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Mitral valve prolapse (MVP) due to myxomatous degeneration is one of the most
important chronic degenerative cardiovascular diseases in people and dogs. It is a
common cause of heart failure leading to significant morbidity and mortality in both
species. Human MVP is usually classified into primary or non-syndromic, including
Barlow’s Disease (BD), fibro-elastic deficiency (FED) and Filamin-A mutation, and
secondary or syndromic forms (typically familial), such as Marfan syndrome (MFS),
Ehlers-Danlos syndrome, and Loeys–Dietz syndrome. Despite different etiologies the
diseased valves share pathological features consistent with myxomatous degeneration.
To reflect this common pathology the condition is often called myxomatous mitral
valve degeneration (disease) (MMVD) and this term is universally used to describe
the analogous condition in the dog. MMVD in both species is characterized by leaflet
thickening and deformity, disorganized extracellular matrix, increased transformation of
the quiescent valve interstitial cell (qVICs) to an activated state (aVICs), also known as
activated myofibroblasts. Significant alterations in these cellular activities contribute to
the initiation and progression of MMVD due to the increased expression of transforming
growth factor-β (TGF-β) superfamily cytokines and the dysregulation of the TGF-β
signaling pathways. Further understanding the molecular mechanisms of MMVD is
needed to identify pharmacological manipulation strategies of the signaling pathway that
might regulate VIC differentiation and so control the disease onset and development.
This review briefly summarizes current understanding of the histopathology, cellular
activities, molecular mechanisms and pathogenesis of MMVD in dogs and humans,
and in more detail reviews the evidence for the role of TGF-β .
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INTRODUCTION

Mitral valve prolapse (MVP) is one of the most common cardiac valvular abnormality in dogs and
humans, and is a major source of morbidity and mortality and a common cause of heart failure,
ventricular dysfunction, arrhythmias and sudden cardiac death (1–6). In the dog the condition is
more commonly called myxomatous mitral valve disease (MMVD). Since this mitral valvulopathy
in both species has various synonyms and myxomatous changes is the predominant pathological
finding, in this review the terms MVP and MMVD will be used interchangeably and when needed
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for human and dog, respectively. MVP affects to 2–3% of the
human population, and more than 10% of individuals over the
age of 65 years have mitral valve insufficiency (7, 8). It accounts
for 7% of deaths in dogs before 10 years of age and its prevalence
is very high, estimated between 30 and 70% of all elderly dogs,
with the greater prevalence in small breed dogs and in certain
predisposed breeds such as the cavalier King Charles spaniel
(CKCS) (9–11). Some forms of MVP will have a congenital or
genetic basis, meaning MVP can be further characterized into
primary non-syndromic, and secondary syndromic forms (4).
Syndromic MVP is commonly associated with global genetic
connective tissue disorders, such as Marfan syndrome (MFS),
Loeys-Dietz syndrome and Ehlers-Danlos syndrome (12–14). It
can also appear as isolated non-syndromic MVP, typically in
a familial setting. The first confirmed non-syndromic genetic
mutation was for the X-linked FLNA (Filamin-A) gene mutation,
which causes valvular defects and progressive myxomatous
degeneration and MVP in mice and humans (15–17). For the
non-syndromic variants two disease types are reported including
Barlow’s Disease (BD), where there is myxomatous degeneration
and end-stage fibrosis, and fibroelastic deficiency (FED) where
there is only myxomatous degeneration with valve thinning
rather than thickening (18). FED is typically only seen in the very
elderly, while Barlow’s Disease (BD) has more commonality with
canine MMVD in terms of its slowly acquired development and
progression, despite the lack of fibrosis in the dog. Lastly, MMVD
has also been described in mice and pigs, induced by gene
interference or surgical intervention, but the extent of MMVD
in other species as a consequence of aging is unknown (19–21).
Details of MMVD in both species are summarized in Table 1.

For both syndromic and non-syndromic forms in both species
the diseased valves appear histologically similar and exhibit
features of myxomatous (myxoid) degeneration. Progressive
deterioration of the mitral valves is typically characterized by
increased valvular nodularity, leaflet thickening and deformity,
excessive accumulation of proteoglycans (GAGs), collagen
and elastin fragmentation, increased expression of proteolytic
enzymes, disorganized extracellular matrix (ECM) and increased
numbers of activated valve interstitial cells (aVICs; activated
myofibroblasts) and with more obvious macrophage infiltration
in human valves (3, 5, 22–25). Furthermore, in human valves
there can be additional fibrosis in end-stage disease (BD)
characterized by fibrotic layers on the valve surface, a change not
seen in the dog (26–29).

Although, the histopathological changes of myxomatous
degeneration are well characterized, some aspects of the
underlying molecular changes and its contribution to
pathogenesis are still to be identified (22, 30, 31). Most
MMVD seen in human and veterinary clinical practice are
sporadic and of unknown etiology, although a genetic or
inherited basis suspected. However, there is increasing evidence
for a primary role for members of the transforming growth
factor (TGF)-β superfamily in the pathogenesis and progression
of various MMVD forms (5, 32–37). This is not surprising
as the TGF-β superfamily are important in the regulation
of most cellular events, such as proliferation, differentiation,
migration, autophagy, apoptosis and senescence in a variety

of cardiovascular diseases (38, 39). While much is known
about the cellular and molecular events of the disease in both
species, the exact molecular and regulatory mechanisms are
not yet elaborated, especially with regard to early disease onset
and progression (3–5, 37). In human MVP most studies of
non-syndromic forms have been restricted to examining end-
stage valves obtained at surgery (29, 34, 35, 40). Information
on earlier onset is restricted mainly to inherited connective
tissue disorders, such as MFS, osteogenesis imperfecta, and
Ehlers-Danlos syndrome, although myxomatous degeneration in
those patients can appear with advanced age (17).

