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Abstract
Two new species, Castanediella brevis and C. monoseptata, are described, illustrated and compared with 
other Castanediella taxa. Evidence for the new species is provided by morphological comparison and 
sequence data analyses. Castanediella brevis can be distinguished from other Castanediella species by the 
short hyaline conidiophores and fusiform, aseptate hyaline conidia, while C. monoseptata differs from 
other Castanediella species by its unbranched conidiophores and fusiform, curved, 0–1-sepatate, hyaline 
conidia. Phylogenetic analysis of combined ITS and LSU sequence data was carried out to determine the 
phylogenetic placement of the species. A synopsis of hitherto described Castanediella species is provided. 
In addition, Castanediella is also compared with morphologically similar-looking genera such as Idriella, 
Idriellopsis, Microdochium, Neoidriella, Paraidriella and Selenodriella.
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Introduction

Hernández-Restrepo et al. (2017) introduced the family Castanediellaceae for the genus 
Castanediella within Xylariales and it was consolidated in recent study by Wijayawardene 
et al. (2018). The asexual morphs in Castanediellaceae are hyphomycetous and character-
ized by macronematous, mononematous or sporodochial, branched, brown to pale brown 
conidiophores, with monoblastic or polyblastic, sympodial, discrete, cylindrical to lageni-
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form, hyaline to subhyaline conidiogenous cells, that produce unicellular or transversely 
septate, cylindrical, fusiform or lunate, hyaline conidia (Hernández-Restrepo et al. 2017).

The genus Castanediella was established by Crous et al. (2015) to accommodate C. 
acaciae, C. cagnizarii and C. ramosa within Xylariales genera incertae sedis. The genus 
contains twelve species (Costa et al. 2018; Wanasinghe et al. 2018), each characterized 
by branched, hyaline to pale brown conidiophores, holoblastic, sympodial conidiog-
enous cells and falcate, cylindrical or fusiform, 0–3-sepate, hyaline conidia (Crous et 
al. 2015; Costa et al. 2018).

During a survey of hyphomycetes in Thailand, two hyaline-spored hyphomycet-
es were collected. They were shown to belong to the genus Castanediella based on 
morphology and phylogeny analyses of ITS and LSU sequence data. The new species 
C. brevis and C. monoseptata are introduced.

Materials and methods

Collection and isolation of fungi

Dead leaves from a variety of plants in two forests (Lampang province and Chiang Mai 
province) were collected in 2016 in Thailand. Samples were taken to the laboratory in 
Zip-lock plastic bags for examination. The specimens were incubated in sterile moist 
chambers and examined using a Motic SMZ 168 series microscope. Fungi were re-
moved with a needle and placed in a drop of distilled water on a slide for morphologi-
cal study. Photomicrographs of fungal structures were captured with a Canon 600D 
digital camera attached to a Nikon ECLIPSE Ni compound microscope. All measure-
ments were made by the Tarosoft (R) Image FrameWork program. Photo-plates were 
made with Adobe Photoshop CS3 (Adobe Systems, USA). Isolation of the fungi on 
to potato dextrose agar (PDA) was performed by the single spore isolation method 
(Chomnunti et al. 2014). Dried material was deposited in the Herbarium of Mae Fah 
Luang University (MFLU), Chiang Rai, Thailand and herbarium of Kunming Insti-
tute of Botany, Chinese Academy of Sciences (HKAS), Kunming, China. Cultures 
were deposited at Mae Fah Luang University Culture Collection (MFLUCC), Chiang 
Rai, Thailand and Kunming Institute of Botany, Chinese Academy of Sciences (KUM-
CC), Kunming, China. FacesofFungi and Index Fungorum numbers were registered 
(Jayasiri et al. 2015; Index Fungorum 2018).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from fungal mycelium grown on PDA or malt extract 
agar (MEA) at room temperature using the Fungal gDNA Kit (BioMIGA, USA) ac-
cording to the manufacturer’s instructions. The internal transcribed spacer region of 
ribosomal DNA (ITS) and large subunit nuclear ribosomal DNA (LSU) genes were 
amplified via polymerase chain reaction (PCR) using the following primers: ITS5 and 
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ITS4 (White et al. 1990) for ITS, and LR0R and LR5 (Vilgalys and Hester 1990) 
for LSU. The PCR products were sequenced with the same primers. The PCR ampli-
fication was performed in a 25 μL reaction volume containing 12.5 μL of 2 × Power 
Taq PCR MasterMix (a premix and ready to use solution, including 0.1 Units/μl Taq 
DNA Polymerase, 500 μM dNTP Mixture each [dATP, dCTP, dGTP, dTTP], 20 mM 
Tris-HCl pH 8.3, 100 Mm KCl, 3 mM MgCl2, stabilizer and enhancer), 1 μL of each 
primer (10 μM), 1 μL genomic DNA extract and 9.5 μL deionised water. The PCR 
thermal cycle program of ITS and LSU were followed as: initially 94 °C for 3 min., 
followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 50 s, 
elongation at 72 °C for 1 min., and final extension at 72 °C for 10 min.

