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Abstract

Recent technological developments in genetic screening approaches have offered the means to start exploring quantitative
genotype-phenotype relationships on a large-scale. What remains unclear is the extent to which the quantitative genetic
interaction datasets can distinguish the broad spectrum of interaction classes, as compared to existing information on
mutation pairs associated with both positive and negative interactions, and whether the scoring of varying degrees of such
epistatic effects could be improved by computational means. To address these questions, we introduce here a
computational approach for improving the quantitative discrimination power encoded in the genetic interaction screening
data. Our matrix approximation model decomposes the original double-mutant fitness matrix into separate components,
representing variability across the array and query mutants, which can be utilized for estimating and correcting the single-
mutant fitness effects, respectively. When applied to three large-scale quantitative interaction datasets in yeast, we could
improve the accuracy of scoring various interaction classes beyond that obtained with the original fitness data, especially in
synthetic genetic array (SGA) and in genetic interaction mapping (GIM) datasets. In addition to the known pairs of
interactions used in the evaluation of the computational approach, a number of novel interaction pairs were also predicted,
along with underlying biological mechanisms, which remained undetected by the original datasets. It was shown that the
optimal choice of the scoring function depends heavily on the screening approach and on the interaction class under
analysis. Moreover, a simple preprocessing of the fitness matrix could further enhance the discrimination power of the
epistatic miniarray profiling (E-MAP) dataset. These systematic evaluation results provide in-depth information on the
optimal analysis of the future, large-scale screening experiments. In general, the modeling framework, enabling accurate
identification and classification of genetic interactions, provides a solid basis for completing and mining the genetic
interaction networks in yeast and other organisms.
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Introduction

Systematic screening of the phenotypic effects of combining

pairs of mutations, relative to those of the single mutations,

provides detailed information on the structure and function of

genetic interaction networks [1]. Synthetic lethality is an extreme

case of such genetic (or epistatic) interactions, in which pairs of

single gene deletions that cause only a minor change in the

phenotype individually are lethal in combination. Synthetic lethal

interactions can reflect, for instance, non-essential elements of

compensatory pathways that converge on the same essential

endpoint function. Large-scale screening approaches for synthetic

lethal interactions, such as those based on synthetic genetic arrays

(SGA) or the diploid synthetic lethality analysis by microarray

(dSLAM), have successfully been used in the past to map synthetic

lethal interaction networks in model organisms such as yeast [2,3].

These system-level maps have greatly improved our understanding

of how mutations in different genes interact with one another to

produce synthetic lethal or sick phenotypes [4–7]. Beyond such

rather limited spectrum of aggravating epistatic effects (referred

here generally to as ‘negative interactions’), the recent advances in

the screening approaches have offered the means to start

distinguishing a much broader range of quantitative phenotypes

associated with pairs of mutations, including also alleviating

epistatic effects (referred here to as ‘positive interactions’). In

particular, high-throughput screening approaches, such as epistat-

ic miniarray profiling (E-MAP) and genetic interaction mapping

(GIM), have enabled systematic means to explore quantitative

genotype-phenotype relationships on a large-scale [8–11]. Re-

cently, the SGA approach has also been extended to allow

unbiased, genome-wide mapping of quantitative genetic interac-

tion networks [12]. These large-scale genetic interaction screening

efforts are providing a new understanding of how genes function as

networks to regulate cellular processes, either by enhancement or
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suppression, holding much promise for addressing many funda-

mental questions, such as buffering of genetic variation and

evolution of complex diseases [13–16].

