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Abstract: The current study enlists metabolites of Alstonia scholaris with bioactivities, and the most
active compound, 3-(1-methylpyrrolidin-2-yl) pyridine, was selected against Macrophomina phaseolina.
Appraisal of the Alstonia metabolites identified the 3-(1-methylpyrrolidin-2-yl) pyridine as a bioactive
compound which elevated vitamins and nutritional contents of Vigna unguiculata up to ≥18%, and
other physiological parameters up to 28.9%. The bioactive compound (0.1%) upregulated key defense
genes, shifted defense metabolism from salicylic acid to jasmonic acid, and induced glucanase
enzymes for improved defenses. The structural studies categorized four glucanase-isozymes under
beta-glycanases falling in (Trans) glycosidases with TIM beta/alpha-barrel fold. The study determined
key-protein factors (Q9SAJ4) for elevated nutritional contents, along with its structural and functional
mechanisms, as well as interactions with other loci. The nicotine-docked Q9SAJ4 protein showed a
200% elevated activity and interacted with AT1G79550.2, AT1G12900.1, AT1G13440.1, AT3G04120.1,
and AT3G26650.1 loci to ramp up the metabolic processes. Furthermore, the study emphasizes the
physiological mechanism involved in the enrichment of the nutritional contents of V. unguiculata.
Metabolic studies concluded that increased melibiose and glucose 6-phosphate contents, accompanied
by reduced trehalose (-0.9-fold), with sugar drifts to downstream pyruvate biosynthesis and acetyl
Co-A metabolism mainly triggered nutritional contents. Hydrogen bonding at residues G.357, G.380,
and G.381 docked nicotine with Q9SAJ4 and transformed its bilobed structure for easy exposure
toward substrate molecules. The current study augments the nutritional value of edible stuff and
supports agriculture-based country economies.
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1. Introduction

Vigna unguiculata (L.) Walpers is an important legume crop. Due to its drought tolerance, it is
a significant component of many cropping systems in dry regions and marginal areas of the tropics
and subtropics [1]. The crop is one of the main sources of amino acids, vitamins, and minerals for the
human population. It constitutes a natural supplement to cereal, root, and tuber staples in the African
diet. The losses of insufficient yield are amplified due to accompanying reduced nutritional quality of
the plant produce [2,3]. The augmentation of the nutritional profile is very important to be achieved to
provide better nutrition to the consumers. Food items with more fats and less nutritional elements
(junk foods) are an emerging problem in today’s society [4]. The solution is to produce agricultural
crops with enriched nutritional content. Because of the less physically active lifestyle, the strategy
will assist to feed enough nutrition with the least masses of food commodities. Shortly, humans will
be less interested in eating bulk quantities and then have tiresome exercises to maintain their fat and
body shapes [5]. Therefore, it will be more convenient to fulfill the nutritional needs of individuals by
providing them nutritionally rich foods.

Besides, human efforts to feed large populations fungal pathogens are causing a dearth in
food production and the deterioration of the nutrition [6]. Macrophomina phaseolina, a soil-borne
plant pathogen, causes charcoal rot (dry root rot) disease, which limits the profitable cultivation of
cowpea. A disease incidence of up to 64%, leading to complete failure of the cowpea crop, has been
reported by Roberts et al. [7]. On the other side, Alstonia scholaris (L.) is an important medicinal and
allelopathic plant, and its extracts are used to control a variety of fungal pathogens. It produces
echitamine, alstonine, pleiocarpamine, O-methylmacralstonine, and macralstonine, which have been
frequently reported for their antifungal properties [8,9]. Furthermore, cowpea cultivars contain some
key resistance genes, e.g., PR1b, basic PR1; PR2a, acidic glucanase; PR2b, basic glucanase; Chitinase
3, acidic; Chitinase 9, basic; Osmotin-like PR5; P69A, subtilisin-like; and Metallothionein 2b-like,
regulating resistance responses to M. phaseolina [10]. The expression of these genes is an icon of plant
resistance against the invading pathogen. Further, these genes also represent their associated resistance
metabolic pathways, i.e., salicylic acid (SA), jasmonic acid (JA), and phytochelatin biosynthesis (PCB)
pathways. Moreover, pathogenesis-related (PR) proteins also play an important part in plant defense
responses. Among these, Glucanases are essential enzymes that belong to the PR-2 family of plant
proteins. These enzymes are called hydrolysis, as they cause the hydrolysis of glycosidic bonds [11].
Induction of β-1,3-glucanase in Vigna aconitifolia and its implications in defense responses of moth bean
plants against M. phaseolina have been discussed by Gupta et al. [12] and Pareek et al. [13]. Defense
responses of some other isozymes of glucanase have also been reported in genus Vigna [14,15], which
indicates the probability of multiple isozymes of glucanase in the cowpea plant. The complete view of
glucanase based defense responses in V. unguiculata has still not been revealed. Therefore, unveiling the
glucanase defenses was included as one of the main tasks of the current study. It has been previously
reported that the bioactive compounds alter the physiological parameters and change the nutritional
contents in a plant [16]. Using the bioactive compound can pave our way toward nutritionally rich food,
which would be helpful in feeding large human populations globally. In the current study, bioactive
compounds from A. Scholaris were screened which may control M. phaseolina infection and improve
the nutritional value of V. unguiculata. To understand the effect of BAC on different defense-related
pathways at the genetic level, several key defense-related genes were analyzed. Moreover, to explore
the regulatory mechanisms of BAC on the nutritional value of V. unguiculata, the most active protein
(MAP) in V. unguiculata was isolated and functionally characterized. We generated a three-dimensional
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structure of MAP and identified putative residues participating in binding with other Vigna loci and
metabolites and performed catalytic activity analysis. However, the current study was planned to
screen a bioactive compound of A. scholaris which may control M. phaseolina infection and improve the
nutritional value of V. unguiculata. During the whole study period, the steps were carried out in the
following order: (i) identification of Bioactive Compound (BAC) from Alstonia extracts; (ii) evaluation
of the effect of BAC on nutritional quality of Vigna; (iii) determination of the MAP in V. unguiculata
against the BAC of A. scholaris; (iv) structural, physicochemical, functional, and protein–protein
interaction studies of the MAP of Vigna; (v) analysis of the effect of BAC on key defense-related genes,
defense pathways (i.e., Salicylic Acid Pathway (SA), Jasmonic Acid Pathway (JA), and Phytochelatin
Biosynthesis Pathway (PCB)), and glucanase defenses in V. unguiculata; (vi) interaction analysis of the
MAP with other Vigna loci and metabolites; (vii) activity analysis of the MAP after getting docked with
BAC; (viii) sugar metabolism, defense metabolism, and physiological analyses of V. unguiculata after
BAC treatment.

