includes additional cost and increases the difficulty level
of AVS systems [5]. The challenge of such systems relies
on balancing exploration and knowledge exploitation, i.e.
should the robot explore further or search for the tar-
get in the already known regions. In our work, a courier
robot is responsible for delivering a package to a specific
room in a large-scale and unknown environment, with the
shortest possible distance travelled. Our searching strategy
relies on numbers visually extracted from door signs in the
environment, as any information is provided to the robot
beforehand.

The contributions of our paper are summarised in
two parts. First, it presents a semantic AVS system that
efficiently searches for objects, which in our case, the
target is represented by the number of door signs, in large-
scale and unknown buildings. Second, it also presents a
quantitative analysis of our semantic AVS system in four
different simulated indoor environments and one physical
test as proof-of-concept implementation in which a robot is
tasked with finding a target door sign. Besides, it compares
the performance of our system with a purely geometric AVS
system called Greedy, as well as with humans teleoperating
the robot to perform the same search task.

Different object searching approaches have been pro-
posed by the research community as earlier presented. In
many of them, the robot is tasked with finding objects based
on their visual appearance or position in the environment
(e.g. a plate on the kitchen table). However, to the best of
our knowledge, AVS systems that search for door signs (not
areas in general) and take numbers as input to their strat-
egy are not well explored yet. Hence, the novelties of our
paper in comparison to the already published systems are
threefold.

First, the target of our proposed semantic-based AVS
system is a specific door sign (called goal-door in this
paper) within an unknown indoor environment, instead of an
ROI, chair, table, or kitchen utensil like others works. This
novelty enables, for example, autonomous courier robots to
perform the final part of the delivery task, which happens
after the robot arriving at the buildings, where there is no
map available. Our system is relevant in moments such as
COVID-19 pandemic, in which people are recommended to
stay at home and avoid social contact. Hence, it stimulates
the use of fully autonomous robots for performing the entire
delivery task.

Second, our semantic AVS system relies on textual
information as a visual cue, and more specific numbers,
extracted from the door signs. Large buildings, for instance,
are divided into many small rooms, and usually comply
with a pattern of signing each room [1, 4, 18, 34]. Using
numbers is different from considering the size of an ROI,
or the features and colours of an object, for instance. If we
could analyse humans while looking for a door sign in an
unknown environment, most of them would try to figure
out the door signing pattern. They would avoid exploring
the entire building by analysing how the door signs are
related to each other to infer whether the current corridor is
promising in terms of containing the goal-door. A courier
robot could behave in a similar way to efficiently perform
the searching task. Hence, our AVS system processes the
numbers to infer semantic information from them, such
as odd and even characteristics, and whether the sequence
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of numbers is increasing or decreasing. In addition to the
semantic information, our system also takes in consideration
geometric information, which is the distance between the
robot’s pose and the unknown regions, and the history of the
robot’s orientation.

Third, our paper also presents an analysis of the advan-
tage of using text from the door signs and its inferred
semantic information as input to our semantic AVS sys-
tem, instead of limiting it only to geometric information.
The combination of this semantic information, inferred from
the numbers, and the geometric information, extracted from
the environment, are useful inputs for the reasoning of our
system. It permits the efficient computation of search and
exploration steps, guiding the robot towards areas more
likely to lead to the target room. Lastly, in addition to this
computation, which is fully probabilistic, our system also
builds a 2D map of the environment. It is segmented based
on spatial density information, i.e. according to different
sizes of free space [20]. Our system takes into considera-
tion the laser readings to build the 2D map, and the images
of an RGB camera to extract the numbers from the door
signs. The numbers are used to infer semantic information
and search cues, whereas the map indicates new regions to
explore, and when combined, they indicate which direction
is more likely to contain the goal-door to guide the robot.

The remainder of our paper is organised as follows. After
reviewing the literature in Section 2, Section 3 describes our
semantic AVS system and its basic components. Section 4
explains our semantic planner and how it considers the
door signs as exploration cues to reach the goal-door. Next,
Section 5, introduces the experimental setup, and then it
compares the results of our semantic AVS system to, first,
a purely geometric and coverage-based AVS system called
Greedy, and second to human participants performing the
same task using the robot embodiment (teleoperating the
robot and observing its sensor readings in the simulation
setup). Lastly, it presents the results of our semantic AVS
system in a proof-of-concept that uses a physical robot
performing the search in an unknown environment. The
paper conclusion is presented in Section 6, discussing the
demonstrated outcomes.

2 RelatedWork

Visual object search is a problem that has been studied
for many years in the robotics field. The proposed
approaches range from multi-agent collaborating to search
for an object [36], to a single robot actively performing
a semantic-based search [38]. After many years subtopics
of research arose within the object search, such as Indirect
and Active Visual searches. Despite this long period
in which new approaches have been proposed, there

are no detailed surveys in the literature shedding light
on this latter subtopic. However, it is possible to find
comprehensive surveys on wider topics such as salient
objects detection [11], visual attention [9], and as pointed
out in [5], active vision [12, 13]. It is important to mention
that even though it has not been proposed as a survey, in [5]
Aydemir et al. presented a comprehensive review of some of
the most important works related to AVS. Hence, we review
other works not presented in [5], that are as important to
the development of our paper as the presented ones. This
review allows us to show how our work compares to the
visual object search body of research. It also shows how our
system contributes to the advancement of state of the art.

In a series of papers, Aydemir and colleagues presented
spatial representations and a different planner to the AVS
problem. In [7], the authors proposed a spatial relation that
describes topological relationships between objects. They
used that description to create potential search actions for
the AVS problem since they aimed to relax the assumption
that objects start within the robot’s sensory reach. Their
spatial representation was improved in [6], in which they
proposed a combination of a 3D metric map, which supports
obstacle avoidance and path planning, and a topological
map called place map, which maintains the topology of
the environment. The outcome of such combination was
a conceptual map, which connects symbols representing
instance knowledge about the environment with spatial
concepts such as objects, room categories or appearances.
The spatial relation introduced in [7] was used later in [2]
when they combined semantic cues to guide the object
search process in a larger environment. A switching planner
combines a continual classical planner, which decides the
overall strategy of the search, and a decision-theoretic
planner, which uses a probabilistic sensing model to set
the low-level observation actions. In this same paper, they
also proposed an exploration strategy which considers the
object search task, since their start without an initial map
of the environment. The next proposal has argued that
there is a strong correlation between local 3D structure
and object placement, which is called the 3D context.
The authors argued in [3] that local 3D shape around
objects is a strong indicator of the placement of these
objects. Hence, they used a more general model to learn
the relationship between 3D context and objects, in contrast
to the correlation between objects and the appearance of
the environment. The evaluation of their approach was
performed considering a large RGB-D dataset, showing
the effect of using 3D context in an object detection task.
Besides making an RGB-D dataset publicly available in [3],
in [4] Aydemir et al. also published a dataset called KTH.
In this case, the dataset is composed of a set of floor plans
that encompasses, in total, 37 buildings, 165 floors and 6248
rooms. In addition to KTH, another contribution of their
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work was two methods for predicting indoor topologies and
room categories given a partial map of the environment.
The goal was to predict what lies ahead in the topology
of the environment through its topology. Finally, in [5]
the AVS is performed without any initial map, and hence,
besides performing the search, their approach explored
the environment as well. This was one of their main
contributions, that is the balance between exploration and
exploitation, which makes the robot explore more regions
of the environment only after carefully searching for the
object in the known regions. Their proposed AVS system
reasons about whether exploit the known part or explore
the unknown part, based on a model that describes the
distribution over possible extensions to the current world.

