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There is consensus that the heart is innervated by both the parasympathetic and
sympathetic nervous system. However, the role of the parasympathetic nervous
system in controlling cardiac function has received significantly less attention than the
sympathetic nervous system. New neuromodulatory strategies have renewed interest in
the potential of parasympathetic (or vagal) motor output to treat cardiovascular disease
and poor cardiac function. This renewed interest emphasizes a critical need to better
understand how vagal motor output is generated and regulated. With clear clinical links
between cardiovascular and metabolic diseases, addressing this gap in knowledge
is undeniably critical to our understanding of the interaction between metabolic cues
and vagal motor output, notwithstanding the classical role of the parasympathetic
nervous system in regulating gastrointestinal function and energy homeostasis. For this
reason, this review focuses on the central, vagal circuits involved in sensing metabolic
state(s) and enacting vagal motor output to influence cardiac function. It will review
our current understanding of brainstem vagal circuits and their unique position to
integrate metabolic signaling into cardiac activity. This will include an overview of not
only how metabolic cues alter vagal brainstem circuits, but also how vagal motor output
might influence overall systemic concentrations of metabolic cues known to act on the
cardiac tissue. Overall, this review proposes that the vagal brainstem circuits provide an
integrative network capable of regulating and responding to metabolic cues to control
cardiac function.
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INTRODUCTION

While sympathoexcitation may be widely accepted as a hallmark of the pathogenesis of
cardiovascular disease, decreased parasympathetic, or vagal, tone is linked to a broad spectrum
of diseases, including cardiac arrhythmias, coronary heart disease, and heart failure, and is an
accurate predictor of morbidity and mortality in humans and animals (Barkai and Madacsy,
1995; La Rovere et al., 1998; Nolan et al., 1998; Thayer and Lane, 2007; Franciosi et al., 2017).
Experiments conducted more than 150 years ago first established the anti-arrhythmogenic effect of
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vagal stimulation (Lown and Verrier, 1976). With later
seminal work in dogs demonstrating that blocking muscarinic
acetylcholine receptors abolished this effect of vagal nerve
stimulation, there is now convincing evidence that increased
vagal nerve activity can ameliorate poor cardiac function
(Schwartz et al., 1984; Vanoli et al., 1991).

Significant clinical evidence also implicates metabolic diseases
(i.e., obesity and diabetes) as independent risk factors for the
development of cardiovascular disease (Benjamin et al., 1994;
Bonow and Eckel, 2003; Baek et al., 2017; Aune et al., 2018;
Rawshani et al., 2018a,b). Notably, diseases of metabolism also
associate with autonomic dysfunction (Barkai and Madacsy,
1995; Vinik et al., 2013). While the mechanism(s) linking
metabolic disorders with cardiac dysfunction remain heavily
debated, the role of the central autonomic nervous system
in the orchestration of cardiometabolic homeostasis warrants
a discussion on its potential role as a neuromechanistic link
between metabolic signaling and cardiovascular function. While
the heart as an isolated entity is important, it is critical to
understand that it represents a single part of a larger system.

Although a large scale clinical investigation suggested that
chronic vagal stimulation did not improve cardiac function in
patients with heart failure (Zannad et al., 2015), this study
emphasizes the need for better strategies to target efferent cardiac
vagal output given the known disadvantages of activating non-
cardiac vagal motor neurons and vagal sensory afferent fibers
(Buckley et al., 2015). Therefore, understanding the neuronal
modulation of cardiac activity could provide novel mechanistic
details into the pathogenesis and treatment of cardiovascular
disease. This idea is further reinforced since advanced neural
modulation techniques have proven effective treatments for other
cardiovascular diseases, including cardiac arrhythmias (Kapa
et al., 2010; Shen et al., 2011).

This review then will focus on autonomic function in the
context of cardiometabolic physiology, particularly as it relates
to vagal motor output. Therefore, it will aim to define basic
brainstem circuits and the influence of metabolic signaling on
plasticity within these circuits. It will hopefully compel more
investigations into how vagal motor output is both affected by
and an effector of metabolic cues.