2. Materials and Methods

Detailed information on materials and methods is provided in Supplementary Data Set 4.
Defense-related genes and details of primers used for their amplification are itemized in Supplementary
Data Set 4.

3. Results

3.1. Disease Incidence (%) of Charcoal Rot and Percentage Disease Control by Alstonia Extracts

The application of A. scholaris leaf extract in M. phaseolina treated V. unguiculata plants reduced
the charcoal rot incidence in all four cultivars (Table S1). The minimum DI was recorded in cultivar
Elite with ethyl acetate (7.5) and chloroform extracts (8.69), whereas maximum DI was recorded by
the treatment of n-hexane (12.07) extract. Percentage disease control was improved with increasing
concentration of the extracts (Table S2). The least disease control was recorded with n-hexane extracts,
while the maximum percentage of disease control was observed with ethyl acetate treatment. Moreover,
among sub fractionations of ethyl acetate extracts, sub-fraction FR04 was the most active sub-fraction,
with the highest disease control (Supplementary Figure S1C,D). Three most active sub-fractions
underwent GCMS (7000D, Agilent, CA, USA) analysis, for the identification of bioactive compound(s),
as shown in Supplementary Data Set 1.

To explore the relationship between A. scholaris leaf extracts and percentage disease control on
cultivars of V. unguiculata, Pearson’s correlation was adopted. The highest positive correlation (0.9418)
was recorded between n-butanol extract and percentage disease control of cultivar White-Star (Table S3).
The lowest correlation (0.4267) was observed between n-hexane extracts and percentage disease control
of cultivar Elite.

3.2. Identification of Alstonia Metabolites in Bioactive Sub-Fractions

A total of 22 compounds were detected in three most active sub-fractions of ethyl acetate (i.e.,
FR03, FR04, and FR05). The retention time of potentially active compounds ranged from 8 to 36
minutes. However, the bioactivity of each compound was determined from the previous literature
and is mentioned in Table S4. PCC analysis identified compound nicotine, 3-(1-methylpyrrolidin-2-yl)
pyridine as the most active compound against M. phaseolina in three sub-fractions of ethyl acetate.
The extraction affinity of nicotine was 0.49 with an increasing concentration of methanol in the
extraction solvent, but its affinity was −0.49 with an increasing concentration of chloroform (Figure 1A).
It was easy to extract nicotine in an extraction solvent containing a high proportion of methanol (80%)
and a low proportion of chloroform (20%). Moreover, values for 2D NMR 1H, 13C (Bruker, Davis,
CA, USA) were analyzed and used to construct the structure of 3-(1-methylpyrrolidin-2-yl) pyridine
(Figure 1B). The test cultivars were treated with different concentrations of nicotine, to determine the
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minimum concentration giving complete control of the disease. The assay proved 0.1% concentration
of nicotine as the best concentration to be used in downstream experimentation (Figure 1C).Biomolecules 2019, 9, x FOR PEER REVIEW 4 of 20 
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correlation values. The extraction coefficient values are provided in the numeric form for all the 
compounds (A). Structure and value of Nuclear Magnetic Resonance (NMR) spectrometry (1H, 13C) 
analysis of the most active compound, 3-(1-methylpyrrolidin-2-yl) pyridine (B). Percentage disease 
control against the concentration gradient (0.00%, 0.2%, 0.4%, and 0.16%) of the most active 
compound, 3-(1-methylpyrrolidin-2-yl) pyridine (C). 