Phylogenetic analyses

Original sequences were checked using BioEdit version 7.0.5.3 (Hall 1999), and most 
reference sequences were originated from previous publications. The remaining ho-
mogenous sequences were obtained by BLAST searches (Altschul et al. 1990) from 
GenBank. All sequences used in this study are listed in Table 1. Alignments for each 
locus were done in MAFFT v7.307 online version (Katoh and Standley 2016) and 
manually verified in MEGA 6.06 (Tamura et al. 2013). After alignment, the concat-
enation of different genes was done in SequenceMatrix 1.8 (Vaidya et al. 2011). The 
interleaved NEXUS files for Bayesian inference analyses were formatted with AliView 
v1.19-beta1k (Larsson 2014). Maximum parsimony (MP), maximum likelihood (ML) 
and Bayesian inference (BI) were used for phylogenetic analyses.

The best models of evolution for each gene region were determined using Akaike 
information criterion (AIC) as implemented in MrModeltest v2 (Nylander 2004). The 
analyses’ results showed that the models GTR+I and GTR+I+G were the best ones for 
LSU and ITS sequence data, respectively.

MP analyses were performed in PAUP*4.0b10 (Swofford 2002) following Liu 
et al. (2016).

ML analyses were carried out in raxmlGUI v 1.5b1 (Silvestro and Michalak 2012) with 
RAxML v8.2.10 (Stamatakis 2014), using the ML + rapid bootstrap setting and the GTR-
GAMMAI (viz., GTR + GAMMA + I) substitution model with 1000 bootstrap replicates.

For BI analysis, Posterior probabilities (PP) (Rannala and Yang 1996; Zhaxybayeva 
and Gogarten 2002) were determined by Markov Chain Monte Carlo sampling (BM-
CMC) in MrBayes v 3.2.6 (Ronquist et al. 2012). For the combined dataset, the mod-
els were set to nst = 6 and rates = propinv for LSU and nst = 6 and rates = invgamma 
for ITS. Two independent analyses of two parallel runs and six simultaneous Markov 
chains were run for 1,000,000 generations, trees were sampled every 100th generation 
and the temperature value of the heated chains was set at 0.15. The first 25% sampled 
trees of each run were discarded as “burn-in”, and the remaining trees were used for 
calculating posterior probabilities (PP) in the majority rule consensus tree with the 
sumt command in MrBayes.

Phylogenetic trees were drawn with TreeView 1.6.6 (Page 1996).
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Figure 1. Phylogenetic tree generated from MP analysis based on combined LSU and ITS sequence data 
for the genus Castanediella. Bootstrap support values for maximum parsimony (MP, first set) and maxi-
mum likelihood (ML, second set) greater than 50% are indicated above or below the nodes. Ex-type strains 
are in bold, the new isolates are in red. The tree is rooted with Subsessila turbinata (MFLUCC 15-0831).

Table 1. GenBank accession numbers of isolates included in this study.