Despite the novel biological findings inferred from the large-

scale genetic interaction experiments, there is no general consensus

on how the massive datasets from these screens should be treated

and analyzed. A wide range of statistical and computational

strategies have been developed for modeling, mining, predicting

and interpreting binary synthetic lethal/sick genetic interactions

with other interaction information [17–29], yet only a limited

effort has been devoted to developing generic analytic methodol-

ogy for the needs of the large-scale quantitative genetic interaction

experiments. Instead, custom-designed data handling pipelines

have been tailored for the different screening approaches

[10,12,30–32]; in particular, for the experimental design, custom-

ized processing and scoring, as well as downstream analysis of data

from the E-MAP approach [33–37]. Compared to the heavily

processed and scored E-MAP interaction matrices, the original

double-mutant fitness measurements provided by the SGA and

GIM analyses may encode more in-depth and elemental

information on the complex genotype-phenotype relationships,

but these datasets pose also modeling challenges beyond the reach

of the traditional modeling strategies. In addition to asymmetric

experimental design matrices, the modeling framework should

cope, for instance, with, non-normal fitness value distributions and

non-random missing value patterns. The high-dimensionality of

the datasets poses also challenging computational problems; for

instance, the current version of the SGA genetic interaction

database comprises millions of quantitative fitness measurements

[32]. The large number of mutant pairs screened, together with a

relatively high experimental variability, can make it difficult to

extract subtle interaction patterns from the background variability

without a sound analytical framework and efficient algorithms

[38]. Principled data modeling and mining strategies are therefore

required not only to make the best use of the emerging

quantitative interaction data, but also to evaluate the relative

merits and potential limitations of the current large-scale

interaction datasets; in particular, in terms of how well these

enable scoring of both positive and negative classes of genetic

interactions.

Classification of the quantitative genetic interactions is typically

based on the concept of ‘expected fitness’. For instance, negative

interactions, such as synthetic lethal and sick pairs, are inferred

when a double mutation exhibits a more severe phenotypic effect

than expected [1,39]. Similarly, positive interactions are inferred

when a double mutant phenotype is less severe than expected;

these alleviating interactions can further be divided into categories

such as suppression and masking, on the basis of the phenotype of

the single mutants [1,39]. Even more fine-grained sub-classifica-

tions can be made by further comparing the phenotypes of double

and single-mutant strains to that of the wild type [40–41]. When

applying such classification schemes one needs to first specify how

the expected (or neutral) phenotype is defined under the null

hypothesis that the strain carries two non-interacting mutations. It

has been suggested that the multiplicative null model, based on the

product of the two single-mutant fitness effects, provides an

appropriate definition of genetic interactions in terms of being

most accurate at identifying functional relationships [42]. These

evaluations have often been made on high-resolution screens

among a small set of genes related to a specific cell function [43],

or among a set of known deleterious mutations causing significant

growth defects [44]. Further, using simulated fitness data from a

flux-balance analysis (FBA) model, a modified version of the

product-based score, named ‘scaled epistasis’, has been introduced

to provide better discrimination power, especially for the positive

interaction pairs [45]. However, what remains unclear is the

relative performance of the classification and scoring schemes on

unbiased, large-scale, genetic interaction screens. Such evaluations

are hampered by the lack of the single-mutant fitness measure-

ments, which are rarely being available from the high-throughput

interaction screens, but could be estimated in quantitative terms

using computational modeling and the observation that both

alleviating and aggravating epistatic events are relatively rare

among a sufficiently large number of mutants that are, by and

large, unrelated [1,42].

Our aim here was to investigate the extent to which the

currently available large-scale quantitative interaction datasets can

capture the broad spectrum of epistatic effects, as compared to

existing information on both positive and negative interaction

classes, and whether the discrimination of the different interaction

classes from the background variability could be improved by

computational means. Our generic data transformation procedure

is built on a decomposition model for the double-mutant fitness

matrix. We have previously shown, using a high-resolution screen

of genetic interactions among a small number of genes, that a

rank-one matrix approximation can provide accurate estimates of

the single-mutant fitness effects and improved prediction of

functional relationships among the genes [46]. In the present

study, we investigated whether this modeling strategy could be

extended to the large-scale quantitative interaction screens to

enhance the discrimination power of the original double mutant

fitness matrix, using high-dimensional datasets from SGA, GIM

and E-MAP screening approaches as example datasets. In contrast

to previous works that have focused mainly on the negative

interaction classes, we paid particular attention to the scoring of

pairs of positive interactions, the accurate detection of which has

motivated the development of these high-throughput quantitative

screening approaches. By taking advantage of the extensive

coverage of the large-scale datasets, we could assess the detection

accuracy directly against the current knowledge of genetic

interactions, extracted from independent studies, instead of using

indirect evaluation criteria, such as functional relationships or

physical interactions between the genes or their protein products.