  

Figure 1. Pearson’s correlation coefficient values of each compound (01–22) with disease control
are plotted in the form of horizontal bars, green bars for negative values, and red bars for positive
correlation values. The extraction coefficient values are provided in the numeric form for all the
compounds (A). Structure and value of Nuclear Magnetic Resonance (NMR) spectrometry (1H, 13C)
analysis of the most active compound, 3-(1-methylpyrrolidin-2-yl) pyridine (B). Percentage disease
control against the concentration gradient (0.00%, 0.2%, 0.4%, and 0.16%) of the most active compound,
3-(1-methylpyrrolidin-2-yl) pyridine (C), * p < 0.5.
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3.3. Nicotine Effect on Nutritional Contents, Physiological Factors, Enzymes, and Proline Contents

Elite exhibited the maximum quantities (mg/g) of all the nutritional factors (niacin, 7.2; pyridoxine
1.13; pantothenic acid, 5.61; thiamine, 0.67; riboflavin, 1.52; folic acid, 0.31; ascorbic acid, 110.21; protein,
75.19; fat, 10.92; fiber, 26.75; and carbohydrates, 85.24 mg/g). Elite contained the highest nutrition
contents; however, SA Dandy bared the least. The application of nicotine caused 5%–18% induction of
nutritional contents in cultivar Elite, and a comparable nutrition elevation was observed in cultivar
White Star (Figure 2).
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Figure 2. Nutritional analysis of Vigna unguiculata after the application of 3-(1-methylpyrrolidin-2-yl)
pyridine. Values of niacin, pyridoxine, pantothenic acid, thiamine, riboflavin, and folic acid contents
are provided in (A), while ascorbic acid, protein, fat, fiber, and carbohydrate contents are shown in (B).
Data of nine physiological parameters are plotted as (Net photo.) net photosynthetic rate (µ mol CO2

m−2 s−1) (C), (internal CO2 con.) internal CO2 concentration (ppm) (D), stomatal conductance (mol
H2O m−2 s−1) (E), transpiration rate (mmol H2O m−2 s−1) (F), Fv/Fm (G), (CAT) catalase (mmol H2O2

decomposed g−1 FM) (H), (POX) peroxidase (units g−1 (FM)) (I), (SOD) superoxide dismutase (units
g−1 (FM)) (J), and proline (µ mol g−1(FM) (K). The experiment was replicated thrice, and mean values
of nutritional contents were calculated to construct the plots.

Net photosynthetic rate (PN) and its attributes (internal CO2 concentration, stomatal conductance,
transpiration rate, and Fv/Fm), antioxidant enzymes (CAT, POX, and SOD), and proline contents were
significantly increased when treated with nicotine in all four V. unguiculata cultivars, as compared
to their respective control (Figure 2C–J). The maximum increase in all physiological parameters was
noticed in Elite cultivar, resulting in 10.36% (PN), 28.94% (gs), 30.58% (Ci), 22.83% (E), and 25% (Fv/Fm)
increase over their respective control (Figure 2C–G).

Likewise, the maximum enhanced activities of CAT (23.42%), POX (51.69%), and SOD (17.61%)
were found in Elite cultivar, as compared to their respective control plants.

The maximum accumulation of proline (21.31%) was found in the Elite cultivar treated with
nicotine as compared to control plants.
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3.4. Modeling of the Most Active Protein and Its Interactions

The protein profiles of the tested V. unguiculata cultivars highlighted a total of 44 proteins in
response to nicotine applications. All the proteins belonging to different metabolic functions were
performing diverse physiological activities according to the data consulted from the protein database
UniProt (Table S5). Principal component analysis of proteins revealed Phosphoglycerate kinase 3
(PGK3) as one of the most active proteins against nicotine treatments, hereby causing nutritional
augmentation and disease control. The homology modeling of PGK3 structure was performed by
online software I-TASSER (https://zhanglab.ccmb.med.umich.edu/). The predicted model of PGK3 was
monomeric in nature. The structure was distinctly bilobed with a transited depressed region between
the two lobes. The domains were clearly connected at two locations: (i) beta beta-sheet L, residues
191-202 and (ii) alpha alpha-helix 13. The structure possessed an open-to-close transition in a hinge
bending manner (Figure 3F).
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Figure 3. Screening of the most active protein (MAP) of Vigna unguiculata through principal component
analysis (PCA) against the treatment of bioactive compound 3-(1-methylpyrrolidin-2-yl) pyridine.
The X-axis coefficient represents the affinity of individual proteins with augmentation of nutritional
contents; however, the coefficient value on Y-axis is the interrelation of proteins with disease control.
A total of 44 differentially expressed proteins are mentioned in the matrix plot of cultivar Elite (A),
CP1 (B), White Star (C), and SA-Dandy (D). The average behavior of protein species with reference to
bioactivities in all the four Vigna cultivars (E). The bilobed structure of screened MAP phosphoglycerate
kinase 3-Q9SAJ4 (F).

https://zhanglab.ccmb.med.umich.edu/
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The ATP associated site consisted of four residues, 357-360, and kinase activity was detected
between 11 and 390 residues. The local similarity to target protein model ranged from 0.3 to 0.8, and
QMEAN4 score fell >0.7 while comparing with a non-redundant set calculated at Z-Score >2 (Figure 4).
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Figure 4. Tertiary and primary structure of the most active protein species, Q9SAJ4, showing its two
constituting monomers ranging 9-400 residues for monomer 1, and 3-70 residues for monomer 2 (A).
Similarity chart for protein Q9SAJ4 structure with the target protein model (B). Energy-distribution
plot QMEAN4 score comparing with a non-redundant set calculated at Z-Score >2 (C).