CD45+ hematopoietic cells have been detected in human,
sheep, and murine MMVD valves related to non-infective
causes, although MMVD in the absence of infective endocarditis
has traditionally been regarded as a non-inflammatory disease
(34, 41–44). The majority of these cells are characterized as
macrophages implicating macrophage infiltration as a potential
secondary driver of MMVD progression. CD45 expression
of mitral VECs can be induced by TGF-β signaling in
sheep MMVD (25, 43, 45). TGF-β signaling is enhanced
in MMVD in mouse, humans and dogs and has been
associated with ECM dysregulation and increased macrophage
numbers in diseased valves (4, 32, 34, 46, 47). These data
suggest that TGF-β signaling might be associated with the
emergence of an inflammatory micro-environment comprised of
increased recruitment of pro-inflammatory macrophages from
the circulation and immunogenic ECM remodeling, somewhat
analogous to features of calcific aortic valve disease (CAVD) (6,
25). In CAVD TGF-β signaling is involved in the pathogenesis,
as for MMVD a promoter role in the early VIC activation as
shown by up-regulation of α-smooth muscle actin (α-SMA).
In dogs with advanced disease there is evidence of a marginal
increase in the number of mast cells in affected valves (24),
but no involvement of the resident macrophage population or
recruitment of inflammatory cells are found in severe MMVD
(elderly dogs) (48, 49). Whether there is a macrophage population
present in dogs or only during early stage of the disease has yet
to be elucidated.

VALVE STRUCTURE, PATHOLOGY, AND
CELL AND MOLECULAR CHANGES

The cross-sectional structure of the normal mitral leaflets is
similar to the aortic valve, with at least three layers, atrialis,
spongiosa, and fibrosa identified, a fourth ventricularis proposed
by some, and each with different thickness and cell and ECM
composition, and both sides lined with valve endothelial cells
(VECs). The thin atrialis contains a large amount of elastin
with a mixed amount of scattered collagen fibers and valve
interstitial cells (VICs) (50, 51). The spongiosa contains loosely
arranged collagen fibers and is rich in glycosaminoglycans
(GAGs), such as hyaluronan, and various proteoglycans (52).
This layer, consisting mainly of collagen I and III and small
numbers of thin elastin fibers. The majority of cells in the
spongiosa, and throughout the whole valve, are quiescent VICs
(qVICs) along with few mast cells (24, 53–55). The dense fibrosa
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TABLE 1 | Characteristics of various forms of MMVD in the human and dogs.

Classification Histopathological
features

Abnormal signaling Cellular changes

Human MVP Primary
(Non-syndromic)

Barlow’s Disease (BD) 1.Typical lesions of
myxomatous
degeneration
2.End-stage fibrosis
3.Leaflet thickening

1.TGF-β signaling
2.5-HT (serotonin)
signaling
3.BMP signaling
4.Wnt/β-catenin

1.Increased aVICs from
qVICs
2. Increased
macrophage
infiltration
3. EndoMT

Fibroelastic deficiency
(FED)

1.Typical lesions of
myxomatous
degeneration
2.Deficiency in collagen
3.Valve thinning

TGF-β signaling Increased aVICs from
qVICs

Filamin-A mutation Typical lesions of
myxomatous
degeneration

1.TGF-β signaling,
2.Ras/Mek/Erk
signaling
3.5-HT (serotonin)
signaling

1.Increased aVICs from
qVICs

Secondary (Syndromic
forms)

Marfan syndrome (MFS) Typical lesions of
myxomatous
degeneration

1.TGF-β signaling
2. BMP signaling
3. Wnt/β-catenin

1. Increased aVICs
from qVICs
2. Increased
macrophage
infiltration
3. EndoMT

Ehlers-Danlos
syndrome

Typical lesions of
myxomatous
degeneration

Loeys–Dietz syndrome Typical lesions of
myxomatous
degeneration

TGF-β signaling

Canine MMVD 1.Typical lesions of
myxomatous
degeneration
2.Lack of any fibrotic
changes

1.TGF-β signaling
2.5-HT (serotonin)
signaling
3.BMP signaling

1.Increased aVICs from
qVICs
2. EndoMT
3. Lack of inflammatory
infiltration

layer is composed of tightly packed collagen bundles arranged
parallel to the leaflet free edge and within which are scattered
VICs (Figure 1).