In addition to demonstrating that the matrix approximation can

improve the detection of the various classes of genetic interactions

beyond that obtained with the original datasets, we provide also

systematic information about the optimal data transformation

options and scoring functions for the different interaction classes

and screening approaches, as well as novel predictions of positive

interactions that remained undetected in the original SGA dataset.

Results

The matrix approximation approach is based on the concept

that most gene pairs in the large-scale genetic interaction screens

have no significant interaction with each other, suggesting that the

double-mutant fitness matrix W alone should carry enough

information for the estimation of the vector w of single-mutant

fitness effects under an appropriate null model (see Methods for

details). After estimation of w, the interaction class of a mutant

pair (a,b) was determined using specific scoring functions S, which

transform the fitness matrix into a score matrix

Sab~Wab{S(wa, wb). To demonstrate the effectiveness of this

conceptual framework in analyzing high-dimensional data from

the quantitative genetic interaction screens, we used three recent

interaction datasets to systematically evaluate the information

content of S, relative to that of W, with respect to the existing

information on both positive and negative interaction classes as
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available in the BioGRID database (Table 1). The phenotypic

suppression (PS) category is composed of the known positive

interaction pairs (Sabw0), whereas the phenotypic enhancement

(PE), synthetic sick (SS), and synthetic lethal (SL) categories

represent with pairs of increasing degrees of negative interactions

(Sabv0), with SL being the extreme case (see Methods for details).

The relative performance of the matrix decomposition-based

data transformation procedure in distinguishing the four genetic

interaction classes is demonstrated first using the unique data from

the near whole-genome SGA screening effort, which is by far the

largest quantitative genetic interaction dataset to date. At the time

of the present analysis, the interactions extracted from this dataset

were not yet stored in the BioGRID database, making the

evaluation unsupervised in the sense that the information on the

interaction classes is totally independent of the data used in their

detection. The advantages of the data transformation procedure

are further confirmed using two published large-scale quantitative

interaction datasets; one obtained with the GIM screening

approach and the other with the E-MAP approach (Table 1).

The full detection results on each of the three datasets are

provided in the supplementary Figures S1, S2, and S3, whereas

the following sections focus mainly on demonstrating how our

quantile-based matrix approximation (QMA) can help us to

distinguish especially the pairs of positive interactions in the SGA

dataset, compared to that of the alternating robust fitting (ARF), as

well as on highlighting the added value of the scoring function and

of the data pre-processing on the GIM and E-MAP datasets,

respectively.

Detecting genetic interactions in the SGA dataset
The computational data transformation procedure improved

the sensitivity and specificity of the detection of both positive and

negative interaction categories in the SGA dataset, compared to

that of using the provided double-mutant fitness matrix alone, or

the SGA score matrix (Figure 1). While no further pre-processing

was necessary in the SGA dataset, which was already normalized

by its custom-designed computational procedures, the normalized

dataset further benefited not only from the estimation of the single-

mutant phenotypic effects using the fitness matrix approximation,

but also from the ranking of the mutation pairs using scoring

functions selected for the positive and negative categories

separately. In particular, our QMA decomposition method was

found out to be essential in the detection of positive interaction

pairs (Figure 1A), whereas the alternative ARF matrix approxi-

mation method showed good performance in the negative

interaction classes only (Figure S1). Interestingly, using the

minimum of the two corresponding single-mutant fitness estimates

as a scoring function provided optimal ranking performance in the

detection of the negative interaction pairs, instead of the

conventionally used multiplicative model, suggesting that the

scoring function should be chosen separately for the negative and

positive interactions.