In protein-the co-expression interaction of protein interactions, it was found that PGK3 inversely
interacts with SNF1-related protein kinase (SnRK), an AKIN gamma protein. However, a positive
interaction was found between protein PGK3 (Q9SAJ4) and Oxalate oxidase 1 (P45850), which is a
hydrogen peroxide releasing protein in the apoplast. A similar direct interaction of DNA binding
transcription factor was observed with PGK3 (Figure 5A). The size of interacting residues within
protein PGK3 is 4Å, all situated on chain A (G.357, G.379, G.380, and G.381). The hydrogen bonding
profile of chain A enabled it to interact with nicotine at residues G.357, G.380, and G.381 (Figure 5B,C).
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Figure 5. The co-expression interaction of all the differentially expressed protein species in Vigna
unguiculata (A). The evolutionary tree on the left side was constructed by using the Neighbor-Joining
method. The optimal tree had the sum of branch length = 51.83488287, whereas the evolutionary
distances were computed by using the Poisson correction method and were in the units of the number
of amino acid substitutions per site. All ambiguous positions were removed for each sequence pair
(pairwise deletion option). The dendrogram on the upper side was plotted by using the Maximum
Likelihood method and the JTT matrix-based model. The tree had the highest log likelihood (-56253.26).
The tree for the heuristic search was obtained automatically by applying Neighbor-Join and BioNJ
algorithms to a matrix of pairwise distances, estimated by using a JTT model and then selecting the
topology with superior log likelihood value. Evolutionary analyses were conducted in MEGA X.
The chemical protein docking was drawn between Q9SAJ4 and 3-(1-methylpyrrolidin-2-yl) pyridine
(B). The close-up of the chemical protein docking with the details of interacting residues (C).
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3.5. Expression of Defense-Related Genes in V. unguiculata

The most abundantly transcribed defense genes in Vigna were Chitinase 9 basic, Osmotin-like
PR5, and Metallothionein 2b-like. The maximum expression of Metallothionein 2b-like was found in
cultivar Elite, while Osmotin-like PR5 was the maximum transcribed gene in cultivar CP1 (Figure 6A).
However, Cultivars Elite, White Star, and SA-Dandy showed upregulation in gene expressions with
nicotine treatment, as compared to control. These three cultivars also showed upregulation of the
Osmotin-like PR5 gene, whereas the expression of Metallothionein 2b-like gene was downregulated in
all the four cultivars after the application of ethyl acetate extracts (Figure 6B,C). Moreover, in White Star
and SA-Dandy cultivars, PR2b (basic glucanase) and Chitinase 3 acidic genes were upregulated with
ethyl acetate extracts application, whilst treatment initiated transcription of Metallothionein 2b-like
gene, which was not being transcribed in control plants.
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Figure 6. Expression analysis of defense genes in four Vigna cultivars (A). Heatmap showing the
extent of upregulation or downregulation of defense genes after the application of bioactive compound
(B), p < 0.5. Composite change in the expression of defense-related genes in Vigna plants after the
application of bioactive compound (C). Interrelation among the defense-related metabolic pathways
(salicylic acid, SA; jasmonic acid, JA; and phytochelatin biosynthesis, PCB) before and after the treatment
of the bioactive compound (D).

3.6. Correlation between A. scholaris Extracts and Defense-Related Pathways

Pearson’s correlation analysis was adopted to explore the relationship between A. scholaris extracts
and defense-related pathways, such as salicylic acid (SA) pathway, jasmonic acid (JA) pathway,
and phytochelatin biosynthesis pathway (PCB). When nicotine treatment was given to the Elite plant,



Biomolecules 2020, 10, 224 11 of 21

the correlations between SA and JA pathways (PCC = −0.76) and between JA and PCB pathways (PCC
= −0.35) were negative. However, the correlation between PCB and SA pathways were positive and
strong (PCC = 0.91 in treatment and 0.64 in control).

In control treatments, all of them were slightly positively correlated (PCC = 0.17 and 0.28).
In nicotine-treated cultivars CP1 and White Star, the correlation between SA, JA, and PCB pathways
were positive in tested (PCC = 0. 21, 0.54, 0.36 and 0. 11, 0.32, 0.48) and control (PCC = 0.73, 0.83,
0.27 and 0.51, 0.72, 0.39) treatments, respectively, whereas the correlation is stronger under control
treatment. Moreover, when cultivar SA-Dandy treated with nicotine, the correlations between SA and
JA and between JA and PCB pathways were negative (PCC = −0. 60, −0.25), and between PCB and SA,
the correlation was positive (PCC = 0.55) (Figure 6D).