The gross and histopathological changes in both species are
reasonably well characterized, and will be only briefly describe
here, but to give contextual background to the role of TGF-
β in the disease process (5, 22, 37, 56–58). Changes the
endothelium include endothelial loss, cellular pleomorphism,
endothelial-to-mesenchymal transition (EndoMT), disruption of
the basement membrane and accumulation of aVICs in the sub-
endothelium (23, 46, 55). The myxomatous degeneration itself
is characterized by expansion of the spongiosa and separation
as well as fragmentation of the dense collagen bundles in
the fibrosa (5, 59). There is a reduction in connective tissue
density, accumulation of a myxoid extracellular matrix rich in
GAGs, loss of mature collagen and replacement with immature
fibrillar collagen lacking cross-links structural, in all the layers
of leaflet as well as the chordae tendineae (60). The main
cellular event is the phenotypic differentiation of the VICs from
a quiescent phenotype (qVICs) to an activated myofibroblast
(aVICs) in the spongiosa and fibrosa, with accumulation of
aVICs in the sub-endothelium (46, 61). Furthermore, there is

evidence of aVIC persistence with dysregulation of apoptosis,
and transcriptomic evidence of altered gene expression associated
with cellular senescence (37, 62). Rather than aVICs being cleared
for the tissue as would normally happen, their persistence might
contribute to the aberrant matric remodeling typical of the
disease. The aVICs are presumed responsible for valve matrix
degrading, and at a rate exceeding that of production of new
collagen and elastin (63). This matrix degeneration is presumed
to be due to increased production of various proteolytic enzymes
including matrix metalloproteinases (MMP-1, MMP-2, MMP-9,
and MMP-13). It should be noted that human valvulopathies
heighten the risk of developing endocarditis which is not the case
in the dog. The reason for this species difference is unknown.
Overall, these pathological changes account for the reduced
tensile strength, distorted valve shape and mechanics typical of
the disease resulting in the mitral regurgitation and heart failure.

In addition to the naturally occurring forms of MMVD there
are various rodent models available, and comment will be made
on how they inform thinking on the role of TGF-β (Table 2).
Many of these models are transgenic and questions can be raised
to their validity as models of what is a chronic degenerative
disease, but that discussion is beyond the scope of this review.
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FIGURE 1 | The mechanism of myxomatous degeneration. The schematic shows the endothelial to mesenchymal transition (EndoMT) process and the activation of
quiescent valve interstitial cells to myofibroblasts that affect matrix production and remodeling, driving collagen and elastin fragmentation and loss. ECM, extracellular
matrix; GAGs, glycosaminoglycans; MMP, matrix metalloprotease; TGF-β, transforming growth factor-β; qVICs, quiescent valvular interstitial cells; aVICs, activated
valvular interstitial cells.

THE ROLE OF TRANSFORMING
GROWTH FACTOR-β IN MYXOMATOUS
MITRAL VALVE DEGENERATION

Effects of Transforming Growth Factor-β
on Valvular Interstitial Cells
As mentioned previously, VICs exist in all layers as two distinct
phenotypes, qVICs and aVICs, and predominantly in healthy
and diseased valves, respectively (64). During development
endothelial cells invade the endocardial cushion and are
transformed into embryonic progenitor mesenchymal cells to
induce ECM remodeling under the regulation of the TGF-β
family and bone morphogenetic proteins (BMPs) (65). Once the
valve is formed qVICs predominate and maintain valve structure
and function (24, 48, 54). VICs in normal valves have a quiescent
vimentin+/alpha-smooth muscle actin (αSMA)- phenotype and
are presumed to operate in a homeostatic role controlling ECM
remodeling and repair (66). TGF-β up-regulation appears to
have an important role among various biological pathways in
the pathogenesis of the multiple forms of MMVD. Specifically,
TGF-β is known to activate qVICs toward a pathologic synthetic
phenotype, as shown both in animal models and in human
and canine in vitro studies (32, 36, 48). Similarly, antagonism
of the TGF-βR II receptor by SB431542 transitions aVICs to
the qVIC phenotype in a canine low serum culture system,

where VICs were isolated from diseased canine mitral valves
and maintained in 2% (v/v) FBS media (36). Members of
the TGF-β superfamily are overexpressed in surgically excised
human diseased valves where aVICs predominate and this
is associated with increased expression of MMPs, presumably
driving degeneration of collagen and elastin structures (22, 34,
35, 67, 68). Finally, examining transcriptomic data from human
valves, upregulation of BMP 4 has been shown to mediate the
activation of VICs from healthy quiescent cells to a pathologic
synthetic phenotype (67).

Transforming Growth Factor-β Control of
EndoMT in Myxomatous Mitral Valve
Degeneration
One of the important, but less documented, changes to the
endothelium in MMVD is induction of EndoMT, accompanied
by activation of transcriptional regulatory mechanisms important
in heart valve development, and is seen in both human and
canine MMVD (46, 69–71). This is associated with co-expression
of hyaluronic acid synthase (HAS)-2 and α-SMA in endothelial
cells and increased expression of Sox9, and increased expression
of HAS-2 in stromal interstitial cells (46, 52, 72). There are
other lines of evidence suggesting a role for EndoMT in MMVD,
with a role for TGF-β. Cultured endocardial cells derived from
mature ovine valves have been shown to transdifferentiate via
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TABLE 2 | In vivo and in vitro models for MMVD.