As expected, adjusting the QMA parameters particularly to the

positive interactions could further improve the detection of the PS

category, especially at the higher levels of the false positive rate

(FPR). The custom-designed SGA score showed its best perfor-

mance at the lower levels of FPR, where the sensitivity of the

double-mutant fitness matrix was relatively modest (Table 2).

However, when considering the whole range of specificity, the

original fitness matrix showed relatively good detection power,

especially in the negative interaction categories (see the partial and

overall AUC values in Table 2). While the QMA-based scoring

improved systematically the detection of each interaction category,

the biggest benefits were gained at the higher specificity levels,

which are more relevant in many applications (see the 10% FPR

window in the Figure 1). However, the superior early recognition

performance did not come at the cost of missing many true

interactions later on, as indicated by the higher sensitivity and

specificity values in Table 2. In the identification of the most

distinctive negative pairs, the QMA estimation parameters shared

by both the positive and negative categories performed relatively

well, compared to the parameters adjusted specifically to the three

negative categories (Figures 1B–D), indicating that the matrix

approximation method can be made relatively robust using the

fixed mode.

Detecting genetic interactions in the GIM dataset
To confirm the good performance of the data transformation

observed in the SGA dataset, we next evaluated its relative merits

in another ‘non-zero-centered’ dataset measured with the GIM

screening approach. Although this dataset was already publicly

available, at the time of the analysis, there were no genetic

interactions from this data in the four BioGRID interaction

categories under study (Table 1), making the evaluation unbiased

in the sense that the information on both the positive and negative

interaction classes could be considered independent of the data

used in their prediction. The computational data transformation

procedure could again improve the detection of the various

interaction classes in the GIM dataset, compared to its original

double-mutant fitness measurements (Table 3). While the

improvements in the positive PS category were not here as

marked as in the larger SGA dataset, the negative interaction

categories could be detected with very high accuracies after the

data transformation. For instance, all the known SL pairs present

in the GIM data matrix could be detected already at 50% FPR,

when adjusting the QMA-parameters to the shared properties of

the three negative interactions categories (Figure S2).

Table 1. The number of pairs of double mutations in the three datasets and the distribution of these pairs into the four BioGRID
categories.

Dataset
[reference]

Double
mutants

Missing
percentage

Phenotypic
Suppression

Phenotypic
Enhancement

Synthetic
Sick

Synthetic
Lethality

SGA [12] 3556280 10.11% 2973 (0.08%) 9780 (0.28%) 4281 (0.12%) 4812 (0.14%)

GIM [10] 173043 6.76% 118 (0.07%) 305 (0.18%) 60 (0.03%) 75 (0.04%)

E-MAP [9] 546105 34.01% 6350 (1.16%)* 24159(4.42%){ 5126 (0.94%){ 5495 (1.01%)

*5453 of the PS pairs in BioGRID (85.87%) were extracted from this E-MAP dataset.
{22743 of the PE pairs in BioGRID (94.14%) were extracted from this E-MAP dataset.
{2 of the SS pairs in BioGRID (0.04%) were extracted from this E-MAP dataset.
doi:10.1371/journal.pone.0011611.t001
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Similar to the SGA dataset, data preprocessing did not improve

the detection accuracy of any of the interaction categories in the

GIM dataset. Interestingly, however, the scaled epistasis scoring

function was found to perform better than the minimum or the

product function in the GIM dataset, when detecting the negative

interaction categories SL and PE (Table 3). Improving the

detection of the SS category proved relatively challenging,

regardless of the estimation method or scoring option; however,

these results should be interpreted with caution due to the rather

limited number of SS pairs in the GIM dataset (Table 1).