PARASYMPATHETIC CIRCUITS AND
THEIR REGULATION OF HEART RATE

Ever since the first description of cardiac innervations in the 19th
century (Hirsch, 1970), significant work has been done to map
cardiac autonomic networks. Therefore, it is well established that
the heart is innervated by two distinct branches of the autonomic
nervous system, the sympathetic and parasympathetic. Despite
the well acknowledged understanding of these two divisions, the
paradigm generally used in textbooks and cardiology reviews
overly simplifies the regulation of cardiac function as dependent
almost exclusively on sympathetic activity. Therefore, our current
dogma discounts the contributions of the parasympathetic
nervous system to cardiac function. All of this despite consensus
that in most vertebrates, including humans, the activity of
myogenic pacemaker sinoatrial (SA) nodal cells is largely

FIGURE 1 | The autonomic nervous system as an integrative control center
for cardiac control. Sympathetic ganglia are located in the intermediolateral
(IML) cell column of the thoracic spinal cord. The sympathetic ganglia send
prominent projections to both cardiac tissue and the vascular system. Efferent
parasympathetic, or vagal, originate within the brainstem and project to the
epicardial fat sac in close apposition to cardiac tissue. It is these ganglia,
along with their postganglionic fibers and their interconnections, that represent
the final pathway for autonomic regulation of cardiac function.

regulated by the tonic, inhibitory influence of parasympathetic
motor output, making vagal tonus the predominant determinant
of resting heart rate (Gordan et al., 2015).

Vagal motor innervation of cardiac tissue is comprised of
cholinergic, preganglionic motor neurons whose cell bodies are
located in the brainstem (Figure 1). These preganglionic neurons
send their axons through the vagus nerve, and synapse onto
intracardiac postganglionic motor neurons. Intracardiac vagal
postganglionic neurons are also cholinergic, and traditionally
thought to be subservient relay stations since the majority
of these neurons lose their ability to generate spontaneous
electrochemical activity when preganglionic motor neuron
innervations are severed (Armour, 2008). Consequently, cardiac-
related vagal efferent nerve activity is initiated at the soma of
preganglionic cardiac vagal motor neurons, and alterations in
their firing properties affect vagal nerve motor efferent output.

These preganglionic cardiac vagal motor neurons originate
from two brainstem regions: the nucleus ambiguus (NA) and
the dorsal motor nucleus of the vagus (DMV) (Standish et al.,
1994; Massari et al., 1995; Cheng and Powley, 2000). The vast
majority of cardiac innervation (approximately 80%) in higher
mammals originates from motor neurons located in the NA.
These NA cardiac vagal motor neurons uniformly exert a strong
cardioinhibitory influence on heart rate (McAllen and Spyer,
1977; Geis and Wurster, 1980; Gilbey et al., 1984). Importantly,
NA neurons are intrinsically silent, implicating synaptic input as
a strong regulator of their overall activity (Mendelowitz, 1996).
Cardiac vagal motor neurons in the NA are also critical to
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cardiovascular disease development. Studies conducted in animal
models of obstructive sleep apnea, for example, demonstrated
that diminished vagal output activity and blunted baroreflex
control of heart rate are due to changes in cardiac vagal motor
neurons located in the NA, and not due to changes in intracardiac
ganglia activity or innervation (Gu et al., 2007; Lin et al., 2007;
Yan et al., 2009).

Little is known, however, about the innervation arising
from the cardiac-projecting neurons residing within the DMV.
Retrograde tracing studies indicate that cardiac motor neurons
do originate in the DMV (Calaresu and Cottle, 1965; Sturrock,
1990; Standish et al., 1994), providing instrumental evidence
of the existence of DMV cardiac-projecting motor neurons.
However, while several studies reported cardioinhibitory activity
from the DMV (Schwaber and Schneiderman, 1975; McAllen
and Spyer, 1977), others suggest a lack of an effect on heart
rate (Geis and Wurster, 1980). It is important to note that the
majority of previous studies relied heavily on techniques with
limited spatial precision and specificity. This is critical to our
understanding of the DMV’s contribution to heart rate since non-
motor inhibitory interneurons exist within this nucleus as well
(Jarvinen and Powley, 1999; Gao et al., 2009). Using techniques
with improved specificity, like optogenetics, activation of DMV
motor neurons increased cardiac ventricular contractility and
enhanced exercise endurance in rodents (Machhada et al., 2017),
protected ventricular cardiomyocytes from ischemic/reperfusion
injury (Mastitskaya et al., 2012), and altered the electrical
properties of cardiac tissue (Machhada et al., 2015). Importantly,
these latter two results were independent of changes in heart
rate, providing key experimental evidence that the DMV might
be the source of vagal nerve-dependent coronary artery dilation
(Reid et al., 1985; Kovach et al., 1995). However, these studies
utilized a viral expression system for Phox2 cholinergic DMV
neurons and could not distinguish between cardiac-projecting
DMV neurons and those that project to other visceral organs.
As discussed later in this review, DMV vagal motor neurons are
critical in the regulation of metabolic cues, such as insulin and
glucagon, and there is a possibility that these secondary humoral
factors played a role. However, both anatomical and more
traditional stimulation approaches do support a role for DMV
activity in direct regulation of ventricular cardiomyocyte
regulation (Dickerson et al., 1998; Lewis et al., 2001;
Ulphani et al., 2010).