Classification In vivo animal models In vitro culture models

Myxomatous mitral
valve degeneration
(MMVD)

1.Mouse treated with AngII
(84)
2.Mouse treated with
nordexfenfluramine (NDF)
(133, 134)
3. FVB mouse (135)

1.Porcine 3D mitral VIC
culture system (136)
2.Porcine mitral VIC culture
system (100)
3.Human mitral valve tissue
culture system (34)
4.Human mitral VIC culture
system (34, 114)

Barlow’s Disease
(BD)

Dogs with spontaneous
MMVD (5, 37)

1.Canine 2D mitral VIC and
VEC co-culture system (36)
2.Canine 3D
tissue-engineered
fibrin-based cell culture
system (137)

Filamin-A mutation Filamin-A KO mouse
(89)

Marfan syndrome
(MFS)
(32, 107)

Fbn1C1039G/+ mouse
Fbn1C1039G/C1039G mouse

Ehlers-Danlos
syndrome
(138)

Col3a1± mouse
Col5a1± mouse

Loeys–Dietz
syndrome
(117)

TGF-βR1± mouse
TGF-βR2± mouse
TGF-βR1M318R/+ mouse
TGF-βR2G357W/+ mouse

TGF-β signaling into mesenchymal cells that express α-SMA, and
human valve endothelial cells adopt a mesenchymal phenotype
after exposure to TGF-β (73, 74). Clonal expansion has shown
endothelial-like cells have a strong response to TGF-β, which
can then be inhibited by vascular endothelial growth factor
(VEGF) (74). In vitro mitral valve endothelial cells have been
shown to be important for maintaining the quiescence of valve
interstitial cells and thereby reciprocally preventing TGF-β-
driven EndoMT of endothelial cells (75). Lastly, inhibition of
TGF-β by the angiotensin two receptor antagonist losartan can
reduce EndoMT of mitral valve endothelial cells in vitro in a
sheep model and can decrease leaflet thickness and block TGF-
β signaling and downstream targets (43). Nevertheless, evidence
for EndoMT is restricted to valve transcriptomic data in the dog
and human, and found in valve tissue in the dog using IHC, but
to what extent this might contribute to the valve VIC population
and to disease pathogenesis in vivo is unknown (Figure 2).

TRANSFORMING GROWTH FACTOR-β
INITIATED SIGNALING PATHWAYS IN
MYXOMATOUS MITRAL VALVE
DEGENERATION

The TGF-β family consists of a large variety of pleiotropic
multifunctional proteins that play significant roles in embryonic
development, autoimmunity, cancer, fibrotic disorders, and
cardiovascular diseases (34, 76–79). TGF-βs and BMPs are
considered as the most important initiators of the signaling

pathway (80–83). Although the effect of TGF-βs and BMPs on
the initiation and progression of MMVD has been shown, the
molecular and regulatory events involved are highly complex
resulting from a large number of signaling interactions promoted
by diverse molecular mechanisms. Many of these interaction still
need to be elucidated.

TGF-β-mediated valvular fibrosis is only observed in end-
stage human MMVD and seen as fibrotic over-lays developing
on the atrial and ventricular sides of leaflets. However the
myxomatous degeneration found in both species is believed
to be highly TGF-β-dependent (5, 37). Various studies have
suggested the important roles for the members of TGF-β
family in the initiation and development of MMVD in humans,
mouse and dog (32–37, 47, 48, 67). Pathway analysis by
transcriptomic profiling in human and canine valve tissue has
identified TGF-β signaling as the dominant pathway in both
the development and progression of MMVD (37, 84). Increased
expression of multiple TGF-β isoforms in parallel with the
accumulation of ECM components and transformation of VICs
into myofibroblasts is observed in the surgically excised samples
of myxomatous valves from human and dog (34, 37, 47, 85,
86). In a transgenic fibrillin (Fbn)-1-deficient mouse Marfan
Disease model, where TGF-β signaling was potentiated, VICs
are phenotypical altered with associated myxomatous ECM
remodeling (32, 87). Transformation of qVICs to the diseased
activated myofibroblast phenotype can be blocked with TGF-
β-neutralizing antibodies (NeuAb), antagonism of the TGF-β
RII receptor, antagonizing TGF-β signaling and blocking Smad
phosphorylation (32, 34–36). In an in vitro Marfan Disease
model an exon encoded Fbn-1 sequence triggers release of
endogenous TGF-β1 and stimulates TGF-β receptor-mediated
Smad2 signaling in the presence of cell layer ECM (88). However,
it has been shown that non-Smad (non-canonical) signaling
pathways are also implicated in MMVD progression, including
regulation by several molecular mediators such as filamin A
(FLN-A) and scleraxis (Scx) (86, 89).