Taxa Isolatea ITS LSU
Castanediella acaciae CPC 24869, CBS 139896 NR_137985 KR476763
Castanediella brevis KUMCC 18-0132 MH806361 MH806358
Castanediella cagnizarii MUCL 41095 KC775732 KC775707
Castanediella cagnizarii CBS 101043 KP859051 KP858988
Castanediella cagnizarii CBS 542.96 KP859054 KP858991
Castanediella camelliae CNUFC-DLHBS5-1 MF926620 MF926614
Castanediella camelliae CNUFC-DLHBS5-2 MF926621 MF926615
Castanediella communis CPC 27631 KY173393 –
Castanediella couratarii CBS 579.71 NR_145250 KP858987
Castanediella eucalypti CPC 24746, CBS 139897 NR_137981 KR476758
Castanediella eucalypticola CPC 26539 NR_145254 KX228317
Castanediella eucalyptigena CBS 143178, CPC 32055 MG386036 MG386089
Castanediella hyalopenicillata CPC 25873 KX306751 KX306780
Castanediella malaysiana CPC 24918 NR_154810 KX306781
Castanediella monoseptata KUMCC 18-0133 MH806360 MH806357
Castanediella ramosa MUCL 39857 KC775736 KC775711
Subsessila turbinata MFLUCC 15-0831 KX762288 KX762289

a CBS, Centraalbureau voor Schimmelcultures, Utrecht, Netherlands; CPC, Culture collection of Pedro Crous, housed 
at CBS; KUMCC, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; MFLUCC, Mae 
Fah Luang University Culture Collection, Chiang Rai, Thailand; MUCL, Mycothèque de l’Université Catholique de 
Louvian, Belgium.

http://www.ncbi.nlm.nih.gov/nuccore/NR_137985
http://www.ncbi.nlm.nih.gov/nuccore/KR476763
http://www.ncbi.nlm.nih.gov/nuccore/MH806361
http://www.ncbi.nlm.nih.gov/nuccore/MH806358
http://www.ncbi.nlm.nih.gov/nuccore/KC775732
http://www.ncbi.nlm.nih.gov/nuccore/KC775707
http://www.ncbi.nlm.nih.gov/nuccore/KP859051
http://www.ncbi.nlm.nih.gov/nuccore/KP858988
http://www.ncbi.nlm.nih.gov/nuccore/KP859054
http://www.ncbi.nlm.nih.gov/nuccore/KP858991
http://www.ncbi.nlm.nih.gov/nuccore/MF926620
http://www.ncbi.nlm.nih.gov/nuccore/MF926614
http://www.ncbi.nlm.nih.gov/nuccore/MF926621
http://www.ncbi.nlm.nih.gov/nuccore/MF926615
http://www.ncbi.nlm.nih.gov/nuccore/KY173393
http://www.ncbi.nlm.nih.gov/nuccore/NR_145250
http://www.ncbi.nlm.nih.gov/nuccore/KP858987
http://www.ncbi.nlm.nih.gov/nuccore/NR_137981
http://www.ncbi.nlm.nih.gov/nuccore/KR476758
http://www.ncbi.nlm.nih.gov/nuccore/NR_145254
http://www.ncbi.nlm.nih.gov/nuccore/KX228317
http://www.ncbi.nlm.nih.gov/nuccore/MG386036
http://www.ncbi.nlm.nih.gov/nuccore/MG386089
http://www.ncbi.nlm.nih.gov/nuccore/KX306751
http://www.ncbi.nlm.nih.gov/nuccore/KX306780
http://www.ncbi.nlm.nih.gov/nuccore/NR_154810
http://www.ncbi.nlm.nih.gov/nuccore/KX306781
http://www.ncbi.nlm.nih.gov/nuccore/MH806360
http://www.ncbi.nlm.nih.gov/nuccore/MH806357
http://www.ncbi.nlm.nih.gov/nuccore/KC775736
http://www.ncbi.nlm.nih.gov/nuccore/KC775711
http://www.ncbi.nlm.nih.gov/nuccore/KX762288
http://www.ncbi.nlm.nih.gov/nuccore/KX762289
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Results

Molecular phylogeny

The aligned sequence matrix comprises LSU and ITS sequence data for 16 taxa (in-
group) and one outgroup taxon with a total of 1438 characters after alignment includ-
ing the gaps, of which 120 were parsimony informative, 77 parsimony-uninformative, 
and 1241 characters constant. The dataset consists of thirteen species within the genus. 
The tree was rooted with Subsessila turbinata (MFLUCC 15-0831). Maximum par-
simony analysis resulted in two trees with TL = 391, CI = 0.657, RI = 0.642, RC = 
0.422, HI = 0.343. For the Bayesian analysis, two parallel runs with six chains were run 
for 1,000,000 generations and trees were sampled every 100th generation, resulting in 
20002 trees from two runs of which 15002 trees were used to calculate the posterior 
probabilities (each run resulted in 10001 trees of which 7501 trees were sampled).The 
MP and ML (lnL = -4041.301739) analyses based on combined LSU and ITS sequence 
data provided similar tree topologies, and the result of MP analysis is shown in Fig. 1.