We also know relatively little in terms of the
electrophysiological properties and upstream signaling network
governing the activity of cardiac-projecting DMV neurons.
While cardiac NA neurons have low resting membrane potentials
and are silent when devoid of synaptic input, DMV neurons with
other visceral organ targets exhibit a slow pace-making current
(Browning et al., 1999). The presence of pace-making currents
fundamentally alters the relationship of neuronal excitability and
synaptic input. Therefore, if cardiac-projecting DMV neurons
possess similar pace-making currents, these neurons could
serve a unique role in cardiovascular autonomic regulation. In
support of such a role, synaptic input to cardiac-projecting DMV
neurons after heart failure undergoes unique signaling plasticity
compared to cardiac-projecting NA neurons (Cauley et al.,

2015). Still, given the existing controversy over the contribution
of cardiac DMV motor neurons to cardiac regulation, future
studies will continue to provide a more accurate depiction of
cardiac parasympathetic innervation and regulation.

Central Brainstem Parasympathetic
Circuits
Regardless of the location and electrophysiological properties
of cardiac vagal motor neurons, upstream central brainstem
signaling is critical to their final motor output. Centrally-
mediated autonomic motor control of the cardiovascular system
is sensitive to various sensory afferent information carried in
large part by peripheral neurons located in the intrathoracic
nodose ganglia, which synapse in the nucleus tractus solitarius
(NTS) (Figure 2; Armour, 2008). First and second order NTS
neurons integrate the excitatory, glutamatergic information from
these peripheral afferents to influence the activity of downstream

FIGURE 2 | Brainstem parasympathetic circuits. Efferent parasympathetic, or
vagal, innervation (illustrated in green) to cardiac tissue originates from
preganglionic brainstem motor neurons predominantly residing within the
nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DMV).
These preganglionic neurons send their projections through the vagus nerve
to synapse onto intracardiac parasympathetic ganglia located in close
apposition to cardiac tissue [e.g., pacemaker nodal cells in the sinoatrial (SA)
node].Conversely, sensory afferent information is carried by sensory neurons
(shown in blue) located throughout the heart, especially in ventricular and atrial
tissues, and aortic arch. Most prominent in cardiometabolic regulation are
those vagal afferents in the intrathoracic nodose ganglia. Nodose ganglia
afferent inputs synapse directly onto the nucleus tractus solitarius (NTS). NTS
neurons [and the circumventricular organ, area postrema (AP)] integrate this
sensory information from the heart (in addition to other peripheral sensory
information from viscera important in the regulation of respiratory,
gastrointestinal, and metabolic homeostasis). This integrated sensory
information is either relayed to descending vagal motor neurons in a pathway
termed “vago-vagal” reflexes or to upstream brain regions for further
processing and integration. Therefore, the brainstem is a critical location for
the orchestration of central motor control of cardiovascular function.
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parasympathetic motor neurons. Traditionally, the caudal aspect
of the NTS contains the majority of cardiovascular-related
afferent synapses, following a general topographic organization
(Loewy and Spyer, 1990). Important to cardiovascular regulation
is the baroreceptor reflex. Increases in arterial blood pressure
result in the activation of baroreceptors, which then convey this
information to NTS neurons to initiate a reflexive decrease in
heart rate. This is primarily achieved through increases in cardiac
vagal nerve activity, and requires little to no inhibition of cardiac
sympathetic nerve activity (Dun et al., 2004). Vagal motor output
is also critical to other cardiovascular reflex responses including
respiratory sinus arrhythmia (Dergacheva et al., 2010).