Interestingly, we also observed that using the maximum of the two

single-mutant fitness estimates, rather than their minimum, could

further improve the detection of the positive PS pairs in this

dataset (Figure 2). The maximum function has not been used

before when scoring of quantitative genetic interactions, perhaps

because the existing studies have focused mainly on negative

genetic interactions. Our result suggests that the maximum

definition may prove useful in scoring ‘extremely’ positive

interaction pairs in large-scale genetic interaction experiments

screened using GIM or similar quantitative screening approaches.

Detecting genetic interactions in the E-MAP dataset
As a final evaluation data, we used the largest genetic

interaction dataset available to date from the E-MAP screening

approach. Although the customized interactions scores form this

dataset have extensively been used in inferring genetic interactions

in the BioGRID database, the stored pairs are mostly in the PE

and PS categories (Table 1), making the evaluation results in the

SL and SS categories unbiased. As expected, it was found out that

our data transformation could not further improve the detection of

the PE and PS categories in the E-MAP dataset (Table 4).

However, it could effectively capture the properties of these

categories even from this heavily processed and zero-centered

fitness matrix, and provided accuracies almost as perfect as those

obtained with the original interaction scores. In the E-MAP

dataset, the minimum of the single-mutant fitness estimates

provided the most appropriate scoring function in each category,

supporting its good performance as a general option for defining

interaction pairs in quantitative interaction datasets.

In contrast to our expectations, however, the matrix approx-

imation strategy could improve the detection of the negative SL

and SS categories in the E-MAP data (Table 4). In particular, the

gene pairs in the SS category were identified with relatively high

accuracies using the adjusted QMA method. Due to this

adjustment to the independent SL and SS categories, the detection

of the PE category was somewhat compromised with the adjusted

QMA, whereas the fixed version provided excellent performance

in this category. More surprisingly, even though the E-MAP

dataset has already been heavily processed with its custom-

designed data analysis and scoring strategy, we found out that an

additional preprocessing by simple subtraction of the row means of

the original fitness matrix could markedly enhance the scoring of

negative interaction categories such as SS (Figure 3). In contrast,

the alternative ARF matrix approximation method performed

poorer in the E-MAP dataset, regardless of whether or not the

preprocessing option was used (Figure S3).

Revealing novel positive interactions in the SGA dataset
After having confirmed that the computational procedure can

improve the detection of known pairs of genetic interactions in the

quantitative interaction screening experiments, the obvious follow-

up question is whether we can also identify such novel interacting

pairs that are not yet reported in the BioGRID. As examples of

such positive interaction pairs missed by the original SGA fitness

Figure 1. The detection of positive and negative genetic
interactions in SGA dataset. True positive rate (TPR or sensitivity)
is the fraction of gene pairs correctly classified into its true category,
and false positive rate (FPR, or 1 - specificity) is the fraction of non-
interacting gene pairs incorrectly classified into the particular category.
(A) Classification performance in the phenotypic suppression (PS)
category over the whole range of FPR (the overall AUC values are given
in Table 2). The QMA method, together with the product scoring
function, improved detection of this positive interaction class. For
instance, at FPR of 10% (the dotted box), the original double-mutant
fitness matrix identified 851 true PS interactions and the provided SGA
score 1356, while QMA fixed (same parameters for all the categories)
identified 1542, and QMA adjusted (specific parameters for the PS
category) 1706 correct interactions (the sensitivity values at 10% FPR
are given in Table 2). The lower insets depict the classification
performance over the same specificity range in the three negative
categories: (B) synthetic lethal, (C) synthetic sick, and (D) phenotypic
enhancement. The minimum function was used in scoring the negative
interaction classes.
doi:10.1371/journal.pone.0011611.g001
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data, we identified 88 new candidate pairs that were among the

highest interaction scores in the transformed SGA dataset when

using the product scoring function (Table S1), many of which

would have remained unidentified using the provided fitness

measurements alone (Figure 4). To offer robust and unbiased

predictions for further analyses, we required that these pairs must

be highly ranked not only with the parameters specific to the

positive category (QMA adjusted), but also with the parameters

shared by all the interaction categories (QMA fixed). Interestingly,

the bulk of these pairs exhibited larger QMA scores than those

known PS pairs already stored in the BioGRID database,

indicating that these are not only novel but also plausible positive

interactions. The overall pattern of association between the

original and transformed fitness data illustrate that these two

are, at least for the most part, complementary to each other

(Figure 4).