The idea of relying on significant and visible landmarks
to narrow down the search was not found only in [3]. Zeng
et al. exploited background knowledge about common spa-
tial relationships between landmarks and target objects [38].
Their proposal, called Semantic Linking Maps (SLiM),
maintained the belief over the locations of the target object
and the landmark. Simultaneously, it accounted for proba-
bilistic inter-object spatial relations. In contrast to the 3D
context-based AVS systems, Rasouli et al. proposed an
attention-based AVS system [25]. They argued that an AVS
system must be responsive, directive, spatiotemporal, and
efficient, which are the characteristics addressed by their
model. It embedded visual attention in an n-step decision-
making algorithm formalised as a 1st-order Markov process.
The use of visual attention increased the robot’s aware-
ness of the environment. Hence, they used all relevant
visual information that was available, leveraging the spatial
and appearance information about the object. Rasouli and
Tsotsos also relied on visual attention methods to reduce
computational costs on their robotic visual search [26]. They
proposed a three-pronged probabilistic search algorithm that
incorporated three forms of visual attention, that are view-
point selection, saliency, and object-based models. On their
model, the attention is used to generate maps with high-
lighted areas in the image which are more likely to contain
an object of interest. The experiments showed that the pro-
posed three-tier attention framework decreased the search
cost in terms of distance travelled, search time, and the num-
ber of actions taken. Saidi et al. explored a different robot
than the other works that opted for wheeled robots since
their AVS system was proposed based on the specificities of
a humanoid robot [28]. A visibility map, which constrains
the sensor parameter space, was used to avoid unnecessary
calls to the rating function, that evaluates the interest of a
potential next view through the analysis of the theoretical
field of view.

It is worth to mention that our semantic AVS system
also considers the exploration of unknown environments
as part of the problem. We aim to perform AVS in an

entire unknown search space, which requires a way of
switching between the exploration of unknown regions and
the exploitation in already known regions. Hence, it is
important to present some works related to exploration.
Here, they are divided into two significant groups regarding
their goals. First, strategies that aim to explore the whole
environment, usually finishing when the robot has visited
the entire free area [16, 24]. Second, strategies called goal-
directed that aim to reach a goal, such as searching for an
object, a room, or a person.

The papers reviewed in this section use semantic
information to improve their findings. Some of them use
a semantic map, whereas others use semantic properties
from objects. The system proposed by Aydemir et al. [5]
focuses on a large-scale environment, where the robot
should find objects using mainly visual sensing. They affirm
that rather than performing an exhaustive search in the
area, their system could find the object guiding the robot
towards to areas more likely to contain it. The probability
is calculated considering extracted semantic cues from
appearance, geometry, the topology of the environment,
and general semantic knowledge of the indoor space. They
showed that the results improved drastically after including
a semantic description in their search system.

Differently, the framework proposed by Veiga et al.
[35] searches for objects in domestic environments. It is
composed of a system that perceives the query object
in RGB-D images through an inference process and
sensor information. The outcome of this process, called
knowledge, is saved and updated in a semantic map.
Experiments in a realistic apartment have shown that their
framework worked well in practice, presenting a reliable
and efficient search approach.

Another significant work that searches objects in
domestic scenarios is Rogers’ et al. [27]. In contrast to [35]
that proposed a modular system, their approach considered
the context of the environment. A graph, connecting
places and objects within these places, is used to predict
the presence (or absence) of objects based on the room
categories. The reasoning made over the graph, combined
with a planner, is used to perform an object search task.
Experiments showed that the robot was able to find objects
in the environment.

Talbot et al. [32] and Schulz et al. [29] proposed
navigation approaches that are also Goal-Directed, despite
not being exploration ones. The idea of an original and
abstract map that links symbolic spatial information with
observed symbolic information and actual places in the real
world was firstly introduced by [29]. This map is used
to make inferences about the location of places. Later,
Talbot et al. [32] extended the idea of the abstract maps,
proposing a novel method that defines the topological
structure and spatial layout information encoded in spatial
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language phrases. The system has shown to complete the
task by travelling slightly further than the optimal path.

Despite the good outcomes from the solutions presented
by the papers mentioned above, there is still room for
improvements. In [5] Aydemir et al. depended on prior
semantic knowledge about indoor spaces obtained from
databases. Talbot et al. [32] and Schulz et al. [29] depended
on a priori abstract maps. Veiga et al. [35] required
beforehand information to learn about objects and the
environment. Additionally, it used a 3D recognition based
framework from the Point Cloud Library (PCL) for object
recognition, which is computationally expensive. Rogers
et al. [27] also implemented PCL to segment data from
RGB-D sensor, continuing to cluster the points, what is
a heavy workload for computers. It is also important to
highlight that none of them has explored the benefits of
textual information available in the environment.

Our proposed AVS system reads the door sign numbers
through an efficient computer vision algorithm and analyses
them to decide whether the current path is promising for
the robot to find the goal-door. It does not require an
environment description nor other instruction in advance,
which is suitable for tasks in unknown environments.
Additionally, it is not computationally expensive, and a
simple computer and two cameras embedded in a robot
can execute it. Relying on textual information from the
environment, and from that infer semantic information, is
another contribution of our work in comparison with the
other papers reviewed here. Given that no information or
map is necessary as a requirement for our system, it is a
good solution for entirely unknown environments.

3 Semantic-Based AVS System

This Section details the basic modules that compose our
semantic AVS system. It starts with an overview of the
system in Section 3.1. Then it goes to the Mapping module
in Section 3.2, to explain how the 2D grid map is built.
The Map Segmentation module is introduced in Section 3.3,
which presents how the map is split into different segments.
Finally, Section 3.4 describes how the numbers are extracted
from the door signs through computer vision algorithms.

3.1 Overview

Our proposed system performs an AVS, i.e. it guides the
robot through an unknown environment until the robot
reaches a specific location or finds an object. Our system
focuses on indoor environments, such as buildings with
many rooms identified by door signs. One of its advantages
is that it does not require any a-priory knowledge about the

environment, such as the door signs arrangement or where
the robot should be heading. In our paper, the target to be
found is a door sign (called here as goal-door), which is
identified by a number. An example to illustrate the usage
of our system is a courier robot that delivers a package.
From the restaurant until the destination building, it uses
Google Maps and its embedded GPS to navigate through
the city. However, once it is inside the building, it does not
have a map to plan its path through the corridors. Therefore,
the robot has to search the target goal-door to deliver the
package to the customer.

Our system is composed of four modules: Mapping,
Image Processing, Map Segmentation and Semantic Plan-
ner. The Semantic Planner module, presented in Section 4,
is the main contribution of our paper. It requires a base sys-
tem to work, composed by the first three other modules,
that are discussed in Sections 3.2, 3.3, 3.4. The first of these
three modules, Mapping, aims to build a 2D grid map of
the environment using the Histogramic In-Motion Mapping
(HIMM) technique [10], that takes as input the readings
from a 180◦ laser sensor. The next module, Image Process-
ing, processes the images taken by two RGB cameras, and
it analyses them to recognise the number from door signs.
Once identified, the module includes them into the 2D grid
map at their respective side, i.e. left or right wall. The third
module, Map Segmentation, is responsible for segmenting
the free space of the 2D grid map according to its size using
the Kernel Density Estimation (KDE) approach introduced
by Maffei et al. [20]. This module also assigns to each seg-
ment of a corridor its respective list of door signs, that is
the list of numbers recognised while the robot was within
the corridor. The last module, Semantic Planner, calculates
which path is more likely to contain the goal-door given its
detected doors. The Boundary Value Problem (BVP) [23],
calculated over the grid map and the Voronoi diagram [17],
moves the robot towards the path that is most attractive,
defined by the Semantic Planner.