However, there is considerable overlap in visceral organ-
based topography within the NTS with sensory afferent
innervations from other organ systems (i.e., pulmonary stretch
receptors (Katona and Jih, 1975; Taylor et al., 2014) and
arterial chemoreceptors (Accorsi-Mendonca and Machado,
2013), including subdiaphragmatic organs involved in metabolic
regulation (Browning et al., 1999; Browning and Travagli,
2011; Taylor et al., 2014). The NTS and its neighboring
circumventricular organ, area postrema (AP), are also implicated
as central metabolic sensors, including neurons that respond to
insulin (Ruggeri et al., 2001; Blake and Smith, 2012), glucose
(Balfour et al., 2006; Lamy et al., 2014; Boychuk et al., 2015a;
Roberts et al., 2017), ghrelin (Cui et al., 2011), and leptin (Barrera
et al., 2011). Importantly, the ability of these brain regions to
directly sense metabolic state can influence peripheral physiology
(Ritter et al., 2000; Ferreira et al., 2001; Lamy et al., 2014; Boychuk
et al., 2019). For example, in terms of cardiometabolic behavior,
insulin microinjections into the NTS decreased the activity of
baroreceptor-sensitive NTS neurons (McKernan and Calaresu,
1996; Ruggeri et al., 2001), and despite only limited effects on
resting heart rate (McKernan and Calaresu, 1996; Krowicki et al.,
1998), insulin in the NTS significantly reduced the baroreflex
response (McKernan and Calaresu, 1996; Ruggeri et al., 2001).
Similar interactions likely occur with other metabolic signals
since leptin has also been implicated in a reduction of baroreflex
responses (Arnold and Diz, 2014). Therefore, information related
to metabolic status is quickly and efficiently integrated into
cardiovascular regulatory networks within the dorsal hindbrain.
These integrated circuits are likely evolutionary mechanisms
developed to allow for gross matching of cardiac output to
both metabolism and respiration (Castro et al., 2003; Srivastava,
2012; Taylor et al., 2014). Therefore, the brainstem represents an
integrative network of neurons responsible for sensing systemic
cardiorespiratory and metabolic states and coordinating motor
neuron control of such systems, resulting ultimately in the
maintenance of internal homeostasis.

THE INFLUENCE OF METABOLIC
DISRUPTIONS ON PARASYMPATHETIC
FUNCTION

Metabolic dysregulation (i.e., obesity and diabetes) is an
independent risk factor for the development of cardiovascular
disease (Benjamin et al., 1994; Bonow and Eckel, 2003; Baek

et al., 2017; Aune et al., 2018; Rawshani et al., 2018a,b).
While metabolic disorders come with complex multisystem
morbidities, longitudinal studies conducted in human patients
have long indicated that vagal dysfunction is first in the
autonomic dysfunction sequelae and occurs prior to overt
cardiac complications (Ewing et al., 1980; Vinik et al., 2011) or
induction of fasting hyperglycemia (Wu et al., 2007). Despite
consensus that autonomic dysfunction is a hallmark of most
cardiovascular diseases, the precise role of autonomic cardiac-
related activity in the context of metabolic disruption remains
debated. This section will discuss the role of two important
metabolic cues, diet and inflammation, and their potential to alter
vagal regulatory circuits.

High Fat Diet as a Metabolic Disruption
The nuances surrounding different diets and their relationship to
cardiovascular disease are best reviewed elsewhere (Sacks et al.,
2017). However, it has long been recommended that individuals
wishing to reduce their risk of cardiovascular disease should
reduce dietary saturated fatty acid consumption. This evidence
includes randomized clinical trials reporting improvements in
the incidence of poor cardiac outcomes, including sudden death,
after reductions in saturated fat intake (Dayton et al., 1962; Leren,
1970). Importantly, animal models exposed to high dietary fat
content mimic several characteristics of cardiovascular disease
(Dobrian et al., 2000), and while the mechanisms mediating the
effects of high fat diet are still up for debate, it remains possible
that the effects of high fat diets on vagal circuits contribute to the
development of cardiovascular disease.