Potential biological mechanisms were inferred for a number of

these novel positive pairs, including nip100Dsac1D, in which nip100

(YPL174C) is a known component of the dynactin complex that is

taking part, for instance, in chromatid separation during anaphase

[47]. Other factors influencing the anaphase process include

cytoskeletal components, such as astral microtubules and actin

[48]. The gene product of its partner, sac1 (YKL212W),

phosphatidylinositol phosphate phosphatase, influences, for in-

stance, protein trafficing and actin cytoskeleton [49]. It has also

been shown that sac1D, together with a deletion of an essential

gene ypp1 (YGR198W), restores cell viability [50]. Since both

nip100 and ypp1 have a role in chromatid separation, these may

also share a common positive interaction effect associated with a

sac1 mutant. In another pair, msc1Dpat1D, it is known that an msc1

(YML128C) mutant is defective in directing of recombination to

homologous chromatids [51]. On the other hand, pat1 (YCR077C)

is necessary for accurate chromosome segregation during mitosis

and meiosis [52]. Thus, it is possible that the problems caused by

the unequal sister-chromatid recombination could be alleviated by

the inaccuracy in the segregation of chromosomes during meiosis,

thus explaining why the double-mutant may become more viable

compared to the single-mutants.

Discussion

The present study demonstrated that the double-mutant fitness

matrices, obtained from the large-scale quantitative interaction

screens, alone contain sufficient information according to which it

is possible to distinguish gene pairs encoding both positive and

negative classes of interactions. The matrix decomposition-based

computational procedure, which effectively estimates and corrects

the single-mutant fitness effects, was able to further improve the

detection accuracy of each interaction category, especially in those

datasets, such as SGA and GIM, in which the original fitness

measurements were provided. Both the SGA and GIM datasets

captured relatively well the known interaction pairs, as extracted

Table 2. The detection accuracies of the four interaction categories in the SGA dataset before and after applying the QMA
method.

Method/Category* Sensitivitya Specificityb Partial AUCc Overall AUCd

Phenotypic Suppression

Fitness matrix 0.28624 0.63021 0.50597 0.70926

SGA score 0.45610 0.54753 0.55464 0.69713

QMA fixed{ 0.51867 0.69354 0.62633 0.75706

QMA adjusted{ 0.57383 0.80663 0.70035 0.82182

Phenotypic Enhancement

Fitness matrix 0.57536 0.83316 0.73539 0.85539

SGA score 0.63282 0.80444 0.69500 0.79130

QMA fixed 0.69131 0.89297 0.75943 0.84698

QMA adjusted 0.71902 0.91212 0.79286 0.87621

Synthetic Sick

Fitness matrix 0.45106 0.71927 0.61399 0.76075

SGA score 0.48213 0.57533 0.57782 0.71689

QMA fixed 0.57487 0.68581 0.64313 0.77061

QMA adjusted 0.58141 0.74792 0.65914 0.78181

Synthetic Lethality

Fitness matrix 0.59746 0.83714 0.73959 0.85550

SGA score 0.65628 0.83809 0.71764 0.80760

QMA fixed 0.71135 0.91072 0.76840 0.85026

QMA adjusted 0.72818 0.92201 0.79283 0.87472

*The minimum scoring function was used except for the PS category.
{The product scoring function was used for the PS category, and fixed QMA parameters for all the four categories.
{The product scoring function was used for the PS category, and adjusted QMA parameters to the PS category only.
aTrue positive rate (TPR, or sensitivity) at 10% false positive rate (FPR).
b1-FPR (or specificity) at 70% TPR.
cArea under the curve (AUC) at 50% FPR.
dAUC at 100% FPR.
doi:10.1371/journal.pone.0011611.t002
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from the BioGRID database, especially the negative interactions,