3.7. Glucanase Isozymes and Their Physiochemical Analysis

A total of four isozymes of glucanase (Glu01, Glu02, Glu03, and Glu04) were detected in
V. unguiculata cultivars, and Glu01 was detected only in cultivar Elite. Glu02 and Glu03 were detected
in treated and control plants of all four cultivars. Glu04 was detected only in treated plants of
cultivars Elite and CP1. The expression of Glu03 was usually lower than other glucanases. All the
four glucanases were upregulated in cultivar Elite, after the application of BAC. However, a similar
treatment could induce two glucanases, Glu01 and Glu03, in cultivar CP1, and Glu01 and Glu02 in
SA-Dandy. Cultivar White Star showed an elevation in only one glucanase isozyme (Glu02) after being
exposed to 3-(1-methylpyrrolidin-2-yl) pyridine. Whereas, the same treatment downregulated one
glucanase in each of the two cultivars CP1 and White Star (Figure 7A). The dendrogram based on the
expressions related data of glucanases showed CP1 and SA-Dandy as the most closely related cultivars,
with almost 98% similarity, which placed them in a single group. Elite cultivar had a 95% similarity to
other studied cultivars (Figure 7B).

In this study, different physiochemical analyses of the four isolated glucanases were performed.
Glu04 exhibited the maximum polarizability (0.41), charge (0.38), and polarity (0.21). However, in terms
of hydrophobicity and solvent accessibility, Glu01 had the maximum values, and Glu04 possessed the
least values (Figure 7C). The composition of the amino acid sequences of all the four glucanases was
different from each other. Alanine was the most abundant amino acid in all the isozymes. Alanine
residues were 14.97%, 12.82%, 12.82%, and 11.47% of the total residues of Glu01, Glu02, Glu03, and
Glu04, respectively. Furthermore, cysteine contributed the least share in building glucanase isozymes,
with 0.299%, 0.64%, 0.64%, and 0.294% residues in Glu01, Glu02, Glu03, and Glu04, respectively
(Figure 7D).

The three-dimensional structure of all four glucanases was determined by molecular modeling,
using online prediction software I-TASSER version 5.1 (Ann Arbor, Michigan, USA). The predicted
protein model of Glu01 showed homology with TIM beta/alpha-barrel fold, which falls in the
superfamily: (Trans) glycosidases, and family: beta-glycanases. However, the Glu02 model based
on the single highest scoring template contained 306 residues, providing 98% sequence coverage.
The homology model of Glu03 consisted upon residues number of 312 was displayed in the category
of beta-glycanases classified under (Trans) glycosidases. The constructed model was 98% homologous
to a template TIM beta/alpha-barrel. The homology model of Glu04 was a beta-1,3-glucanase, with
a hydrolase header, and consisted of a total of 340 amino acid residues. Collectively, 310 residues
constructed a homologous model with 100% confidence, placing the Glu02 and Glu03 at the closest
place in the phylogenetic dendrogram of isozymes (Figure 7E).
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Figure 7. Alteration in the expression of glucanase isozymes in each cultivar of V. unguiculata after
the application of 3-(1-methylpyrrolidin-2-yl) pyridine (A). Dendrogram of four cultivars of Vigna
unguiculata based on the differences in glucanases (B). Physiochemical characteristics of the glucanase
isozymes (C). The percentage share of each amino acid in the composition of the glucanase isozymes
(D). Three-dimensional models of glucanase isozymes (Glu01, Glu02, Gl03, and Gl04) homologated
with PSI-Blast (E). Secondary structure and disorder were calculated with Psi-pred and Diso-pred for
the construction of a hidden Markov model. The largest pocket detected is shown in wireframe mode,
colored red. The ProQ2 quality assessment algorithm was used to determine the quality of protein
structure. The evolutionary history was inferred by using the UPGMA method. The optimal tree was
drawn to scale, with the same branch lengths as those of the evolutionary distances used to infer the
phylogenetic tree. The evolutionary distances were computed by using the Poisson correction method.
All ambiguous positions were removed by the pairwise deletion method.
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3.8. Physiological Interactions