In animal models, diets high in saturated fats can induce
tachycardia (Van Vliet et al., 1995; Dobrian et al., 2001; Bruder-
Nascimento et al., 2017), even if only a mild tachycardia
(Carroll et al., 2006). Moreover, in studies that failed to
identify this tachycardia, there was still significant evidence for
reduced cardiac vagal tone (Williams et al., 2003; Chaar et al.,
2016). This reduction in vagal drive includes an abolishment
of vagal responsivity during the baroreflex (Van Vliet et al.,
1995). Historically, decreased cardiac vagal tone during disease
(purely cardiovascular or metabolic in nature) is attributed
to vagal neuropathy (Bolinder et al., 2002; Horowitz et al.,
2002). However, emerging evidence from other peripheral
nerve systems demonstrates that lack of neuronal activity itself
can eventually lead to neuronal degeneration and neuropathy
(Gibson et al., 2014). Similar experimental evidence has not
been examined for vagal motor output, but at the very
least, the reduced baroreflex activity appears consistent with
a reorganization of central cardiovascular circuits that results
in a lack of vagal motor output early in disease progression
(McCully et al., 2012).

Unfortunately, the mechanism(s) responsible for vagal circuit
reorganization of the brain regions involved are still largely
unknown. There are now substantial data implicating vagal
afferents and the NTS as important sites in the effects of high
fat diet in the context of feeding regulation (de Lartigue et al.,
2011), suggesting it as a possible location for the effects of
high fat diet on cardiovascular regulation. To our knowledge,
only a limited number of studies examine the role of high fat
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diet in the regulation of cardiac-projecting vagal motor neuron
excitability and function. However, these studies do support
the idea that reduced vagal drive originates from reduced vagal
motor activity. High fat diet decreases c-Fos expression in the
NA, suggesting a reduction in neuronal activation compared
to normal chow controls (Alsuhaymi et al., 2017). Although to
date there is no data on the effects of high fat diet on cardiac-
projecting DMV neurons, high fat diet for 12 weeks reduces
gastric-projecting DMV motor neuron excitability as measured
by whole-cell patch-clamp techniques (Browning et al., 2013).
Similarly, perinatal exposure to high fat diet increases GABAergic
inhibitory synaptic signaling in DMV neurons (McMenamin
et al., 2018; Clyburn et al., 2019). Interestingly, other conditions
of metabolic dysregulation of vagal motor neurons suggest that
altered synaptic signaling occurs through inappropriately low
trafficking of select synaptic receptor populations out of the
cellular membrane (Zsombok et al., 2011; Boychuk et al., 2015b),
but this mechanism has yet to be confirmed for high fat diet
or cardiac-projecting vagal motor neurons. Taken together, it
remains possible that decreased neuronal activity within vagal
motor neurons themselves eventually leads to reductions in vagal
motor efferent drive.

The case for early inhibition of the vagal motor system can
only be made through longitudinal evaluations of consumption
of high fat diets (that includes earlier timepoints in the
feeding paradigms). While a significant amount of research is
appropriately dedicated to investigating the role of long-term
high fat diet and ultimately the obesity that follows long term
consumption of these diets, there is increasing evidence that
consumption of high fat for a few days can affect neuronal
function. Part of this reevaluation includes the emerging concept
that metabolic challenges lead to neural adaptions, rendering the
brain insensitive to future metabolic cues (Beutler et al., 2020;
Mazzone et al., 2020). Importantly, some aspects of adaptive
neural plasticity occur quickly, for example after a single bout
of exercise (He et al., 2018). There are several investigations
suggesting similar effects likely exist in vagal circuits. For
example, patients with type 2 diabetes first show impaired
glucose intolerance during the vagally-mediated component of
insulin release (Gallwitz et al., 2013), and reducing dietary fat
intake increases cardiac vagal activity even in non-obese patients
(Pellizzer et al., 1999). In animal studies, DMV vagal motor
neurons exhibit increased glutamatergic neurotransmission after
short term (less than 5 days) high fat consumption (Clyburn
et al., 2018). Although it has not been determined if this increase
in glutamatergic signaling can drive disease pathogenesis or is
compensatory in nature (for say elevated inhibitory signaling),
it does confirm that high fat diet alters synaptic signaling to
vagal efferent motor neurons earlier than previously considered.
Reduced parasympathetic motor activity during early disease
progression would not be unique to metabolic dysfunction.
Reductions in parasympathetic tone occurred early and often
preceded increased sympathetic activity in both animal models
of and patients with heart failure (Ishise et al., 1998; Motte
et al., 2005). Therefore, these types of investigations into the early
influence of diets may help elucidate the neuromechanism(s)
through which high fat diet contributes to the pathogenesis of
cardiovascular disease (Fleming, 2002; Hartnett et al., 2015).