Canonical Transforming Growth
Factor-β-Mediated Signaling Pathways in
Myxomatous Mitral Valve Degeneration
Substitution of an epidermal growth factor-like domain in
the fibrillin-1 (Fbn-1) gene with a cysteine (C1039G) in
transgenic mice will result in increased release of activated
TGF-βs to initiate the aberrant signaling that contributes to
myxomatous degeneration (32). Significant increased expression
of TGF-βs, latency-associated peptides (LAPs), latent TGF-
β activator integrins and phosphorylated SMAD2/3 has been
reported in MMVD valve tissues using transcriptomic analysis
and on histopathology, indicating the key contribution of
canonical TGF-β-mediated signaling to MMVD (34, 37, 90,
91). Understanding how TGF-β signaling can control MMVD
pathogenesis requires some explanation of the complex pathways
involved. Briefly, the TGF-β signaling pathway is initiated
by binding of activated TGF-β ligands with TGF-β receptor
complexes in the cell membrane. Subsequent to intracellular
biosynthesis TGF-β homodimers are secreted extracellularly as
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inactive protein complexes, which maintain latency through the
non-covalent binding with the pro-peptide latency-associated
peptide (LAP). To exert its diverse biological functions TGF-β
requires to be liberated from the latent complex and activated
extracellularly before binding to its receptors. For example,
Fbn-1, as a structural component of the ECM microfibrils,
can release (activate) latent TGF-βs from the microfibrils by
means of the substitution of Fbn-1 fragments for latent TGF-
β-binding proteins (LTBPs) and by its complex interactions
with various activators such as integrins (37, 88, 92–95). TGF-
β release can also be controlled by torqueing mechanics where
the bound protein complex is linked to cells (in this case VICs)
by various integrins. Following the activation/release of TGF-βs
these homodimers bind to their corresponding transmembrane
receptor complexes (TGF-βR I and TGF-βR II) and initiate
a complicated intracellular signaling cascade of molecular
and regulatory events (96–98). The active receptor complex
recruits and activates the downstream signaling effector proteins
Smad2 and Smad3 (the canonical pathway) and they form
an intracellular complex with co-Smad (Smad4, the mediator
Smad) enabling its translocation from the cytoplasm into the
nucleus. In the nucleus the Smad complex interacts with the
Smad binding elements (SBE) to invoke transcription of various
TGF-β-responsive genes, including those involved in ECM
remodeling, VIC differentiation and EndoMT (99) (Figure 3).

The Role of Mediators in Canonical
Transforming Growth Factor-β Initiated
Myxomatous Mitral Valve Degeneration
While Smad2/3-mediated signaling probably is a major
contributor to the initiating of MMVD, other molecular
mediators related to canonical signaling pathways have been
shown to play a significant role in the modulation of MMVD
progression in animal models in vivo and in vitro in VICs. These
regulatory mechanisms include molecules exerting their effects
on MMVD by means of canonical TGF-β signaling pathways or
through activation by TGF-β itself. Examples include fibrillin-1
(Fbn-1), filamin A (FLN-A), follistatin-like 1 (Fstl1), fibroblast
growth factor (FGF)-2 and angiotensin (Ang) II (32, 84, 89,
100, 101).

Fbn-1 beyond being a structural component of ECM
microfibrils has an important role in regulating TGF-β activity
and signaling through interaction with LTBP in the myxomatous
mitral valve of MFS patients (32). Ng and colleagues showed
that the intense immunohistochemical signal of both active
TGF-β and its intracellular responder pSmad2 were significantly
increased in mitral valves in a MFS mouse model. These
observations were further validated by TGF-β antagonism by
neutralizing antibodies in vivo with rescuing of the myxomatous
mitral valve phenotype. Additionally, the expression of the
downstream TGF-β-related effectors, which are either members
of the TGF-β superfamily or directly mediated by TGF-βs, such
as βIGH3, endothelin-1 (EDN1) and BMPs, are upregulated in
the mitral valves of MFS mice. This suggests a promoter role of
the mutation in Fbn-1 in initiation of canonical TGF-β signaling
in MFS, and perhaps more commonly non-syndromic variants

of human MMVD (32). Evidence for the extracellular control
by Fbn-1 of TGF-β signaling activation in other MFS-induced
systemic disorders has been shown in other studies (102–108).
Recent work on the age-dependent cardiac remodeling in a
mouse model of MFS revealed a comparable expression pattern
of the myofibroblast marker α-smooth muscle actin (α-SMA)
in cardiac tissues of Fbn-1 transgenic mice and their wild-
type littermates.

FLN-A is highly expressed in the mitral valve during
development and is significantly diminished after birth,
suggesting an important role for FLN-A during valve
development (109). Mutations in the FLNA gene had been
identified as a cause to a rare X-linked myxomatous valvular
disease (17). FLN-A might act as a contributor to the initiation
and development of myxomatous cardiac valves by its interaction
with activated Smads to regulate TGF-β signaling (110, 111).
In contrast, a recent study showed that FLN-A might not be
involved in the pathogenesis of non-syndromic MVP, since
the mRNA expression level of FLN-A in diseased valves is
comparable to control leaflets, despite upregulation of TGF-β1
and pSmad2 signaling in diseased mitral valves (86). Another
study also suggested that there were interactions between
FLN-A and TGF-β since FLN-A acted as a promoter of TGF-β
induced ECM remodeling in Fstl1-deficient mice (101). In a
FLN-A knockout mouse the expression of the canonical TGF-β-
dependent effector pSmad3 and its downstream target molecule
collagen IαI are markedly increased in mitral valves suggesting
deficiency in FLN-A positively influences Smad activation and
correlates with increased collagen expression (89).

In Fstl1-knockout mice there is a sustained increase in
TGF-β signaling after birth, while deletion of Fstl1 from the
endocardial lineage results in myxomatous mitral valves with cell
proliferation and endocardial-to-mesenchymal transition. Fstl1-
deficient mitral valves show significantly upregulated expression
of TGF-β in mitral valve VICs. Immunofluorescent analysis has
shown that the positive signal for pSmad2/3 is mainly detected in
the nuclei of VECs and VICs in diseased mitral leaflets, indicating
active TGF-β signaling during postnatal development (101).
Additional evidence that Fstl1 could regulate MMVD is shown
by increased upregulation of a series of unique makers of ECM
remodeling and EndoMT mediated by TGF-β signaling in Fst1-
KO mice, including Fbn-1, FLN-A, vimentin and α-SMA. These
data suggest important roles of Fstl1 in promoting homeostasis
of the mitral valve undergoing embryonic development, postnatal
maturation, and even into adulthood (101).