The novelty of the species, Castanediella brevis and C. monoseptata, described in 
this study are supported by sequence data analyses as belonging to the genus Castan-
ediella, but with low bootstrap support values. Isolates of Castanediella brevis and C. 
monoseptata formed separate clades in the phylogenetic inference, respectively. Castan-
ediella brevis is sister to C. malaysiana and C. ramosa, while C. monoseptata shows close 
phylogenetic relationship to C. couratarii and C. malaysiana. Both the new taxa can 
be recognized as phylogenetically distinct species and are clearly novel based on the 
recommendations for molecular data (Jeewon and Hyde 2016).

MP, ML and BI were used for phylogenetic analyses in this study. The tree topolo-
gies of MP and ML resulted from the combined LSU and ITS sequence data are simi-
lar, but most of the nodes are in low bootstrap support (Fig. 1). Polytomy structure was 
formed in the BI tree generated from the combined LSU and ITS sequence data. More 
sequence data, especially the protein-coding genes, e.g. TEF1-α, RPB2, β-tubulin, are 
required in the future study of the genus Castanediella.

Taxonomy

Castanediella brevis C.G. Lin & K.D. Hyde, sp. nov.
MycoBank number: MB828879
Facesoffungi number: FoF04929
Figure 2

Holotype. THAILAND. Lampang: Amphoe Mueang Pan, Tambon Chae Son, on 
decaying leaves, 24 September 2016, Chuangen Lin, LCG 10-1 (MFLU 18-1695, 
holotype; HKAS 102198, isotype), ex-type living cultures KUMCC 18-0132.

GenBank number. ITS: MH806361, LSU:MH806358
Etymology. In reference to the short conidiophores.

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=MB828879
http://www.ncbi.nlm.nih.gov/nuccore/MH806361
http://www.ncbi.nlm.nih.gov/nuccore/MH806358
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Figure 2. Castanediella brevis (MFLU 18-1695, holotype) a host material b conidiophores on the host 
surface c–g conidiophores, conidiogenous cells with conidia h conidia. Scale bars: 10 μm (c–g), 5 μm (h).

Saprobic on plant host. Asexual morph: Colonies on substrate effuse, white. Myce-
lium partly superficial, composed of septate, branched, smooth, hyaline to subhyaline 
hyphae. Conidiophores macronematous, mononematous, solitary, erect, unbranched, 
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straight or flexuous, short, 0–1-septate, hyaline, subcylindrical, ampulliform, smooth, 
often reduced to conidiogenous cells. Conidiogenous cells holoblastic, polyblastic, sym-
podial, integrated, terminal, subcylindrical, ampulliform, hyaline, denticulate, with 
2–4 tiny protuberant denticles, 3–14 × 1.5–5.5 μm. Conidia solitary, dry, acropleurog-
enous, smooth, fusiform, curved, aseptate, hyaline, 12.5–21.7 × 1.2–3 μm (av. 16.95 
× 2.2 μm, n = 60). Sexual morph: Undetermined.

Culture characteristics: Conidia germinating on PDA within 24 h. Colonies on 
PDA effuse, greyish white to dark from above and below, reaching a diam. of 5–7 cm 
in 30 days at 25 °C.

Notes. Based on a megablast search of the NCBI nucleotide database using the 
ITS sequence of the ex-type culture, the highest similarities found were with Cas-
tanediella malaysiana (GenBank NR_154810; identities = 526/537(98%), gaps = 
1/537(0%)) and C. couratarii (GenBank KX960789; identities = 521/538(97%), gaps 
= 3/538(0%)). Castanediella brevis differs from these two species by its conidiophore 
morphology. Castanediella couratarii has pale brown conidiophores and longer conid-
iogenous cells (10.5–37 × 2–3.5 μm) whereas C. malysiana has pale brown and longer 
conidiophores (76–157 × 2.5–3 μm).