3.2 MappingModule

As the robot, equipped with a laser range-finder, moves
through the environment, it reads a set of measurements
that are used as input to the HIMM method in the Mapping
module. It aims to build a 2D occupancy grid map M of
the environment, Fig. 1a. Over M, the Mapping module also
computes the Voronoi diagram to have the centre cells of
the free spaces, represented by the green lines in Fig. 1b.
The yellow region represents the free space that was visited
by the robot kernel, i.e. the circle centred at robot’s pose.
Based on that, the BVP smoothly moves the robot through
the environment, avoiding obstacles and keeping it as close
as possible to the Voronoi cells.
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Fig. 1 Example of our mapping
and segmentation modules. (a)
shows the white area
representing the free cells and
the pink line the robot path, (b)
the marked yellow areas
representing the visited cells
considered by the kernel of
Eq. 3, and the Voronoi through
the green lines, (c) our
KDE-based module segmenting
the visited cells of (b) as two
types, and (d) the segment
identification using different
colours

3.3 Map SegmentationModule

The Segmentation and Mapping modules are executed
simultaneously, aiming to split the free space of M into
multiple regions according to the size of free areas. Every
segmented region is called a segment, and it is used to store
important information from this group of cells. In M, there
might be different types of segments. Figure 1c illustrates
the case in which the Segmentation module considers only
two types. In this case, it means that all green segments, or
all the red ones, have a similar size of free space computed
using the KDE. Besides their type, each segment is also
singularly identified, such as si for the i-th segment within
M. Figure 1d shows the segmented 2D map as if each
segment was identified as one colour.

For this purpose, the Segmentation module uses the KDE
approach [20]. The K(·) is a uniform kernel that computes
the size of the free area covered by it, defined as

K(d) =
{

a , if d ≤ r

0 , otherwise,
(1)

where r is the radius and a is the height of K(·), and d is the
Manhattan distance from the current cell being measured,
c ∈ T, to the centre of the kernel, cell ck ∈ M. T ∈ M is a
subset of cells that have been within the area of the kernel in
any moment. For a given cell c, Q(·) tests whether it is free,
and it is defined as

Q(c) =
{

1 , if c is a free cell

0 , otherwise.
(2)

Combining the previous function into the KDE approach,
it is possible to calculate the kernel density. For a cell ck , its
free space Ψ (·) is computed by

Ψ (ck) =
T∑
c

Q(c)K(‖c − ck‖). (3)

According to Eq. 2, when unknown cells are found within
the kernel area, it is still possible to compute Ψ (·). Therefore,
once unknown cells return zero from Eq. 2, Ψ (·) can differ-
entiate density measures when obstacles are surrounding c
and decrease the size of the area computed by the kernel.
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Assuming that the Segmentation module considers
different sizes of free areas, and given that Eq. 3 calculates
the size of free area surrounding a cell ck ∈ M, Ψ (·) can be
used in the Segmentation module as

Υ (ck) = �Ψ (ck)/δ� (4)

where δ is a threshold that defines how many different
sizes of free areas are considered by the segmentation
function, Υ (·). Therefore, a high δ means Eq. 4 considers
few different sizes, whereas a low δ is the opposite.

A segment s represents a group of free and adjacent cells
from M that have the same Υ (·). Figure 1d demonstrates
different segments, in which each one has a different colour.
For example, given c0 and c1 as two free and neighbouring
cells in M, and that Υ (c0) = Υ (c1), then both belong to the
same segment s0. Otherwise, a new segment s1 is created
and c1 is associated to it. Thus, the segmentation of free
adjacent cells from M is based on Eq. 4.

3.4 Image ProcessingModule

The last module that completes the basis of our semantic
AVS system is the Image Processing one. It aims to
recognise the number of a door sign that may be in an RGB
image. The idea here is to use one well known existing
text recognition algorithm [19, 22, 39], since this is not
the focus of our paper, and any approach can be used. The
chosen work is the one proposed by [22] due to its real-
time recognition aspect, and its robustness against noise and
low contrast of characters. Besides, it does not require any
information or preparation beforehand.

For a given image I that was captured by the robot at cell
c, for example Fig. 2a and c, the image processing module
returns a list L containing the recognised number from door
signs. In the case of Fig. 2, L would contain only the number
228. Figure 2 also shows where the detected door signs are
included into the 2D map M. Figure 2c shows an image
taken by the camera on the robot’s right side, and hence,
the number is included into the map at the same side, as
shown in Fig. 2b. Given that the goal of signing rooms is to
provide a unique door sign for each of them, it is assumed
that there are not two door signs in a corridor identified by
the same number. After receiving L, it must be merged with
the numbers of the door signs from the nearest segment of c.
For this process, it is important to define S(c) as a function
that returns the nearest segment of a cell c, and L(·) as a
function that returns the list of door signs from a segment.
Thus, each door number l ∈ L is included in the list of door
signs from the segment of c, l ∪ L

(
S(c)

)
. Besides, each

l has an occurrence number, that increases by one every
time that the image processing algorithm recognises it. If the
robot revisits a place and recognises a l that already exists in

L
(
S(c)

)
, then its occurrence number is summed to the one

in L
(
S(c)

)
.

4 Semantic Planner

The previous Section 3 explained the necessary components
that compose the basis of our semantic AVS system, i.e.
the Mapping, Segmentation and Image Processing modules.
The explanation continues with the Semantic Planner
module, presenting how the planner decides whether the
robot should continue its search to find the target, or change
its path to a known region. To facilitate the explanation,
imagine that the robot has partially visited the environment
while running the necessary components of the AVS system.
Then, the regions are mapped, segmented, and all the visited
doors were recognised. Assuming the existence of such a
map, aimed to help the Semantic Planner explanation, this
section describes in details the planner.

Our semantic planner is composed of five different parts,
in which two of them are semantic-based, Growing Direc-
tion and Parity, and the other three are geometric-based,
Doors and Robot Orientations, and Distance. The combi-
nation of them leads to a planner that is neither exclu-
sively semantic or geometric. This non-exclusivity char-
acteristic is suitable for situations where the environment
does not have semantic cues to be considered by our
approach. All the five factors are presented individually in
this section, introducing the semantic-based firstly, and then
the geometric-based ones. However, as this section follows
a top-down fashion to introduce the whole planner, the final
formula that combines all the five factors is presented before
them. Therefore, the reader can have a general idea of how
the factors are used and later understand how they work.

4.1 Final Formula

During the searching process, our semantic AVS system
analyses the environment while the robot has not found the
goal-door. If it realises the current region of the environment
is not promising, the system guides the robot to another
direction. To decide the best frontier to go given the set
of frontiers, for each candidate cell c ∈ C, the planner
calculates its attractiveness factor ϕ(c). This factor is the
outcome of the combination of five factors briefly presented
earlier. These candidate cells in C are the ones in the centre
of the free space, i.e. in the Voronoi, and within a frontier,
that is the boundary between visited and not visited cells.
Graphically speaking, five candidate cells are shown in
Fig. 1a, represented by the red dots near the pink line ends.
In this case, C = {c1, c2, · · · , c5}. The visited cells are
the free cells that were within T, represented by the yellow
region in Fig. 1b, whereas the white region represents the
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Fig. 2 Example of the Image Processing module processing two images, in which (a) is an image taken from the left camera, and (c) an image
taken from the right camera. (b) shows the 2D map of the environment and the position of the door sign number 228

free space that is not close enough to the kernel centred at
robot’s position. The Final formula explanation is divided
into two parts, in which the semantic factor is presented
before the geometric factor. In the following subsections,
the components of each factor, i.e. Growing Direction, Parity,
Robot and Door Orientations, and Distance, are presented.