Several studies have shown that fibroblast growth factor
(FGF)-2 is able to potentiate canonical pSmad2/3-dependent
TGF-β signaling by binding to TGF-β type III receptor beta-
glycan, which both possess the binding site of endogenous TGF-β
and FGF-2, and thereby result in increased TGF-β availability
for the activation of the canonical pathway. A significant role
for FGF-2/AKT-1 signaling in mitral VICs in response to
experimental wounding and remodeling, independent of the
TGF-β/Smad signaling, has been identified (100). Ang II has
also been shown to play a significant role in canonical TGF-β-
dependent ECM remodeling causing myxomatous degeneration
in murine mitral valves. Infusion of Ang II into mice triggers
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FIGURE 2 | The endothelial to mesenchymal transition (EndoMT) and phenotypic trans-differentiation from quiescent valve interstitial cells (qVICs) to activated valve
interstitial cells (aVICs) in the progression of MMVD. The diagram illustrates the phenotypic, gene expression changes and cellular functional changes occurring
during MMVD. The phenotypic conversion of endothelial cells into qVICs includes increased production of N-cadherin, vimentin and fibroblast-specific protein-1
(FSP-1). These events are accompanied by downregulation of the markers of endothelial cells such as CD31/platelet-endothelial cell adhesion molecule-1
(CD31/PECAM-1), vascular-endothelial cadherin (VE-cadherin), COL4, vascular epidermal growth factor receptor (VEGFR), and von Willebrand factor (vWF).
Furthermore, the TGF-β-activated VICs show a significant increase in unique markers including α-smooth muscle actin (α-SMA), SM22 and Smemb (embryonic
smooth muscle myosin) as well as the secretory proteins regulating the ECM disorganization including MMPs/TIMPs, IL-1β, IL-11, and IL-33.

activation of a canonical Smad-mediated TGF-β2 cascade
and transcriptional activity of TGF-β-responsive genes (84).
There is increased mRNA levels of TGF-β1 and TGF-β2 as
well as downstream pSmad2, detected by both qRT-PCR and
IHC, alongside an increase in MMP2 and CTGF expression,
respectively (84). As previously mentioned canonical TGF-
β-induced SMAD2/3-dependent ECM production in cultured
human VICs can be effectively inhibited by the Ang II receptor
blocker losartan (34).

Non-canonical Transforming Growth
Factor-β Signaling in Myxomatous Mitral
Valve Degeneration
In addition to the canonical signaling, TGF-β family members
contribute to MMVD progression by via several non-Smad/non-
canonical pathways. Similar to the Smad-dependent signaling,
the non-canonical cascades are initially amplified by the
phosphorylation of TGF-βRI/II through binding with activated
TGF-β ligands regulating downstream cellular activities. These
pathways comprise the kinases members from the mitogen-
activated protein kinase (MAPK) family and other kinases
such as phosphatidylinositol 3-kinase (PI3K). TGF-β can
activate all three known MAPK pathways, and these are also
known as TGF-β activated kinase 1 (TAK1)-mediated p38

activation, c-Jun amino-terminal kinase (JNK) MAPK, and
extracellular signal-regulated kinase (ERK). Signal transduction
through these pathways modulates non-Smad-mediated TGF-β-
responsive cellular activities. However, these pathways can also
modify canonical pathways with complex interactions between
non-Smad- or Smad-mediated components occurring in most
TGF-β-mediated biological effects. This can result in up- or
down-regulation of TGF-β signaling and complex regulation of
biological responses (112).

Although Smad-independent TGF-β signaling is implicated
in a wide spectrum of intracellular transduction cascades and
diverse cellular responses only a few studies have examined its
involvement in MMVD (34, 41, 89, 113, 114). Nevertheless,
these studies show that non-Smad signaling, including ERK,
p38 MAPK, and PI3K, can contribute to MMVD pathogenesis
affecting the function of both VICs and VECs by interacting with
canonical TGF-β signaling or directly. Recent transcriptomic
profiling of canine valve tissues has shown that positively
regulated gene expression of the ERK1/2 cascade is most
noticeably in end-stage valves (37). In FLNA conditional
knockout mice, as found in the human FLNA mutation X-linked
MMVD, progression can be attributed to a balance between the
opposing regulatory effect of the non-canonical Ras/Mek/Erk
and canonical TGF-β-dependent effector pSmad3 (89). In human
mitral VICs exposed to cyclic mechanical strain, expression of
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TGF-β2 and α-SMA are significantly increased, which is partly
dependent on the activation of RhoC/ROCK in tandem with the
non-canonical MEK/ERK1/2 pathway (114). The expression of α-
SMA induced by activation of the TGF-β-dependent PI3K/AKT
signaling is also observed in bone marrow-derived mesenchymal
stem cells (MSCs) modified to generate VICs for tissue-
engineered heart valves (113). In human mitral VECs EndoMT
can be induced via TGF-β-mediated activation of Ras/Mek/Erk
rather than the canonical pSmad3 signaling with increased
expression of the EndoMT markers Slug, Snai1 and MMP-2
(41). TGF-β-mediated ECM production has also been shown to
be dependent on non-Smad p38 MAPK pathways, working in
combination with the canonical Smad2/3 signaling in diseased
VICs in sporadic non-syndromic mitral valve prolapse (34).