Among the species that produce more or less falcate and aseptate conidia, Castan-
ediella communis, C. eucalypti, C. eucalypticola and C. eucalyptigena are most similar 
to C. brevis. However, Castanediella brevis differs from these species by its short, un-
branched and 0–1-septate conidiophores.

Castanediella monoseptata C.G. Lin & K.D. Hyde, sp. nov.
MycoBank number: MB828881
Facesoffungi number: FoF04930
Figure 3

Holotype. THAILAND. Chiang Mai: on decaying leaves, 24 August 2016, Chuan-
gen Lin, MRC 3-1 (MFLU 18-1696, holotype; HKAS 102199, isotype), ex-type liv-
ing cultures KUMCC 18-0133.

GenBank number. ITS: MH806360, LSU: MH806357
Etymology. In reference to the 0–1-septate conidia
Saprobic on plant host. Asexual morph: Colonies on substrate effuse, white. 

Mycelium partly superficial, composed of septate, branched, hyaline to subhyaline, 
smooth hyphae. Conidiophores macronematous, mononematous, solitary, erect, un-
branched, straight or flexuous, septate, hyaline, subcylindrical, smooth, 8–29 × 2–4 
μm. Conidiogenous cells polyblastic, integrated, sympodial, subcylindrical, hyaline, 
with several scars. Conidia solitary, dry, acropleurogenous, smooth, fusiform, curved, 
0–1-sepatate, hyaline, 15.4–25.8 × 1.5–2.3 μm (av. 23.03 × 1.98 μm, n = 45). Sex-
ual morph: Undetermined.

Culture characteristics: Conidia germinating on PDA within 24 h. Colonies on 
PDA effuse, grayish white to dark from above and below, reaching a diam. of 5–7 cm 
in 30 days at 25 °C.

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=MB828881
http://www.ncbi.nlm.nih.gov/nuccore/MH806360
http://www.ncbi.nlm.nih.gov/nuccore/MH806357
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Figure 3. Castanediella monoseptata (MFLU 18-1696, holotype) a host material b conidiophores on the 
host surface c–f conidiophores, conidiogenous cells with conidia g–l conidia. Scale bars: 10 μm (c, d), 
5 μm (e–l).

Notes. A megablast search of the NCBI nucleotide database using the ITS se-
quence of the ex-type culture showed the highest similarities with uncultured Sord-
ariales fungi (GenBank GQ268569; identities = 518/539(96%), gaps = 3/539(0%)) 
and Castanediella couratarii (GenBank KX960789; identities = 516/540(96%), gaps 
= 4/540(0%)).

Five Castanediella species, C. cagnizarii, C. diversispora, C. hyalopenicillata, C. ma-
laysiana and C. ramosa, were reported to produce 1-septate conidia. Castanediella mon-
oseptata can be distinguished from these species by its unbranched conidiophores and 
falcate and 15.4–25.8 × 1.5–2.3 μm conidia. Castanediella monoseptata is phylogeneti-
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cally closely related to C. couratarii and C. ramosa, but differs from both species by its 
conidial morphology. Castanediella couratarii has shorter conidia (9.5–19 × 2–3 μm) 
are aseptate and C. ramosa has larger conidia (26–44 × 2–3 μm) that are 0–3-septate.

Discussion

In this study, two new Castanediella species, C. brevis and C. monoseptata, were identi-
fied from decaying leaves in Thailand and a synopsis of hitherto described Castanediella 
species is provided (Table 2).

Table 2. Synopsis of Castanediella species.

Taxa Conidiophores Conidiogenous cells Conidia
Shape Size (μm) Septa Colour

C. acaciae Subcylindrical, 
medium brown, 

40–80 × 2–3 μm.

Polyblastic, 
ampulliform, pale 
brown, 10–15 × 

2–3 μm.