whereas the detection of the positive interactions proved much

more challenging when using the provided double-mutant fitness

matrix alone. The matrix decomposition strategy, combined with

the selected scoring functions, transformed the original fitness

matrix so that it allows better discrimination of the various

negative or positive interaction classes from the background

variability. Accordingly, we could identify the strongest interaction

pairs in each category much earlier in the transformed score

matrix than in the original fitness matrix, or using the custom-

designed scoring scheme in the SGA dataset (Figure 1). The

computational procedure can therefore be used, for instance, in

prioritization of the most promising interactions for follow-up

functional analyses or more targeted screening experiments among

the exponential number of combinations.

Our generic data transformation procedure is streamlined for

unbiased, explorative research. For instance, it can avoid

performing any tedious filtering steps, but the provided screening

data can be used as its input. In fact, the detection of interaction

classes could be made with higher accuracies in the untreated SGA

and GIM datasets than in their filtered or pre-processed versions.

This suggests that it is neither necessary nor even recommendable

to filter down the number of double-mutant measurements, prior

to the actual downstream data analyses, since such filtering can

lose important discoveries. The E-MAP dataset was already

heavily pre-processed and custom-scored, as has been noted also in

previous works [26], and therefore it was not expected that the

matrix decomposition could provide marked improvements in this

data. Surprisingly, however, the matrix approximation strategy

could improve the detection of those categories of BioGRID that

were independent of the E-MAP data under the analysis (SL and

SS; see Table 4). This may be attributed to the simple pre-

processing, which subtracts the slightly negative row means from

the original E-MAP score matrix, and thereby transforms the

preprocessed matrix closer to the original double-mutant fitness

matrix. This pre-processing had a minor effect on the internal

consistency of the E-MAP dataset, decreasing the correlation

between the reciprocal pairs that were screened as both queries

and arrays to 0.961. In general, these systematic results on the

predictive power of the three high-throughput quantitative

screening approaches (SGA, GIM and E-MAP) should prove

useful in the design and analysis of the future screening

experiments conducted using these or similar screening

methodologies.

The combination of QMA parameters, pre-processing options,

and scoring functions was specific both to the different interaction

datasets as well as to the interaction classes under analysis

(Table 5).

It is likely that the differences in the pre-processing options and

QMA parameters can be mostly attributed to the technical

differences in the screening approaches and their specific fitness

readouts, whereas the observed differences in the scoring functions

may be more closely linked to the underlying cellular mechanisms

contributing to the biologically distinct classes of alleviating and

aggravating interactions. Interestingly, it was found out that the

conventional multiplicative product model was the optimal choice

only when detecting positive interactions in the SGA dataset,

whereas the minimum function performed generally better when

scoring various types of interactions in the different datasets

(Table 5). These observations raise many interesting follow-up

questions for future experimental and computational studies. For

instance, the maximum scoring function was found beneficial

Table 3. The detection accuracies of the four interaction categories in the GIM dataset before and after applying the QMA
method.