PGK3 directs reverse pathways of glycolysis, and in gluconeogenesis and optimized biochemical
conditions, the glycolytic direction of the pathways is favored. In plants, PGK3 catalyzed
the phosphorylation process of 1,3-bisphosphoglycerate (1,3 BPG) and ADP, which produced
phosphoglycerate 3 (PG3) in the Calvin cycle, whereas ribulose-1,5-bisphosphate (RuBP) was generated
as a part of the reaction (Supplementary Figure S4). However, the evidence view displayed the
binding affinities of PGK3 conserved domain with other biochemicals forming a network of multiple
nonsteroidal anti-inflammatory drugs (NSAIDs). The confidence view showed the strength of ligand
associations (protein–protein, chemical–protein, and chemical–chemical interactions), using lines of
different weights (Figure 8). The compound 1,3 BPG possessed relatively higher binding affinities
than 3-phosphoglyceric acid (3PG) (Figure 8A). Moreover, 3PG was found associated with three
proteins, i.e., AT3G085590.2, PGM1, and AT1G79550.2, whereas 1,3 BPG was to be found linked with
AT1G79550.2, AT1G12900.1, AT1G13440.1, AT3G04120.1, and AT3G26650.1. Both the chemicals (3PG
and 1,3 BPG) were also found under the mutual influence of each other (Figure 8B). Furthermore,
the actions view showed the modes of action in different colors. Only the PGK3 (AT1G79550.2) was
observed inducing 3PG. However, 1,3 BPG was found to be induced by five loci, i.e., AT1G79550.2,
AT1G12900.1, AT1G13440.1, AT3G04120.1, and AT3G26650.1. Moreover, 3PG was also elevated by 1,3
BPG contents (Figure 8C).

3.9. Activity of PGK3

Amongst the control plants, the activity of PGK3 was recorded maximum (2.47) in cultivar Elite,
followed by White Star (1.98), which was further enhanced by the treatment of nicotine (Figure 9A).
The maximum induction of kinase protein (367.5%) was recorded in CP1 cultivar (Figure 9B).

Sugar contents in the metabolism of cultivar Elite and SA-Dandy were more abundant than cultivar
CP1 and White Star. In the sugar metabolism pathway, more melibiose and glucose 6-phosphate
(G6P) contents were upregulated in cultivar Elite and SA-Dandy than in cultivar CP1 and White
Star. A significantly higher glucose drift was observed in cultivar CP1 and White Star toward
sugar species with less involvement of defense pathways, e.g., rhamnose (0.8) and trehalose (0.2).
However, the cultivars with better constitutive defenses, Elite and SA-Dandy, showed −0.5 and
−0.9 trehalose contents. At the stage of pyruvate biosynthesis and acetyl Co-A metabolism, only
cultivar Elite showed the efficient drift of sugar species to downstream steps. The same cultivars, Elite
and SA-Dandy, downregulated the sugar metabolism in the steps following the shikimate pathway.
The quantities of amino acids originating from the α-ketoglutarate side chain were also abundant
(Figure 9C). The complete annotations are provided in Supplementary Data Set 3. Moreover, increased
phytoalexin quantities were recorded in the Vigna cultivar Elite during the post-treatment period of
BAC. The contents of only one phenolic compound (ferulic acid) were found to be downregulated in
Elite. However, quercetin contents showed a significant decrease in cultivar White Star. Collectively,
two defense factors (tryptophan and caffeic acid) were downregulated in cultivar CP1 (Figure 9D).
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Figure 8. The evidence view showing the binding affinities of Q9SAJ4 domain with other biochemicals
(A). Different line colors represent the types of evidence for the association, as shown in Table S6;
Supplementary Data Set 1. The confidence view representing the strength of ligand associations
(protein–protein, chemical–protein, and chemical–chemical interactions), using different weight lines
(B). Stronger associations are shown by thicker lines. Protein–protein interactions are shown in blue,
chemical–protein interactions in green, and interactions between chemicals in red. Actions view
depicting the modes of action in different colors (C).
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Figure 9. Quantification of the kinase activity of phosphoglycerate kinase 3 (PGK3) in four
cultivars of Vigna unguiculata, after and before the application of bioactive compound nicotine,
3-(1-methylpyrrolidin-2-yl) pyridine (A). Percentage increase in the kinase activity of PGK3 due to the
application of nicotine on four Vigna cultivars (B). Sugar metabolism of V. unguiculata cultivars after the
application of 3-(1-methylpyrrolidin-2-yl) pyridine (C). Signaling of plant defense responses and Vigna
plant defense factors after the treatment with 3-(1-methylpyrrolidin-2-yl) pyridine (D).
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In a chain of connected events, PGK3 was responsible for elevated kinase activity, as well as the
phosphotransferase activity of carboxyl groups. However, when adopting the same process, it was
also involved in the regulation of phosphorus metabolic processes and the transferase activity side by
side in a cell. Moreover, accompanying nicotine molecules phosphotransferase activity was promoted
up to 200%; however, the phosphorylation was elevated between 101% and 150%. The transferase
activity further promoted catalytic processes up to 200%, which caused >150% elevated molecular
functions of the cell. Furthermore, the phosphorus metabolic process was the key factor which caused
an increase of up to 150% in all the metabolic and cellular processes of the cell (Figure 10).
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4. Discussion

The findings of the current investigation proved A. scholaris as a natural source of compounds with
diverse bioactivities, including the control of M. phaseolina. The detected multiple bioactive compounds
highlighted Alstonia extracts as a precious bioactive cocktail [17]. However, ethyl acetate was the
most efficient organic solvent for the extraction of bioactive compounds from A. scholaris leaves [18].
The advantage of ethyl acetate lies in its easy handling at room temperature, without any special
arrangements and extra costs [19]. Conversely, the SA pathway was proved to be a constitutive plant
defense mechanism that protected V. unguiculata from M. phaseolina in situ. Moreover, the induction of
the JA pathway to control M. phaseolina was observed, and dominance of the JA pathway suggests
limitations of the SA pathway and successful contribution of the former in defense response. Recently,
Khan et al. [20] also reported a significant contribution of the JA pathway in Vigna against M. phaseolina.
Furthermore, in a parallel study, Sharma et al. [21] revealed that the tolerant cultivars exhibited a
more active JA pathway than the susceptible cultivars. Therefore, the induction of the JA pathway by
applying 3-(1-methylpyrrolidin-2-yl) pyridine from Alstonia can be proved as a practical and useful
technique in the future.