Falcate with subobtuse 
ends

 (8–)10–11(–12) × 
1.5(–2)

0 Hyaline

C. brevis Subcylindrical, 
ampulliform, 
hyaline, often 

reduced to 
conidiogenous cells

Polyblastic, 
cylindrical, hyaline, 
3–14 × 1.5–5.5 μm

Fusiform, curved 12.5–21.7 × 
1.2–3.0

0 Hyaline

C. cagnizarii Cylindrical, 
brown at the base, 
subhyaline towards 
the apex, up to 45 

μm long.

Polyblastic, 
sympodial, 

subhyaline, 5–22 × 
3–4 μm.

Cylindrical to fusiform, 
curved at the ends

Two sizes, 10–15 × 
2 or 20–26 × 2

Hyaline

C. camelliae Conidiophores 
reduced to 

conidiogenous cell.

Cylindrical, 
ampulliform, globose 

to subglobose, or 
irregularly-shaped, 
5.5–20.5 × 2–4.5 

μm.

Straight to slightly curved, 
sometimes swollen in the 

middle part

18.5–51.5 × 
1.6–2.5

Septum 
indistinct

Hyaline

C. communis Subcylindrical, 
medium brown, 

20–60 × 3–4 μm.

Polyblastic, 
subcylindrical to 

ampulliform, pale 
brown, 10–35 × 

2–4 μm.

Falcate with subobtuse 
ends 

(13–)17–20(–22) × 
(2–)2.5(–3)

0 Hyaline

C. couratarii Pale brown Lageniform to 
cylindrical, hyaline to 
pale brown, 10.5–37 

× 2–3.5 μm

Lunate 9.5–19 × 2–3 0 Hyaline

C. diversispora Pale brown to 
brown

Polyblastic, 
sympodial, pale 

brown to brown, 4–9 
× 2–3.5 μm.

Type i) cylindrical, slightly 
uncinate at the ends, 

straight

Type i) 11.5–16 × 2 Type i) 
1-septate

Hyaline

Type ii) cylindrical to 
slightly subacerose, slightly 

uncinate at the apex, 
abruptly attenuated at the 

base, straight

Type ii) 19.5–25 × 
1.5–2

Type ii) 
1-septate

Type iii) long filiform, 
obtuse or rounded at the 

apex attenuated at the 
base, straight or curved

Type iii) 28.5–
47 × 1

Type iii) 
1–3-septate
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Taxa Conidiophores Conidiogenous cells Conidia
Shape Size (μm) Septa Colour

C. eucalypti Subcylindrical, 
medium brown, 

10–30 × 3–4 μm.

Polyblastic, 
subcylindrical to 

ampulliform, pale 
brown, 8–25 × 2.5–4 

μm.

Falcate, slightly curved, 
widest in middle with 

subobtuse ends

(15–)18–21(–23) 
× 2–3

0 Hyaline

C. eucalypticola Subcylindrical, 
medium brown, 
5–30 × 3–5 μm.

Polyblastic, 
subcylindrical to 
ampulliform or 
lanceolate, pale 
brown, 5–20 × 

3–3.5 μm.

Falcate, straight to curved, 
widest in the middle, apex 
subobtusely rounded, base 

truncate, 0.5 μm diam

(15–)20–26(–30) × 
(2.5–)3

0 Hyaline

C. eucalyptigena Subcylindrical, 
hyaline, frequently 

reduced to 
conidiogenous loci 
on hyphae, up to 

15 μm tall, 3–5 μm 
diam.

Polyblastic, hyaline, 
ampulliform or 

subcylindrical, 2–10 
× 2–5 μm

Falcate, tapering to acute 
ends that are subobtusely 

rounded

(13–)18–24(–30) × 
2(–2.5)

0 Hyaline

C. hyalopenicillata Cylindrical, 
penicillate, 

mono-, bi-, and 
terverticillate, 

hyaline, 24–69 × 
1.5–3 μm.

Mono- and 
polyblastic, 

short cylindrical, 
ampulliform, 

hyaline, 6.5–14 × 
2–4 μm

Fusiform, base pointed, 
apex obtuse

14–24 × 2–3  0–1 Hyaline

C. malaysiana Cylindrical, 
biverticillate, pale 
brown, 76–157 × 

2.5–3 μm.

Polyblastic, 
cylindrical, 

subcylindrical, 
hyaline, 19–28 × 

2.5–3.5 μm.