The potential interaction between Ang II and TGF-β in
the pathogenesis of MMVD should also be considered as
this is well recognized in fibrosis and ECM deposition,
involving both canonical and non-canonical parts of the TGF-
β signaling pathway, and these effects can be inhibited by
angiotensin II receptor blockers (ARBs) (34). One consideration,
as previously mentioned, is the disparity in the level of fibrosis
comparing end-stage canine and human MMVD (BD), and
to what extent signaling pathways more important in fibrosis
might actually contribute to the ECM remodeling seen with
myxomatous degeneration. Nevertheless, activation of Smad-
mediated signaling and TGF-β2-responsive gene expression has
been observed in the mitral valves of mice treated with Ang
II, with a relatively moderate change in the activity of BMP
and Wnt-β-catenin signaling, both of which are suggested to
contribute to human MMVD (84). The ARB antagonist losartan
competitively antagonizes binding of Ang II to the AT1 receptor,
but also inhibits progression of aortic root aneurysms in Fbn-1
mutant mice and Marfan disease patients through anti-TGF-
β effects (104, 115). It has been proposed that losartan shunts
Ang II signaling toward the Type II receptor involving both
SMAD and ERK (116). In human mitral VICs treated with
losartan, phosphorylation of SMAD2/3 and p38 is inhibited, but
not ERK, suggesting SMAD2/3-dependent canonical TGF-β and
ERK-independent signaling contribute to MMVD progression.
Furthermore, in a mouse model of Loeys-Dietz syndrome (LDS),
which exhibits phenotypic features overlap with MMVD and
is a consequence of dysregulated TGF-β signaling, losartan
normalizes growth of aortic roots and protects the aortic
wall from the damage associated with decreased expression of
pSmad2, pERK and TGF-β1 ligands (117). Losartan antagonism
of TGF-β-dependent pSmad and ERK signaling also prevents
EndoMT in ovine VECs and reduces expression of TGF-β and
pERK in sheep mitral valve tissues (43, 118). In transgenic
Runx2± mice treated with AngII there is increased expression
levels for the COL3A1 gene and immunostaining for pAKT
proteins despite the lack of expression of TGF-β3 and pSMAD2/3
in mitral valve tissues. Conversely, there is increased expression
of TGF-β3, COL3A1, p-SMAD2/3 and p-AKT in Runx2+/+
mice, suggesting that Runx2 may contribute to trigger tissue
ECM responses and cellular proliferation, similar to that seen in
MMVD (84). However, a large-scale clinical trial for children and
young adults with MFS showed that there were no significant

difference in the rate of aortic-root dilatation between the two
groups treated with losartan and atenolol, the current standard
therapy in most hospitals (119).

Bone Morphogenetic Proteins Signaling
in Myxomatous Mitral Valve
Degeneration
BMPs are important members of the TGF-β superfamily and
may also be involved in MMVD progression. While they were
originally discovered because of their capacity to mediate bone
and cartilage formation, there is an increasing awareness of their
role in non-osteogenic processes, such as heart development,
circulation homeostasis and several cardiovascular diseases (120).
Similar to TGF-βs BMPs ligands can bind to the heterotetrameric
transmembrane receptor complexes comprised of two serine-
threonine kinase type I and type II receptors, resulting in
initiation of canonical or non-canonical signaling cascades,
including the downstream phosphorylation of R-SMAD effector
proteins and the three well-characterized ERK, JNK and p38
MAPK pathways (121–123). Following activation of R-SMADs,
also known as SMADs 1, 5, and 8, BMPs form heteromeric
complexes by binding with the co-Smad mediator, Smad4, and
translocate into the nucleus to mediate transcription of BMP-
responsive genes (Figure 3) (124).

The potential role of BMP signaling was first recognized
in MMVD degeneration in a Fbn-1 mutant murine model of
MFS. Several studies have shown that BMP 2, 4, and 6 can
contribute to cardiac valve development and EndoMT involving
a key contribution of Smad1/4/5-dependent BMP signaling (125–
129). Although the molecular mechanisms in which the BMPs
might impact MMVD pathogenesis have not been clarified
some studies suggest that non-canonical BMP4/SOX9 signaling
regulates the phenotypic change in VICs and ECM remodeling
in human myxomatous mitral valve tissue, with increased gene
and protein expression of BMP4, Sox9, CRTAC1, CTGF, α-
SMA, vimentin and desmin (67). BMP4 treatment itself results
in increased expression of Sox9 and other markers of ECM
reorganization and VIC activation in human MMVD valves (67).
BMP2 signaling in the human endocardial lineage is essential for
remodeling of atrioventricular valves since BMP2 knockout mice
show reduced Sox9 expression and mitral valve malformation
deficiencies (130). BMP2 and TGF-β1 synergistically stimulate
the expression of the transcriptional factors SOX9, Twist1,
and Snail1/2 and initiate EndoMT via canonical Smad1/5- and
Smad2/3-dependent pathways (101). TGF-β induces quiescent
VIC activation by BMP2 stimulation in deformed mitral valves
in Fstl1-deficient transgenic mouse model indicating a potential
molecular target for myxomatous mitral valve disease (101).
Comparable activity of canonical TGF-β and BMP signaling has
been detected in surgically excised human MMVD tissue (84).