The increased gas exchange elements and antioxidant enzymes are the signs of more smooth
and stable plant metabolism. It indicates the safe use of nicotine as a resistance inducer without
adversely affecting nutrition and vitamin contents. External applications of nicotine lead toward a
complicated metabolism drift, resulting in an entirely new balance among pathways. The study has,
for the first time, reported the improved nutritional value of food commodities after the treatment
of a BAC. However, the net photosynthetic rate (PN) and its related attributes, i.e., internal CO2

concentration, stomatal conductance, transpiration rate, and Fv/Fm, were significantly increased
when treated with nicotine in all four V. unguiculata cultivars, as compared to their respective control
(Figure 2C–G). The possible reason behind the nicotine-mediated increase of photosynthetic efficiency
is the elevated carboxylation rate of Rubisco and initial Rubisco activity, but it had no effects on the
total activity of Rubisco. It indicates that nicotine mainly regulates the activation state of Rubisco,
possibly through the action of Rubisco activase. Furthermore, to cope with various unfavorable
conditions, plants have a well-developed network of the naturally evolved antioxidant systems to
scavenge overproduction of reactive oxygen species. Results of the present study indicate that the
activity of various antioxidant enzymes like CAT, POX, and SOD increased significantly in plants
treated with nicotine (Figure 2H–J). Nicotine may induce transcripts-encoded proteins with functions
such as metabolism, energy, protein destination and transport, cellular organization and biogenesis,
cell rescue of defense, and transcription. Furthermore, proline acts as an osmoprotectant membrane
stabilizer, and nicotine mediates the accumulation of proline, resulting in increased tolerance of plants.

Two genes, i.e., PR2a, acidic glucanase, and Metallothionein 2b-like, were found to be the primary
genes involved in plant resistance, according to the results of the current study. The cultivars with
higher expression of PR2a, acidic glucanase gene, and Chitinase 3 gene also faced the least DI (Figure 6).
Further, the study explored the induction of isozymes of glucanase, e.g., Glu04, which has not been
previously reported. The results of the glucanase isozyme assay were also in accordance with the
gene expression profile. Vigna plants with more intense isozyme bands also possessed the higher
expression of PR2a, acidic glucanase gene, and the least DI. Moreover, the mechanism of the enhanced
transcriptional level of these genes still needs some separate studies. By understanding the mechanisms
of enhanced expression of PR2a, acidic glucanase, we could be able to develop new cowpea cultivars
with improved antifungal resistance [22]. In the dendrogram (Figure 7B), cultivars CP1 and SA-Dandy
were plotted in a closer phylogenetic relation than their relation with cultivar White Star. It all argues
that Elite has a different enzymatic profile responsible for its least DI in comparison to the cultivars. Due
to its least DI, cultivar Elite was the best choice to be cultivated in Macrophomina infested areas, while
CP1 and SA-Dandy must be the least priority. All these cultivars varied in the expression of glucanase
defenses. The higher expression of glucanases might be the possible reason for the strengthened
antifungal potential of Alstonia extracts in the case of cultivar Elite.
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In the bilobed structure of PGK3, the active site constitutes two monomeric domains.
The N-terminal domain makes a basic region suitable for the binding of 3PG and 1,3-BPG, while
the C-terminal domain provides compatible support to the nucleotide substrates, ATP and ADP.
The swinging together the formation of the two lobes of protein has been reported upon binding of
any substrate molecules at the active sites, due to change in protein’s conformation [23]. The suitable
hydrophobic, water-free chamber is developed after swinging apart the conformation of the protein,
which prevents ATP hydrolysis [24]. A salt bridge between Arg 62 and Asp 200 uses the beta-sheet L
for a hinge of this conformational change [25]. The current study has detected multiple hydrogen-bond
interactions between the two domains, facilitating binding of the substrates on both domains, which
clues the conformation hinge movement of the bilobed structure. Furthermore, the details of two
monomeric domains have been disclosed, along with their residual lengths, kinase coverage, and site
for ATP binding.