The semantic factor, S(c), combines the Growing Direc-
tion and the Parity factors, ϕg(·) and ϕp(·), respectively. The
idea of the first factor is to return high values when the seg-
ment S(c) is more likely to contain the goal-door given the
door sign sequence. On the other hand, the second part of
S(c) aims to analyse the parity of S(c) and compare it to
the goal-door parity. When the robot is in a S(c) that is not
likely to contain the goal-door, either due to ϕg(·) or ϕp(·),
it should go to another path and continue the active search.
Given that both Growing Direction and Parity factors are
important, in S(c) they are multiplied by each other. If one
is low, the result of S(c) will end up being low as well, even
when the other is high. It is important to highlight that S(c)
is completely probabilistic, and due to how both ϕg(·) and
ϕp(·) are modelled, S(c) becomes robust to outliers. The
Semantic factor is given by

S(c) = ϕg(c)ϕp(c) (5)

Differently, the geometric factor, G(c), multiplies the
Robot and the Door Orientation factors, ϕr(·), ϕo(·)
respectively, by the Distance one, ϕd(·), once the further
they are, the less they matter. Then, the outcome of these
multiplications is summed to the ϕd(·). The geometric factor
is given by

G(c) =
(
ϕo(c) + ϕr(c)

)
ϕd(c) + ϕd(c)

3.0
(6)

Finally, in order to define the best c ∈ C, i.e. the c
that is more like to contain the goal-door, each of them is
submitted to the Eq. 7. Here, α is a threshold that controls
the importance of the S(c) and G(c), and it ranges as 1 ≤
α ≤ 0. The outcome of Eq. 8 is the c∗, that is the candidate

cell in which its S(c) is more likely to contain the goal-door,

ϕ(c) = S(c) ∗ α + G(c) ∗ (1.0 − α) (7)

c∗ = arg max
c∈C

(ϕ(c)) (8)

4.2 Growing Direction Factor

Usually, doors of buildings are signed in sequence and
sorted (either increasing or decreasing order). For example,
the first number of a corridor is smaller than the last one,
or in the other way around. This characteristic can be
inferred through the door sign sequence analysis. Imagine,
for instance, that a robot is in a corridor where the number
of the first door sign is larger than the goal-door one, and
this corridor has an increasing door sign sequence. Hence,
in terms of the Growing Direction factor, the robot should
not consider this path as promising, once it is not very likely
that its door sequence contains the goal-door. Therefore,
the proposed Growing Direction factor, a type of semantic
information inferred from the door sign sequence, is highly
useful to our semantic AVS system, given that it indicates
the door signs organisation in a segment.

For each c ∈ C, the Growing Direction factor first
calculates the angle in which the door sign sequence is
increasing, θi

(
S(c)

)
. To determine it, all the detected door

signs of the segment S(c) are considered, L
(
S(c)

)
, as

illustrated by Fig. 3a. Then, for all possible pairs of two
different door signs, in which one is larger than other,
the vector that connects them is computed. Figure 3b
demonstrates an example for door sign number 1, and how
the vectors are computed in pairs, such as (1,2), (1,3), (1,4),
and (1,5). As it shows, the door sign number 1 has four
vectors, while the door sign number 4 has only one. Just to
illustrate, if we align all these detected door signs, as shown
by Fig. 3c, it would be easier to understand that the sum
of vectors from Fig. 3b and the final θi

(
S(c)

)
, indicate that

the sequence increases to the right. To make this process
even clearer, Fig. 3d repeats the same procedure to the other
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door signs remaining, i.e. 2, 3 and 4.. Here, it is important
to mention that the door signs, i.e. the yellow circles, were
represented within the white area to help the explanation. In
the simulator used in our paper, they appear within the grey
area, as illustrated in Fig. 2b.

Figure 4 illustrates a partial map from the simulator used
in our paper, and it helps to explain the importance of the
Growing Direction. The robot has started at the intersection
of three corridors, and it has chosen the number 3, i.e. the
one on the right. According to the direction of the robot
in this corridor 3, the door sign sequence is considered as
increasing. Hence, in this current scenario, if the goal-door
were 40, for instance, the Growing Direction factor would
consider corridor 3 as promising. In contrast to this, the
same corridor 3 would be not promising if the goal-door
was 2, given that the sequence only increases meaning that
the distance from door sign 2 also increases as the robot
continues in that corridor. Besides these two examples,
which help to understand how the Growing Direction factor
behaves, there is a third case that is important to mention.
Imagine that the goal-door is 21, this factor would be
high until the door sign 20, but after that, its value would
decrease as the robot continue in corridor 3 and the door sign
sequence increases. Hence, just by the Growing Direction
factor and regardless the parity of both the goal-door 21
and the door signs within the sequence, the robot should
continue its search in either the corridor 1 or 2.

One possible solution to deal with the aforementioned
third case is to measure whether all the door signs within the
sequence are smaller or larger than the goal-door. Hence,
the amount of door signs that are smaller or larger than the
goal-door are counted by the functions L<

(
S(c)

)
and L>(

S(c)
)
, respectively. The factor ζ(·) measures the possibility

of a segment to have door signs smaller or larger than the
goal-door, defined by

ζ
(
S(c)

) =
(
L<

(
S(c)

) − L>
(
S(c)

))
max

(
L<

(
S(c)

) + L>
(
S(c)

)
, wg

) , (9)

where −1 ≤ ζ
(
S(c)

) ≤ 1, in which ζ
(
S(c)

) = 1 means that
in S(c) there are only larger door signs, ζ

(
S(c)

) = −1 only
smaller door signs, and ζ

(
S(c)

) = 0 that both L< and L>

are equal. wg is a threshold used to control the minimum
amount of detected door signs are necessary to this equation
reaches 1 or -1.

In addition, Growing Direction factor also considers
θf (c), that is the Voronoi angle at cell c. The difference
angle between θf (c) and θi

(
S(c)

)
, measured by γ (θf (c)),

indicates whether θf (c) is pointing to the same direction
than θi

(
S(c)

)
. Then,

γ (θf (c)) = 1.0 +
∣∣∣∣∣θf (c) − θi

(
S(c)

)
π

∣∣∣∣∣ ∗ −2.0, (10)

where −1 ≤ γ (θf (c)) ≤ 1, in which γ (θf (c)) = 1 means
that θf (c) and θi

(
S(c)

)
are pointing at the same direction,

and γ (θf (c)) = −1 that they are pointing to opposite
directions.

Now, the Growing Direction factor of a cell c, ϕg(c), is
defined as

ϕg(c) = ζ
(
S(c)

) ∗ γ
(
θf (c)

) + 1.0

2.0
, (11)

where −1 ≤ ϕg(c) ≤ 1, in which ϕg(c) = −1 means that is
less likely to reach the goal-door given how the door signs
are set in S(c), whereas ϕg(c) = 1 means that is high likely.
When ϕg(c) = 0, it means that the Growing Direction factor
is not sure about either the growing direction angle, or about
the smaller and larger numbers. Hence, it can not indicate
whether c is a very likely frontier.

4.3 Parity Factor

This factor considers the characteristics of a door sign to
be either even or odd, the kind of information that is not
explicitly available in the environment, but it can be easily
inferred after the number recognition. The idea is to attribute
a high probability to corridors that contain mostly door signs
with the same parity than the goal-door. It is important to
mention that this factor also considers the case in which a
corridor contains both even and odd door signs since the
probability is proportional to their respective amount.