Inflammation as a Metabolic Disruption
Chronic inflammation is also considered a significant risk factor
for the development of cardiovascular disease (de Kloet et al.,
2013). Of particular importance is the role of neuroinflammation
through brainstem autonomic mechanisms. As the brain’s
resident immune cells (Ransohoff and Brown, 2012), microglia
play an important role in this signaling within the brainstem. For
example, microglial activation is noted within the NTS in both
experimentally-induced type-1 diabetes (Rana et al., 2014) and
high fat diet animal models (Minaya et al., 2020). Additionally,
vagal afferents are directly activated by proinflammatory signals
(Besedovsky et al., 1986; Waise et al., 2015), suggesting that
in addition to direct effects on neurons residing within the
brainstem, inflammation can modulate autonomic feedback
control mechanisms by modulation of vagal afferent signaling.

Another emerging modulator of central cardiovascular
regulatory networks is the most abundant glial cell in the
central nervous system, the astrocyte (Martinez and Kline, 2021).
Originally identified for their importance in the generation of
the blood brain barrier, astrocytes not only contain multiple
immune receptors, but respond to a number of immune signals
(Colombo and Farina, 2016). Astrocytic activity in the brainstem
can influence cardiovascular function (Martinez et al., 2020).
Importantly, activation of astrocytes is linked to cardiovascular
dysregulation after high fat diet consumption (Worker et al.,
2020), and astrocyte signaling is required for high fat diet-
induced hyperphagia and obesity (Douglass et al., 2017).

Indirect pathways of neuroinflammatory activation are
also implicated in cardiovascular (dys)function. The renin-
angiotensin system (RAS) is classically considered an endocrine
regulator of the cardiovascular system. However, it is now
recognized that components of the RAS system are present within
the brain, including the brainstem (Cuadra et al., 2010), and RAS
signaling is elevated during metabolic disorders (Giacchetti et al.,
2005). Convincing evidence now exists suggesting that central
RAS signaling is critical to the development of hypertension
through sympathetic activation of peripheral inflammation (de
Kloet et al., 2013). However, convincing evidence now implicates
the activation of vagal signaling in reducing the inflammatory
response (Pavlov and Tracey, 2012), and the DMV was recently
identified as the critical brain region for the generation of
this response (Kressel et al., 2020). Moreover, elevated RAS
signaling also increases the permeability of the blood-brain
barrier (Biancardi et al., 2014). Therefore, brainstem autonomic
circuits are likely exposed to other systemically circulating factors
(e.g., inflammatory cytokines). Therefore, it remains possible that
reduced vagal signaling promotes the inflammation typically seen
during chronic metabolic conditions, like diabetes and obesity.

THE INFLUENCE OF
PARASYMPATHETIC SIGNALING ON
METABOLIC CUES

To fully understand the role of perturbations in metabolic cues
on cardiac function, it is important to understand the role of
autonomics in mediating the concentrations and sensitivities of
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metabolic hormones with known cardiac modulatory abilities. It
is worth mentioning that much of our understanding of the role
of metabolic signaling perturbations has been insulin-centric.
However, it is becoming evident that metabolic diseases come
with a complex hormonal milieu. As such, there have been
calls for a more diverse focus, such as on glucagon (Unger and
Cherrington, 2012; Lee et al., 2014). Therefore, this section will
focus on the role of the parasympathetic nervous system to
regulate the concentration of and sensitivity to key metabolic
cues which have established roles in cardiac regulation, namely
insulin, glucagon, and GLP-1.