Other Important Pathways in
Myxomatous Mitral Valve Degeneration
Several important regulatory pathways besides TGF-β signaling
have also been shown to participate in the development of heart
valves and progression of MMVD under certain specific cellular
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FIGURE 3 | Canonical and non-canonical TGF-β and BMP signaling pathways in MMVD. TGF-β homodimers are secreted extracellularly as inactive protein
complexes, maintaining latency through binding with the latency-associated peptide (LAP). Latent TGF-β-binding proteins (LTBPs) form a bridge between fibrillin-1
(Fbn-1) and LAP and serve to sequester the complex into the extracellular matrix (ECM). The complex can be released from the microfibrils by its complex
interactions with activators such as reactive oxygen species (ROS), plasmin and integrins. Activation of the latent complex mechanically triggers the complex
deformation (torqueing) and the release of active TGF-β. The Smad-mediated TGF-β cascade is initiated by the binding of activated TGF-β homodimers to their
corresponding transmembrane heterodimeric TGF-β I/II receptor complex. The active receptor complex recruits and phosphorylates the downstream signaling
effector proteins, Smad2 and Smad3. Upon phosphorylation, Smad2/3 is released and forms an intracellular complex with Smad4 that translocates from the
cytoplasm into the nucleus, where it interacts with Smad binding elements of TGF-β target genes involved in induction of ECM remodeling, VIC differentiation,
EndoMT and myxomatous alterations. The non-canonical pathways are comprised of phosphatidylinositol 3-kinase (PI3K) and the kinases members from
mitogen-activated protein kinase (MAPK) family. TGF-β can activate all three known MAPK pathways, referred to as TGF-β activated kinase 1 (TAK1)-mediated p38
activation, c-Jun amino-terminal kinase (JNK) MAPK, and extracellular signal-regulated kinase (ERK). Signal transduction through these pathways modulates
non-Smad-mediated TGF-β-responsive cellular activities dependent on a specific cellular type or context. In a similar manner, BMPs bind to their transmembrane
complexes to initiate its phosphorylation, but with higher affinity with type I receptor, assisted by type III co-receptors, endoglin and betaglycan. Upon activation the
complex results in initiation of canonical or non-canonical signaling cascades.

contexts. These molecular pathways include Wnt/β-catenin and
Notch pathways (42, 84, 131). A microarray pathway analyses
showed that the expression level of Wnt ligand (Wnt9A) and

its receptor (frizzled 8), accompanied by upregulation of the
extracellular positive modulator R-Spondin 2 and the target
gene runt-related transcription factor 2 (Runx2), were increased
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in human MMVD tissues. These observations were further
supported by the increased expression of Wnt9A, β-catenin
and Wnt-target gene WISP1 in TGF-β2-treated human mitral
VICs and Ang II-induced myxomatous degeneration in murine
mitral valves (84). The Notch pathway also plays an important
role in the development of outflow tract of the heart which
starts with EndoMT in the endocardial cells leading to the
formation of cardiac valves (132). However, there lacks enough
evidence that Notch signaling is directly involved in the onset
and progression of MMVD in human and dogs. To what extent
TGF-β signaling might interact with these pathways is beyond the
scope of this review.

CONCLUSION

MMVD is the most important acquired mitral valve disease in
both dogs and humans and its natural history, pathogenesis
and progression, pathology, cell and molecular changes are
reasonably well characterized. Current areas of investigation are
focused on genetic analysis, small and large animal models,
the role of TGF-β dysregulation, abnormal EndoMT, and
the impact of biomechanical strain in the pathogenesis of
MMVD. There is also parallel interest in monocyte infiltration,
particularly macrophages, as potential contributors to MMVD
pathogenesis, at least in human mitral valvulopathies. While
transgenic rodent models and surgically resected human valve
tissues give insight into many molecular aspects of MMVD
they are limited in modeling the chronicity of this disease and
the extensive secondary fibrosis in patient-derived human valve
tissues hampers examination of molecular events controlling
myxomatous initiation and progression. Interestingly, much
more is known about the earlier stages of the disease in the
dog, and the naturally occurring disease in the dog might
be the best large animal model to study human MMVD
considering the shared cellular and molecular events in the
two species. The important role of TGF-β signaling in the
onset and progression of MMVD has been emphasized by
studies using mouse models, valve samples of human and

canine myxomatous mitral valves and in in vitro canine aVIC
cell culture models. Phenotypic transition of qVICs to aVICs
induced by dysregulated TGF-β signaling appears to be a key
contributor to valve myxomatous degeneration though aberrant
matrix remodeling, exerting control through complex canonical
and non-canonical signaling pathways interactions and effects,
which can conceivably affect the disease phenotype alone or in
combinations. To what extent one of these might be a dominant
pathway for the diseased is still unknown. Furthermore, what
abnormal signaling contributes to the survival and persistence of
aVICs in diseased valves remains unanswered. Understanding the
mechanisms that control cell persistence in this disease likely will
give clues to the pathogenesis and identify potential therapeutic
targets in both the dog and human.
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