To calculate the Parity factor, first the amount of door
signs from S(c) that has the same or different parity than
the goal-door are counted, given by the functions L=(

S(c)
)

and L 
=(
S(c)

)
, respectively. Then, for a cell c ∈ C, its Parity

factor, ϕp(c), is given by

ϕp(c) = 0.5+ L=(
S(c)

) − L 
=(
S(c)

)
max

(
L=(

S(c)
) + L 
=(

S(c)
)
, wp

)∗0.5 (12)

where 0 ≤ ϕp(c) ≤ 1, and wp is a threshold used to
control the minimum amount of detected door signs that are
necessary to this equation reaches 0 or 1. When ϕp(c) = 1,
it means that all the observed doors have the same parity
than the goal-door, whereas ϕp(c) = 0 is the opposite.
When ϕp(c) = 0.5, it means that L 
= and L= are equal, and
therefore is not possible to ensure the parity of the segment
S(c).

4.4 Robot and Door Orientation Factors

The robot moves through the environment, and it detects
door signs as they are in its path. Usually, the position
of doors follows a pattern, that includes the possibility of
existing doors only on horizontal or vertical corridors, for
instance. Therefore, aiming to find the goal-door quickly,
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Fig. 3 Demonstration of how
the increasing angle θi

(
S(c)

)
is

computed in a segment. All the
detected door signs within the
segment, (a), are considered to
calculate the θi

(
S(c)

)
. The first

step, (b), illustrates the vectors
from door sign 1 to the other
door signs, and it is easier to
understand the effect of this
vector calculation aligning all
the door signs, (c). The final
step of the vector computation,
(d), shows all the vectors

it is better to prioritise corridors that are in the same
orientation than the already visited ones containing many
doors. If the robot can prioritise the corridors in the same
orientation, by consequence, its most common orientation
will be an angle similar to these corridors.

The scenario in Fig. 5 illustrates the importance of both
Robot and Door Orientation factors. The robot starts at the
intersection of corridors 1 and 2 and goes to the right, where
it finds a second intersection between corridors 3 and 4, and
it has to decide which one it should take. At this moment,
all the door signs were detected while the robot had its
orientation near 0◦. Besides, the robot has most of the time
moved heading 0◦, as illustrated by the pink line in Fig. 5a.
Hence, when the robot has to decide between corridor 3 or
4, both Robot and Door Orientation factors would guide the
robot to corridor 3. It is due to the orientation of corridor
3 (∼360◦), that has a smaller difference to 0◦ than to the
orientation of corridor 4 (∼270◦).

To calculate the Door Orientation factor, it is considered
a history of the λd most recent robot’s orientations when a
door sign was detected. Based on this history, it is computed
a histogram of such orientations, in which each bin saves
the percentage of each possible robot’s orientation. Then,
given the orientation of c, θf (c), it is consulted in the robot’s
orientation histogram the probability of finding a door sign
considering such orientation,

ϕo(c) = Hd [θf (c)], (13)

where Hd [·] is the door orientation histogram, and the Door
Orientation factor is 0 ≤ ϕo(c) ≤ 1, in which 1 is 100% and
0 is 0%.

The Door and Robot Orientation factors are very similar
to each other. The difference between them is that the first
one saves the robot’s orientation only when a door sign
has been recognised. Therefore, it prioritises the θf (c) that
has the highest Hd [θf (c)], i.e. the orientation in which the
robot has detected most of the door signs. On the other
hand, the idea of the second one, Robot Orientation factor,
is to prioritise the θf (c) that is most similar to the robot’s
orientation that is more frequent, without considering when
the door signs were recognised. This factor makes the robot
takes into consideration other paths that despite not having
door signs, may connect to other ones more promising.

As the robot moves through the environment, its λr most
recent orientations are saved, and they are used to compute
a histogram. Each histogram bin represents an angle and
the percentage of it in the history of the robot’s orientation.
Given the calculated histogram, the θf (c) is used as an index
to get the probability of that angle, as presented by

ϕr(c) = Hr [θf (c)], (14)

where Hr [·] is the robot orientation histogram, and the
Robot Orientation factor is 0 ≤ ϕr(c) ≤ 1, in which
ϕr(c) = 1 means that θf (c) is an orientation that is equal
to the unique robot’s orientation saved, whereas ϕr(c) = 0
means that θf (c) is an orientation that the robot did not do.

Fig. 4 Partial 2D map of the environment, showing three different corridors and many door signs. All images represent the same part of the
environment, but (a) shows the simple 2D grid map, (b) shows the visited region, and (c) shows the two segments of the map
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Fig. 5 Partial 2D map of the environment, showing four different corridors and many door signs. All images represent the same part of the
environment, but (a) shows the simple 2D grid map, (b) shows the visited region, and (c) shows the five segments of the map

4.5 Distance Factor

The fifth factor that is considered by our Semantic Planner
is the distance between the robot cell cr and each c ∈ C,
i.e. the smallest number of Voronoi cells that connects each
pair of (cr , c). Its goal is to guide the robot towards the
closest c, instead of spending battery and time going to a
farthest one. Take the Fig. 6 as an example, and suppose that
the goal-door is 71. The robot has started at the intersection
between corridors 1 and 2, and it has moved to the right
corridor, Fig. 6a. After a few minutes, guided by the Robot
and Door Orientation factor, it has chosen to continue the
searching on corridor 3. Even though this corridor has the
same parity than the goal-door (both are odd) the Growing
factor indicates that corridor 3 is not promising. Therefore,
the robot should continue the searching in one of the other
three options, corridors 1, 2 or 4. The Distance factor is
responsible for indicating the closest option to the robot,
given by the sum of green cells that connect the robot’s
current position and each red point near the numbers 1, 2
and 4, as shown in Fig. 6b.

The first step of the Distance factor calculation is to
find the smallest distance d� between cr and all c ∈ C,
considering only the Voronoi cells in M, in which one cell
is considered as one to the distance sum. It is given by

c� = arg min
c∈C

(
D(cr , c)

)
(15)

where D(·, ·) is the function that counts the number of cells
between two other specific cells. In this factor, only Voronoi
cells are counted, regardless they are within mapped or
unknown regions.

The idea is that the Distance factor of c, ϕd(c), should
be high to small distances, and low to the big ones, i.e. give
more preference to c that are closer to the robot. Then

ϕd(c) = 1.0 −
(

1.0 − D(cr , c�)

D(cr , c)

)4
, (16)

where 0 ≤ ϕd(c) ≤ 1, in which ϕd(c) = 1 means that
D(cr , c) is equal to D(cr , c�), and ϕd(c) = 0 means that
D(cr , c) is so high that makes the division be around zero.

5 Experiments and Results

This section presents the results of simulated and physical
experiments. Section 5.1 explains the software setup used
in our simulated experiments, as well as the differences
between the physical and simulated experiments. Section 5.2
presents the results of the simulation phase, comparing
the performance of our proposed semantic AVS system
and an entirely geometric AVS system, called Greedy.
Four different maps were considered in this comparison.
Section 5.3 introduces a second type of comparison, in
which these two initial AVS systems, ours and the Greedy
one, are compared to human participants teleoperating the
robot in the simulation setup while performing the searching
task. Finally, Section 5.4 demonstrates how our semantic
AVS system performs in the physical world, as well as the
information about where this test was performed.