Insulin
First discovered more than 100 years ago, insulin is secreted
from pancreatic beta cells in response to high blood glucose
concentrations and its role in metabolic dysregulation is well
established. Insulin receptors are widely expressed throughout
the cardiovascular system, including cardiac tissue (Wang et al.,
1997; Muniyappa et al., 2007; Riehle et al., 2014). Insulin
resistance in cardiac tissue is suggested as a major risk factor
for cardiovascular disease (Paternostro et al., 1996), and insulin
resistance appears in cardiovascular diseases not explicitly related
to energy homeostatic changes in metabolism, like heart failure
(Mori et al., 2012; Zhang et al., 2013). Elevated sympathetic
nervous system activity has been linked to the development
of insulin resistance in cardiac tissue (Morisco et al., 2005;
Mangmool et al., 2016), and to our knowledge similar studies
have not been conducted for vagal signaling in cardiac tissue. This
is a significant gap in knowledge since vagal signaling promotes
insulin sensitivity in other peripheral organs, and the loss of vagal
activity associates with insulin resistance (Xie et al., 1993; Xie
and Lautt, 1994, 1995, 1996), leading some to conclude that vagal
activity is critical to overall insulin sensitivity (Lautt, 1999).

The parasympathetic nervous system also plays an important
role in the secretion of insulin. Preganglionic vagal innervation
to the pancreas originates from the DMV, with little known
contribution from the NA (Berthoud and Powley, 1990; Love
et al., 2007; Rodriguez-Diaz et al., 2011; Chandra and Liddle,
2013). These DMV preganglionic fibers terminate on cholinergic
intrapancreatic ganglia that influence pancreatic beta cells to
release insulin (Thorens, 2014). However, intrapancreatic vagal
ganglia also signal through non-adrenergic non-cholinergic
(NANC) pathways such as nitric oxide or vasoactive intestinal
polypeptide signaling (Wang et al., 1999; Love et al., 2007; Di
Cairano et al., 2016) and these pathways can trigger insulin
release as well (Mussa et al., 2011). While vagal motor innervation
to the pancreas is relatively limited (Berthoud and Powley,
1990), there is evidence that abnormal, vagally-mediated insulin
release is an early marker of diabetes (Gallwitz et al., 2013),
suggesting that this may ultimately contribute to the pathogenesis
of cardiovascular disease with strong metabolic connections.

Glucagon
Serving in opposition to insulin (Cherrington and Vranic, 1971),
glucagon is secreted from pancreatic alpha cells in response
to low blood glucose concentrations and works to increase
glucose production in and secretion from the liver. In humans,

a single bolus of glucagon increases heart rate (Parmley et al.,
1968), which has made it a useful therapy for reversing the
effects of many cardioinhibitory drugs (White, 1999). However,
hyperglucagonemia is present in metabolic disorders, including
type 1 and 2 diabetes (Muller et al., 1973; Ichikawa et al.,
2019) and has received renewed attention in terms of its role in
the hyperglycemia associated with these conditions. Therefore,
the influence of vagal activity on glucagon secretion may also
influence cardiac regulation.

Unlike insulin, however, our understanding of how the
parasympathetic nervous system regulates glucagon secretion
is more controversial. Despite evidence of parasympathetic
innervation to the pancreas, very few studies have dissected out
the precise innervation to alpha cells themselves (Rodriguez-Diaz
et al., 2011). Using more functional approaches, there is evidence
that similar to insulin, vagal stimulation increases glucagon
release (Ionescu et al., 1983; Ahren and Taborsky, 1986; Berthoud
et al., 1990). This has been proposed as the mechanism behind
the cephalic response to food consumption when glucagon is
released to prevent an insulin-induced drop in blood glucose
before food is ingested (Berthoud and Powley, 1990). More recent
experiments continue to link increased glucagon concentration
with increased vagal nerve bundle activity through brainstem
glucose sensing mechanisms (Lamy et al., 2014). However,
attempts to dissect out efferent vs. afferent vagal stimulation have
suggested that increases in blood glucose levels (as would occur
when glucagon is released) are achieved by efferent inhibition not
activation (Meyers et al., 2016). Moreover, reduced preparations
such as whole-cell patch-clamp combined with in vivo glucagon
measures also suggest that inhibition of DMV motor activity
increases glucagon concentrations (Boychuk et al., 2019). Taken
together, these latter data provide evidence that parasympathetic
efferent tone might serve as a brake for glucagon secretion.
Therefore, the renewed interest in investigations into the role of
glucagon in glucose homeostasis must continue to dissect out
the autonomic nervous system’s contribution to its regulation
since these types of studies likely have importance far beyond just
glucose homeostasis.