Lallemand et al. [26] showed a mimicry of phosphate ion during open-to-close confirmation of
phosphoglycerate kinase. However, the connection site supporting closed conformation was reported at
alpha-helix 14 and 15 ranged from residues 404 to 408. The enzyme reported in the current investigation
has a residual coverage of 401; hence, the structural difference has displaced the second connection at
alpha-helix 13. The open conformation was upon the release of phosphoglycerate and ATP, whereas
the closed conformation contained phosphoglycerate and ADP [24]. Moreover, the reduced connection
resulted in an increased area between the two lobes and easier exposure of the enzyme toward
the substrate, which could be the possible reason for increased kinase activity following nicotine
treatment. Furthermore, phosphoglycerate kinase consists of four hydrogen bonds and six salt bridges
between two C-terminal domains [27]. Zheng et al. [27] modeled small molecules and concluded an
unstable interface between phosphoglycerate kinase and the ligand molecule. However, the ligand
molecules played an important role in defining structural conformation, but no biological relevance of
conformational rearrangement was found in that study. The current investigation adds a functional
relevance of conformation alterations in the form of enhancing kinase activity, resulting in augmented
nutritional contents of Vigna. However, the glucanase isozymes detected in this study belong to the
β-1,3-glucanase family, which is comprised of 50 reported genes in Arabidopsis thaliana. Forty-four
genes form this large family has been grouped into 13 expression clusters (denoted A-M). The first
four groups of them (A–D) contain glucanase isozymes localized to leaves [28]. The glucanases in the
current investigation have been observed in the leaf tissues of Vigna. Therefore, they can be assumed as
belonging to the first three groups (A–D). The upregulated translation of these isozymes is a significant
feature observed after fungal attacks [29]. Similar behavior was also observed regarding Glu01, Glu02,
Glu03, and Glu04 after the attack of M. phaseolina. The bioactive compound 3-(1-methylpyrrolidin-2-yl)
pyridine belongs to the organic compounds kingdom and falls in class pyridines, which are stable
compounds with fast penetration due to aromatic heteromonocyclic properties. A diluted dose (0.1%)
of the bioactive compound was responsible for the induced expression of glucanase isozymes to hinder
the attack of M. phaseolina. It proved the study of Vidhyasekaran [30] in which micromolar doses
showed antifungal activity against a broad range of plant pathogens. Moreover, the induction of
glucanases in combination with other antifungal genes and defenses is a plausible strategy to develop
durable resistance in crop plants against fungal pathogens [11]. Furthermore, when compared to other
defense-related enzymes, the β-1,3-glucanase activation in Vigna plants was the fastest and the most
intensive. In V. unguiculata, the β-1,3-glucanase is the most active defense-related enzyme which gets
activated at the imbibition stage of quiescent dry seeds germination [14,15]. However, the present
study emphasizes the enhanced functionality of the glucanases by improving their spectral range and
quantity of individual glucanases.

Furthermore, glucose breakdown and synthesis are among the essential processes in every living
organism and provide the required substrates for aerobic and anaerobic metabolism. In plants,
the metabolism of glucose is primarily controlled by PGK3, which runs the glycolysis and
gluconeogenesis, at the same time, in the opposite directions. The equilibrium between both
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opposite pathways is decided by the ligand attached to PGK3 [31]. This study reports nicotine
as a gluconeogenesis-supporting ligand, hereby elevating the nutritional contents of the crop produce.
However, PGK3 is expressed in embryo, cotyledons, and seeds, and it regulates the development
of seeds and senescence [32]. To play such a prime role in the plant life cycle, it must interact with
diverse metabolic factors, which have been reported in current research work, e.g., AT3G085590.2,
PGM1, and AT1G79550.2. Descendants of protein PGK3 were also found to be associated with loci
AT1G79550.2, AT1G12900.1, AT1G13440.1, AT3G04120.1, and AT3G26650.1. Overall, the induction
of 3-phosphoglyceric acid and its direct relation with five loci (i.e., AT1G79550.2, AT1G12900.1,
AT1G13440.1, AT3G04120.1, and AT3G26650.1) have been reported in the current investigation
(Figure 8).

The elevated activity of nicotine-docked PGK3 affected the complete metabolism of Vigna through
interacted chain factors. Upregulation of the complete biological process and the improved sugar
metabolism, along with physiological factors (Figures 9 and 10), resulted in augmented nutritional
factors. In a study conducted by Huffman [33], the protein species PGK3 was enlisted among
the proteins potentially regulating maize-grain nutritional contents. The current research precisely
identifies PGK3 as a nutrition controlling protein in V. unguiculata grains, and also discovers its docking
with nicotine ligand, for improved functionality. However, the improved activity of the TCA cycle
(Figure 9) could be responsible for disease control, as suggested by Ahmad et al. [16].

5. Conclusions

It is concluded that A. scholaris is a natural source of a vast range of bioactive compounds and
its extracts can be used for control of M. phaseolina. However, the present study revealed that SA
was a primary antifungal defense of Vigna plants, and PR2a, acidic glucanase was the most active
resistance gene. Alstonia derived 3-(1-methylpyrrolidin-2-yl) pyridine was responsible for improved
glucanase profile and elevation of core metabolic proteins, e.g., PGK3. Moreover, twofold upregulation
of cytosolic PGK3 interacted with different loci and controlled sugar metabolism and influenced the
overall physiology of the plant, resulting in nutritionally rich seeds production. Further, this study can
be applied in crop-cultivation programs, to get augmented yields of V. unguiculata.
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