It is also important to report the parameters used by our
approach throughout all the experiments presented below,
either in simulation or in the real world. Both wg and wp are
set to eight. This means that in Eqs. 9 and 12, respectively,

)c()b()a(

Fig. 6 Partial 2D map of the environment, showing four different corridors and many door signs. All images represent the same part of the
environment, but (a) shows the simple 2D grid map, (b) shows the visited region, and (c) shows the six segments of the map
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Fig. 7 Software setup used in the simulated experiments. It shows the
MobileSim in (a), (b) represents the robot’s and door signs informa-
tion as input to our semantic AVS system that returns the robot’s next

movements, and (c) is the door signs map as ground-truth in the Door
simulator. Both (a) and (c) represent the same position on the map

the closer or higher to eight the number of detected door
signs is, more important the Growing Direction and Parity
factors become. The number eight was chosen to balance the
importance of the factors since a small number would make
them important very soon in the search process, and a large
number would play the opposite role. In addition to these
two parameters, the Robot and Door orientation factor also
have some parameters. The size of the Hd [·] is four, which
is the outcome of dividing the range of [0◦,179◦] by 45◦.
It means our approach considers the robot’s orientations
when detecting a door sign in groups of 45◦ (e.g. if the
robot detects a door sign and its orientation is 42◦, Hd [0]
is incremented). For the histogram Hd [·], we consider the
past 6.000 orientations, as we read hundreds of robot’s
orientation per minute, and this reading is noise. For the case
of Hr [·], we assume a finer setup, since the robot may be
in a different orientation in the range of [0◦,359◦]. The size
of Hr [·] is 18, and we consider the past 600.000 readings,
due to our high reading rate from the robot’s orientation, the
presence of noise in the data, and to reduce the impact of an
unexpected turning that may happen.

5.1 Simulated Experiment Setup

The setup of the simulated experiments is represented
in Fig. 7. The MobileSim simulates a Pioneer 3-DX
robot equipped with a 180◦ Laser, providing its odometry
information and its laser sensor readings, Fig. 7a. However,
MobileSim does not provide information from door signs,
which is vital for the tests in our paper. Therefore, we
developed a door simulator (DS) to mimic both the two
RGB cameras that are embedded in the physical robot and
the Image Processing module that recognises the numbers,
Fig. 7c. DS provides numbers of door signs and their
positions in the world when they are within the robot’s
field of view. Then, the final setup is a combination of the

MobileSim to read the robot’s information, and our DS that
provides the door signs information, as illustrated in Fig. 7.

The first evaluation of our semantic AVS system was
made through the comparison with the Greedy AVS
system in simulated indoor environments. The experiments
considered four different scenarios, the Table 1 and the
Fig. 8 present the details of them. The four scenarios vary
considerably regarding the amount of door signs and how
they are set, the size of the buildings, and the corridors
orientation. The Normal and Inverse were made aiming to
test the AVS systems in scenarios with many long corridors
intersecting each other, where the AVS systems are forced
to make decisions very often. Due to the high amount of
door signs in both scenarios, four door signs were chosen
as goal-doors for the tests, one in each horizontal corridor.
Their difference is that Normal, Fig. 8a, has its door signs
sequence increasing from the middle to the borders, whereas
the Inverse, Fig. 8b, is in the other way around. This way,
we can test the performance of our semantic AVS system
in different door signs arrangement. The Hotel is the third
scenario used in the experiments, and it is the third and
fourth floors of the Hotel Pennsylvania [21] located in
New York. With the highest amount of door signs and a
large environment containing many door signs and long
corridors, Fig. 8c, the Hotel scenario aims to test the AVS
systems in terms of how our semantic AVS system analysis
the numbers from door signs. A bad choice in Hotel may
cause a long run that will not lead to the goal-doors.
The fourth scenario is from a public dataset called KTH
Campus,1 Fig. 8d, that contains more than 38,000 rooms
in total, considering the many floor plans from different

1It was used the left building from the floor plan identified as
0510028829 A30–00–07, A0043015. The dataset can be found at
http://www.csc.kth.se/∼aydemir/KTH CampusValhallavagen Floorplan
Dataset.tar.bz2

http://www.csc.kth.se/~aydemir/KTH_CampusValhallavagen_Floorplan_Dataset.tar.bz2
http://www.csc.kth.se/~aydemir/KTH_CampusValhallavagen_Floorplan_Dataset.tar.bz2
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Table 1 Different scenarios used on our simulated tests

Name # of Door signs Goal-doors

Normal 113 54, 55, 111, 124

Inverse 116 54, 55, 111, 124

Hotel 124 76, 135, 148, 185

KTH 47 756

buildings [4]. Even though the particular floor plan chosen
for this test, called KTH scenario, has the lowest amount of
door signs compared to the other scenarios used in the tests,
it presents corridors in a different orientation than the first
three ones. All tests in the simulation were carried out in a
laptop 8GB RAM and processor i7.

5.2 Semantic and Greedy AVS Systems

Our semantic AVS system was early introduced in
Sections 3 and 4. In this section, the performance of our
system is compared to the Greedy AVS system, which has
the exact same basis presented in Section 3, but its planner
is composed only by the geometric factor from Eq. 7, i.e. the
Eq. 7 with α = 0. Therefore, the planner of the systems is
the only difference, that is responsible for the reasoning over
their inputs. In summary, the Greedy AVS system searches
for goal-doors based on the nearest frontier, whereas our
semantic AVS system considers environmental information
aiming to make smarter decisions.

Both systems were tested using the same simulation
setup. For the four scenarios, the door signs shown in
Table 1 were set as goal-doors. They were chosen to cover
as many corridors of the scenarios as possible. For each
goal-door, both systems repeated their respective tests ten
times to have statistically significant results. For every test,
it was measured, in meters, the distance travelled by the
robot, from its initial position until it finds the goal-door.
The distance travelled is the search cost used in our paper,
and hence, the shorter the distance, the better is the system
performance. Even though we have not measured and
presented the search cost in terms of time, it is important to
mention that both our Semantic AVS system and the Greedy
one moved the robot with the same velocity. Therefore, the
system that provides the shortest distance travelled is also
the fastest system. Throughout the tests presented in this
Section, in Eq. 1 the a = 1, and in Eq. 4 the δ = 2. These
parameters means that each cell of the 2D grid map M had
value 1 to compute the kernel area and that the environment
had only two types, corridor and not a corridor, as shown in
Fig. 1c.

Tables 2, 3, 4, and 5 present the results of both approaches
in each scenario in the simulated tests, Normal, Inverse, Hotel,
and KTH, respectively. The colourful columns represent the

Fig. 8 The four maps used in the simulated experiments. The green
squares represent the position where the robot has started, and the red
circles highlight the goal-doors. The maps are Normal (a), Inverse (b),
Hotel (c), and KTH (d)
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Table 2 Results of the greedy
and our semantic AVS systems
in the Normal scenario. All the
results are shown in meters

results achieved by tested AVS systems, in which the first
is the result from Greedy AVS system, and the other three
are from our semantic one. In the greedy column, the value
0, 00% means that α = 0% in Eq. 7, and hence, the planner
becomes fully geometric. In the semantic columns, the same
value ranges from 80, 0% until 100, 0%, which means that
the α ranges from 0.80 until 1.0 in Eq. 7. Hence, it changes
the importance of the semantic factor in that equation. Our
semantic AVS system was also tested with α ranging from
0.5 up to 0.7, but the results were not significant, and they
are not presented in the tables. The rows of the tables
correspond to the goal-doors used as targets, and each goal-
door is evaluated in terms of Median, Average, Standard
Deviation, Minimum and Maximum distances. It is also
important to highlight that within a row, the colour of the
table cells ranges from green to red. Green represents the
cell with the smallest value within a row, and red represents
the largest one.

The results in Table 2, Normal scenario, and in Table 3,
Inverse scenario, are similar in terms of which column
has the most red cells. In both cases, our semantic AVS
system has a better performance in contrast to the greedy

one, since most of the green cells are within the semantic
columns, mainly when α = 80.0% and α = 90.0%. It is
also important to highlight that when there are green values
within the greedy column, such as the case of door sign 54 in
Table 2, its standard deviation is the highest one for that door
sign, 41.59m. In Table 3, the lowest average and minimum
of the goal-door 111 are from the greedy AVS system, but
again its standard deviation is the highest. It means that the
ten tests of the greedy system vary considerably, as shown
by the difference between its minimum and maximum
values. On the other hand, the standard deviation within
the semantic columns is lower, meaning that our semantic
system has more constant behaviour during the search. It
always guides the robot through the same path, making the
same decisions in different executions.