Glucagon-Like Peptide
The small peptide hormone glucagon-like peptide-1 (GLP-1) is
an incretin hormone produced from L-cells within the intestine
and released during digestion of fat and carbohydrates (Drucker,
2001). Upon release, GLP-1 acts to increase gastric volume,
inhibit gut motility, and increase insulin secretion (Lim and
Brubaker, 2006). GLP-1 receptors are also present in cardiac
tissue (Pyke et al., 2014; Baggio et al., 2018) and GLP-1 signaling
in cardiac tissue results in increased heart rate in vivo (Hayes
et al., 2008; Baggio et al., 2017) and in vitro (Zhao, 2013;
Ang et al., 2018).

However, the action of GLP-1 in cardiac regulation may be
more complex (Ussher and Drucker, 2012). There is consensus
that vagal signaling positively influences the release of GLP-
1 (Anini and Brubaker, 2003) since either pharmacological
inhibition of vagal signaling or vagotomy reduces serum
concentration of GLP-1 (Rocca and Brubaker, 1999; Anini and
Brubaker, 2003). However, acute bolus of GLP-1 induces a
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tachycardia through activation of GLP-1 receptors in central
sympathetic regulatory networks, and not through activity at
cardiac tissue itself (Hayes et al., 2008; Ghosal et al., 2013; Baggio
et al., 2017). Moreover, GLP-1 receptor agonist injected into
the NA not only decreased indices of cardiac vagal activity,
but also depressed neurotransmission to cardiac vagal motor
neurons (Griffioen et al., 2011), suggesting that NA neurons could
also mediate the GLP-1-induced tachycardia. Therefore, while
vagal activation likely supports the release of GLP-1, GLP-1 may
negatively feedback on cardiac regulation to decrease vagal drive
and induce sympathoexcitation. Adding further complexity,
despite inducing a tachycardia and sympathoexcitation, GLP-
1 mimetics not only improve glucose intolerance but provide
cardioprotective benefits (Barnett, 2012; Zhao, 2013; Del Olmo-
Garcia and Merino-Torres, 2018). These paradoxical effects of
GLP-1 signaling could be the result of species-specific biology, as
well as differences in approaches and outcomes tested. Since the
cardioprotective nature of GLP-1 mimetics is typically examined
after long term exposure, it is also possible that GLP-1 has
multiple tissue specific intracellular signaling cascades based
on time of exposure or concentration (Jessen et al., 2017;
Tomas et al., 2020).

CONCLUSION

Given the long history of both basic science and clinical
investigations into cardiac autonomic function, it can be easy to
assume that we fully understand how these systems work. While
we know a great deal about the anatomy of these circuits, how
they process the wide variety of complex signals they receive
and ultimately integrate and relay this information to peripheral
organs, such as the heart, is still under active investigation.
Despite the scarcity of studies investigating the effect of
metabolic signaling on cardiac vagal motor neuron physiology,
reports have confirmed the therapeutic potential—although
varied in magnitude—of activating vagal pathways, most notably
through vagal stimulation. Although these results may provide a

mechanistic rationale for the importance of cardiac-related vagal
tone and health, more studies investigating the plasticity within
autonomic regulatory circuits related to various metabolic cues
are needed to better understand the fundamental role of vagal
signaling in metabolic and cardiovascular physiology.

During this discussion, it is also important to consider that
the plasticity associated with a disease may not simply be an
exaggeration of normal physiology. Therefore, considerable
work must be done to determine the role of the brain in
mediating cardiometabolic integrative homeostasis in both health
and disease. These examinations into autonomic contributions
to cardiometabolic function need to include time courses
throughout disease progression. This will determine when
important neuronal remodeling occurs, revealing important
biological milestones for intervention. Continued investigation
into these autonomic pathways will not only increase our
understanding of these circuits, but will develop a more informed
perspective that will influence current clinical treatment
guidelines for patients to provide early and reliable detection
markers of autonomic dysregulation, as well as a more complete
management of a patient’s disease and the prevention of
cardiac-related morbidity and mortality.
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