Fusiform, curved, apex 
acuminate, and base 
acuminate or slightly 

flattened

18–30 × 2–3  0–1 Hyaline

C. monoseptata Subcylindrical, 
unbranched, 

hyaline, 8–29 × 
2–4 μm

Polyblastic, 
cylindrical, hyaline

Fusiform, curved 15.4–25.8 × 
1.5–2.3

0–1 Hyaline

C. ramosa Cylindrical, 
penicillate, brown at 
the base, subhyaline 
at the apex, up to 

70 μm long

Polyblastic, 
subhyaline, 10–20 x 

2.5–3.5 μm

Falcate 26–44 × 2.2–3 (0–) 1 (–3) Hyaline

Presently, the genus Castanediella contains 14 species, and is shown to be diverse 
in its habitats. Most of Castanediella species have been collected from plant leaves. Cas-
tanediella acaciae, C. camelliae, C. communis, C. eucalypti, and C. eucalypticola were iso-
lated from disease symptoms on different host plant leaves (Crous et al. 2015, 2016a, 
b; Wanasinghe et al. 2018) whereas C. cagnizarii is the only species found on decaying 
leaves submerged in a stream (Castañeda Ruiz et al. 2005). Some Castanediella species 
were reported from decaying leaves, such as C. brevis, C. cagnizarii, C. diversispora, C. 
hyalopenicillata and C. monoseptata (Castañeda Ruiz et al. 2005; Hernández-Restrepo 
et al. 2016b; Costa et al. 2018). Castanediella couratarii was reported from dead wood 
(Hernández-Restrepo et al. 2016a).

The genus Castanediella is morphologically similar to Idriella, Idriellopsis, Mi-
crodochium, Neoidriella, Paraidriella, Selenodriella (Seifert et al. 2011; Crous et al. 
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Table 3. Synopsis of Castanediella-like genera.

Genera Conidiophores Conidiogenous cells Conidia Chlamydospores

Castanediella
Branched, pale brown to brown 

at the base and subhyaline 
at the apex.

Sympodial, small 
denticles or scars, 

subhyaline.

0–1-sepate, falcate, 
lunate, cylindrical or 

fusiform, hyaline
Not observed.

Idriella Brown, mostly reduced to 
conidiogenous cells Denticulate, sympodial Aseptate, lunate, curved, 

hyaline
Brown, uni- or 
pluricellular.

Idriellopsis
Unbranched, brown at the base, 

almost hyaline at the apex, mostly 
reduced to conidiogenous cells

Terminal, denticulate 0–1-septate, falcate, 
curved, hyaline Not observed

Microdochium More or less verticillate, reduced to 
conidiogenous cells, hyaline

Hyaline, sympodial or 
percurrent, sometimes 

denticulate

Aseptate or multiseptate, 
lunate, falcate, fusiform, 

filiform, obovoid or 
subpyriform, straight or 

curved, hyaline

Terminal or 
intercalary, solitary, 

in chains or grouped 
in clusters, brown.

Neoidriella
Mostly unbranched, pale 
brown, mostly reduced to 

conidiogenous cells

Sympodial, 
denticulate, terminal.

Aseptate, cylindrical to 
obovoid, hyaline

Intercalary or 
terminal, pale 

brown.

Paraidriella Unbranched, pale brown, mostly 
reduced to conidiogenous cells.

Sympodial, 
denticulate, terminal.

Aseptate, cylindrical to 
oblong, hyaline Not observed.

Selenodriella Unbranched or verticillate, brown.
Sympodial, 

denticulate, terminal 
and intercalary.

Aseptate, falcate, hyaline Not observed

2015; Hernández-Restrepo et al. 2016a). However, these genera can be distinguished 
by the branching pattern of their conidiophores and conidial shape and septation 
(Hernández-Restrepo et al. 2016a). Castanediella differs from these genera by its 
branched conidiophores, ampulliform conidiogenous cells with scars instead of den-
ticles, and filiform, 0–1-septate, straight to curved conidia (Crous et al. 2015). These 
similar-looking genera are phylogenetically distinct (Crous et al. 2015; Hernández-
Restrepo et al. 2016a). A comparative synopsis of these genera is provided (Table 3).
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