The Tables 4 and 5, from Hotel and KTH, present
similar results than the two previous tables, in terms of
the greedy column having most of the red cells. Besides
highlighting that, in general, our semantic AVS system
has better performance than the greedy system, both tables
also show that our proposed system is efficient in physical
scenarios. Even though the α = 100.00% column within
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Table 3 Results of the greedy
and our semantic AVS systems
in the Inverse scenario. All the
results are shown in meters

the semantic columns presents satisfying results, mainly
in Table 5, a purely semantic AVS system is not always
suitable for searching tasks. The geometric factor in Eq. 7
is essential and combined with the semantic factor may
provide the best results.

Besides the previous analysis, the optimal solution for
each scenario was also measured. It is the shortest path
between the starting position, green squares, and a goal-
door, red circles, in Fig. 8. The Tables 6, 7, 8, and 9 present
the optimal solution to each goal-door, as well as the average
and standard deviation with each AVS system from Tables 2,
3, 4, and 5.

In general, the difference between the optimal solution of
each goal-door and the averages in the same line is larger for
results from greedy system than the ones from our semantic
AVS system. For example, the optimal solution for the goal-
door number 124 in Table 6 is 33.16m. The average of the
Greedy system for the goal-door 124 is 148.5m ± 70.08m,
which is almost five times larger than the shortest path. The
results of our semantic AVS system for this same goal-door,
in the worst case, is 67.04m ± 17.08m, which is just two
times larger.

The same analysis can be made for other goal-doors
in other scenarios, Tables 7 and 8. Besides this analysis,
it is also possible to measure how large the averages are
compared to their optimal solution. For all goal-doors and
systems tested in the simulation experiments, Table 10
shows how many times, in percentage, the averages are
larger compared to the optimal solutions. For the case of
our semantic AVS system from Tables 6, 7, and 8, it is
considered the lowest average between the ones from α =
80.0%, α = 90.0%, and α = 100.0%.

To compute the percentages presented in Table 10, it is
considered the optimal solution of each goal-door for each
scenario as 100%. Hence, if the average is larger than the
shortest path, it will be higher than 100%, as the case of the
goal-door 54, scenario Normal. For the greedy system, it is
approximately seven times larger than the optimal solution,
i.e. 709.39%.

In Table 10, most of the lowest percentages are within
the semantic rows. There are few goal-doors in which
the greedy system presents the lowest rate. That is the
case of goal-door 54 of the Normal scenario, and the
111 of the Inverse. However, even though the greedy
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Table 4 Results of the greedy
and our semantic AVS systems
in the Hotel scenario. All the
results are shown in meters

system presents low values, the values from the semantic
system to the same goal-doors are close. In contrast to
this, analysing the goal-door 54 of the Inverse scenario, for
instance, the value from the greedy system is almost four
times larger.

5.3 Human Participants Performance in Object
Searching Task

The results presented in Table 10 illustrate how many times,
in percentage, the results of the greedy and our semantic

Table 5 Results of the greedy
and our semantic AVS systems
in the KTH scenario. All the
results are shown in meters
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Table 6 The average and the
standard deviations from the
Normal scenario, Table 2, and
the optimal solution (shortest
path) between each goal-door
and the starting position. All
the results are shown in meters

Table 7 The average and the
standard deviations from the
Inverse scenario, Table 3, and
the optimal solution (shortest
path) between each goal-door
and the starting position. All
the results are in meters

Table 8 The average and the
standard deviations from the
Hotel scenario, Table 4, and the
optimal solution (shortest path)
between each goal-door and
the starting position. All the
results are in meters

Table 9 The average and the
standard deviations from the
KTH scenario, Table 5, and the
optimal solution (shortest path)
between each goal-door and
the starting position. All the
results are in meters

Table 10 Comparison of the
optimal solution (shortest path)
of each goal-door from each
scenario, with the averages
from Tables 2, 3, and 4. The
shortest path is equivalent to
100%, and the figure shows
how large the averages are in
comparison with the optimal
solution
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AVS systems are larger than the optimal solution. Some
results from the semantic system are two, three or even four
times larger, whereas the greedy system provides results that
are until 12 times larger than the optimal solution for the
scenario Inverse and goal-door 54.

Given only these high percentages, it seems that both
approaches are not suitable for the task of finding a
target door sign in an unknown environment based on text
information as visual cues. However, it is important to
highlight that this task is challenging since the environment
is unknown, and there is no way of planning an optimal path
a priori. This section illustrates the difficulty level of the
searching task by presenting an experiment in which human
participants were invited to perform the searching while
piloting the robot in the simulator presented in Section 5.1.
For this experiment, it was measured (in meters) the distance
travelled by the robot, from the initial position until the goal-
doors. The distance travelled is the search cost used in our
paper, and hence, the shorter the distance, the better is the
system performance.

Instead of using the planner of either our semantic or
the greedy AVS system to accomplish the finding the goal-
door task, ten human participants were invited to teleoperate
the robot in the simulation setup, to perform the same role
than our semantic planner. The participants were presented
to the searching task beforehand, with a time to get familiar
with the robot control system and our simulation setup.
This experiment aimed to measure human performance in
the same setup as the other tested system, to show whether
human reasoning provides better results than our semantic
AVS system in the same conditions. Therefore, the humans
controlled the robot in the same simulator and graphical
interface as the two AVS systems, as shown by Fig. 1a. The
difference of this experiment to the one from Section 5.2 is
how the choices are made. In this case, the participants have
to choose where the robot must go, playing the planner role
to choose the path.

In this experiment, only two scenarios were tested, with
one goal-door each. The Normal and Inverse scenarios are
certainly similar, differing only on how the door signs are
set. Given that humans are good at memorising what they
have seen, it would be unfair to submit them to two similar
scenarios, or more than one goal-door for the same scenario.
Therefore, the Normal and Hotel scenarios were chosen.
Door signs picked as the target were 111 to Normal and
148 to Hotel, because they are not too far nor too near to
the initial position. Hence, the participants would have to
explore at least a small part of both scenarios. Throughout
all the tests, the only data considered to the evaluation was
the travelled distance.

Table 11 summarises the analysis of the ten participants.
Besides, it also compares human performance to the greedy
and our semantic AVS systems. As in the previous tables,
green represents the cells with the smallest value within a
row, and red represents the largest one. As can be seen, our
semantic AVS system presents a smaller average in both
goal-doors, with the lowest indices compared to the others.
The minimum travelled distance for the goal-door 148 is the
only case in which our semantic system does not have the
lowest result.

In contrast to our semantic system, the greedy one
presents the worst results for both goal-doors, which
confirms the previous results presented in the Section 5.2.
It is also worth to mention the high standard deviation
of the Human participants for both goal-doors. It shows
that they had different performances, in which some had
a shorter travelled distance than others. Some participants
did not follow the same pattern when making decisions
throughout their run. At the end of their participation, they
have reported that they did not have an efficient strategy to
search for the target, and no reasoning was made based on
the door signs. One specific participant temporarily forgot
the goal-door for the Hotel scenario, even though it was
written in a paper that was in front of the participants. The

Table 11 Human performance
to the problem of AVS system.
It is compared to the greedy
and semantic systems, in which
all of them had to find two
goal-doors, one in each
scenario. The results are
presented in meters
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Fig. 9 Map used in the experiments with the real robot. It is the building where the Phi Robotics Research Lab is located at the Federal University
of Rio Grande do Sul, Brazil. The green square represents the position where the robot starts, and the red circle highlight the goal-door

human eye has a wider field of view than the two cameras
used in this experiment setup, which provides advantages
to humans when searching for objects in an unknown
environment. However, as previously mentioned, the goal
of this experiment was to test humans as the decision-
maker within the system. That is why they used the same
software setup for the experiments as our semantic and
greedy systems.

Besides the lowest average from our semantic AVS sys-
tem, there are other advantages in comparison to the par-
ticipants’ results. Its small standard deviation means that
the same decisions were taken in all the ten test repetitions,
which suggests that our system is not random when it is
being executed. On the other hand, the same does not apply
for the Human results, which means that every participant
has their particular reasoning to make a decision. Hence,
some participants are more efficient than others in this kind
of tasks. Besides the standard deviation, another advantage
is the fact that robots are not disturbed by other moving
objects or agents in the environment. Therefore, they can
focus on the task, and they do not forget the goal-door, what
happened to one of the humans during the experiment.

5.4 Experiments Using a Physical Robot

The experiment with a physical robot was performed in one
of the buildings of the Federal University of Rio Grande
do Sul, Brazil, where the Phi Robotics Research Lab is
located. Figure 9 shows how this building is organised, as
well as the rooms and their door signs. The robot used in this
experiment is a Pioneer 3DX from MobileRobots, which
is equipped with a Lidar laser scan of 180◦ and two RGB
cameras, as shown in Fig. 10.

The goal of this experiment is to prove that our semantic
AVS system works in physical scenarios, meaning that the
robot should be able to find the target goal-door travelling
the shortest distance as possible. For this experiment, the
goal-door 232 is chosen as the target, which is located on the
left side of the initial position (green square), Fig. 9. Even

though it was at the same corridor as the initial position, the
experiment setup is good to prove that our system can reason
over the detected door signs. From the initial position, the
robot can turn to the left or the right. If it decides the left
direction, it will find the goal-door quicker, but the other
direction would take it to the opposite side. For this case, as
soon as a few door signs have been detected, our semantic
system would be able to reason over them and infer that this
direction is not promising, and hence, it should change to the
opposite direction. Therefore, this would show that the door
signs are used by our semantic system to find the goal-door
efficiently.

The performance of our proposed semantic AVS system,
when submitted to finding the goal-door 232 in a physical
environment, was similar to the situation described above.
Figure 11 depicts six steps of the system, and all of them

Fig. 10 The Pioneer 3DX robot used in the real environment
experiment, as well as the two embedded cameras. The door signs of
the environment are also depicted on this figure
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Fig. 11 Step-by-step of the
performance of our semantic
AVS system in the physical
environment. a shows the initial
position, where the robot has
started the searching, whereas f
shows the final step when the
robot has found the goal-door
232

show important moments for the searching. In Fig. 11a, the
robot just had finished one complete rotation to map its
surroundings and detected the door sign 240. In Fig. 11b,
the robot has chosen to turn right, where the door sign
242 has been found. This figure demonstrates how our
planner decides on changing: i) the door signs 240 and
242 were recognised in an increasing sequence, and it
means that as the robot goes forward, the distance from the
goal-door just increases; ii) the robot is between two
frontiers, and even though the robot is closer to the one
that is in front of it, the other is not that far from it;
iii) the first two door signs were found in a horizontal
corridor, and so far the horizontal corridors are the more
likely ones to contain other door signs. Combining all this
information, the decision at this moment is that the frontier
that the robot is following is less promising than the other
one that is behind it. In Fig. 11c, the robot has changed
its orientation to the opposite one. The door sign 238 was
recognised, which supports the orientation changing. In
Fig. 11d, as the robot has not recognised any other door
sign that contradicts its decision, the exploration continues
towards the left direction. In Fig. 11e, it recognises the door
sign 234, which indicates a decreasing sequence towards the
goal-door. Finally, in Fig. 11f, the goal-door 232 is detected,
and the robot finishes the searching. Unfortunately, due
to the COVID-19 pandemic situation, the university where
the robot is located and this experiment was conducted is
closed, as the health organisations recommend. Therefore,
we were not allowed to perform more experiments like this
to other goal-doors to show further the good performance of
our semantic AVS system in the physical world.

6 Conclusion

We proposed a semantic AVS system that relies on semantic
information inferred from text within the environment. The
proposed system aims to demonstrate that it is possible to
take advantage of different sources of information, such as
door signs, traffic signs, or outdoor advertisement. Even
though our paper has not tested all these different sources,
only door signs, the results show that usage of text inferred
from signs for robotic solutions is promising. Besides,
our paper also intends to encourage the mobile robotics
research community to explore the advantages of semantic
information for mobile robot tasks. The main contributions
of this paper are:

– a robust semantic planner, based on five different fac-
tors, that reason over the door signs to find the goal-
door travelling the shortest possible distance;

– a semantic AVS system which, by using our semantic
planner, can reason over the door signs and estimate
when the robot is in a non-promising path without any
training step;

– an analysis of the usage of text information as input to
the semantic planner within the AVS system. In general,
the analysis shows that our system has better results
than humans participants, both in the same simulation
setup.

Our semantic planner applied to the AVS system
presented an excellent performance, mainly when compared
to the results from the greedy system and humans
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performing the searching. Besides providing the shortest
distance travelled, and by consequence, it was also the
fastest search system, given that the robot moved with
the same velocity in all the experiments. It is important
to mention that no experiments were conducted in an
environment in which its rooms were randomly signed. This
is because we believe that in such kind of environment
probably not even humans would be able to rely on the
random signs and efficiently search for the target door
sign, and our semantic AVS system would rely on an input
that is not reliable. On the other hand, despite not being
random, the Hotel map presents very challenging door sign
configurations. Some corridors have a door sign sequence
that does not increase nor decrease, and that does not have a
predominant parity. These conditions do not reflect a well-
structured environment, but our proposal still presented a
robust performance, with better results than the other tested
approach and humans.

Our semantic planner does not require that the door signs
of the environment are set according to a specific pattern, as
confirmed by the wide variety of the four tested scenarios.
The scenario Hotel demonstrates how different the door
signs can be located, and according to the feedback from
the participants after their participation, the Hotel is indeed
a little bit confusing for them.

The results show that our semantic AVS system presented
better or similar results than the ones from human participants.
However, it is important to highlight that these results were
obtained when humans were piloting the robot in the same
simulation setup as the other experiments. The human eyes
have a wider field of view than cameras, so in this case,
it would be unfair to compare the performance of humans
against robots if they had different visual sensors. That is
why only human reasoning was considered in this paper.

Finally, as future work, we aim to perform more experi-
ments with the physical robot in real world to measure the
performance of our proposal in different scenarios. We also
intend to make our code publicly available, as it is imple-
mented based on the Robot Operating System (ROS) and
hence, it can be easily reused by the research community.
The same applies to the door sign simulator developed by
us for testing our proposal. About the type of the door sign,
we also aim to explore other standards that also includes let-
ters, not only numbers. This achievement would make our
proposal suitable for applications in a wider range of envi-
ronments. Besides, the potential of machine learning could
be applied to the object searching problem. Instead of mod-
elling the growth factor of a sequence or the odd and even
factors, a machine learning-based system could learn how
the door signs are set within the environment. In addition
to that, investigating the other gains of textual information,
such as reading the traffic signs to improve the driving per-
formance of autonomous cars, is another topic that should

be investigated. Lastly, our approach depends on the map
segmentation, which is done by KDE, to group the detected
door signs. In KDE, the kernel size changes the total amount
and the area of the segments, besides being one of the
parameters of our proposal. Therefore, the dependency of
this parameter by our proposal should be investigated to
make it more robust and stable.
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Object search guided by semantic spatial knowledge. In: The RSS,
vol. 11 (2011)

2https://github.com/phir2-lab

https://github.com/phir2-lab


   32 Page 22 of 23 J Intell Robot Syst          (2021) 101:32 
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