Method/Category* Sensitivitya Specificityb Partial AUCc Overall AUCd

Phenotypic Suppression

Fitness matrix 0.42373 0.57654 0.55556 0.69060

QMA fixed{ 0.45763 0.53825 0.56295 0.69890

QMA adjusted{ 0.52542 0.68653 0.62631 0.76629

Phenotypic Enhancement

Fitness matrix 0.64918 0.82024 0.71584 0.80609

QMA fixed 0.71803 0.91352 0.77167 0.85240

QMA adjusted 0.72131 0.91560 0.80454 0.88562

Synthetic Sick

Fitness matrix 0.65000 0.77092 0.69678 0.78482

QMA fixed 0.65000 0.80577 0.70115 0.78781

QMA adjusted 0.70000 0.88776 0.71100 0.80245

Synthetic Lethality

Fitness matrix 0.76000 0.93597 0.77827 0.84940

QMA fixed 0.80000 0.96104 0.83869 0.91012

QMA adjusted 0.82667 0.96820 0.88909 0.94454

*The scaled epistasis scoring function was used except for the PS category.
{The minimum scoring function was used for the PS category, and fixed QMA parameters for all the four categories.
{The maximum scoring function was used for the PS category, and adjusted QMA parameters to the PS category only.
aTrue positive rate (TPR, or sensitivity) at 10% false positive rate (FPR).
b1-FPR (or specificity) at 70% TPR.
cArea under the curve (AUC) at 50% FPR.
dAUC at 100% FPR.
doi:10.1371/journal.pone.0011611.t003
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when detecting positive interactions in the GIM dataset (Table 5);

however, in more general terms, there seems to be many subtypes

of the alleviating interactions, the optimal separation of which may

need more tailored screening and classification schemes. More-

over, even if the ‘scaled epistasis’ scoring function was found useful

in certain negative interaction categories, it produced virtually

unlimited interaction scores in some cases, thus necessitating its

further improvements and modifications to make it numerically

stable.

There are some potential limitations in the present evaluation

setting. For one thing, the present detection accuracies may be

severely underestimated by the fact that we were likely to detect a

large number of such true genetic interactions that have not yet

been stored in the BioGRID database (hence labeled as false

positives), as well as such plastic interactions that have previously

been identified under experimental conditions other than those

used in the SGA or GIM experiments (hence labeled as false

negatives). In the absence of an established set of known non-

interacting mutant pairs, similar to that available for physically

non-interacting protein pairs [53], we used here simply the

complement of each category as the reference sets of neutral pairs.

This definition should not favor the relative performance of any of

the methods under comparison. As positive interaction class, we

used the PS category of BioGRID, rather than synthetic rescue

(SR), because the interactions in the SR category overlap heavily

with negative categories and were often defined on the basis of

triple mutations. In spite of such problems in defining the positive

and neutral sets, we could already provide relatively high detection

accuracies. For instance, the accuracies for the negative classes are

comparable to those obtained with supervised machine learning

classifiers, such as support vector machines or decision trees, which

operate exclusively on the BioGRID SL/SS categories [27–29]. It

can therefore be expected that even higher accuracies will be

obtained when the interaction scores from our procedure are

combined with the fully supervised approaches.

While substantial effort has been devoted to extracting and

storing reliable genetic interaction data [30–32,54–56], standards

for the computational analysis are still lacking, perhaps because

the choice of the modeling strategy depends both on the screening

approach and on the goals of the experiment. The downstream

analysis methods, such as data clustering or functional analyses

[12,38], are more targeted at addressing the biological questions

under study, whereas the upstream data analysis tools, such as

quality control and data normalization [31,32], are aimed at

correcting for the sources of experimental variation in the

screening experiments to provide reliable fitness data for the

analyses. Our objective here was to further transform the custom-

normalized data through the matrix-based modeling framework,

which offers a quantitative and flexible means to deal with the

properties of the different assays, while avoiding over-fitting that

would bias the downstream analysis objectives. The transformed

data matrix can subsequently be used in the downstream data

analysis phases, using either the individual interaction scores or the

rows of the score matrix (i.e. genetic profiles). This computational

work therefore complements the ongoing experimental efforts by

providing a platform for mining the genetic interaction networks

in yeast and other organisms. In-depth understanding of the

quantitative relationships behind genetic interactions and their

contributions to various phenotypes in model organisms may later

translate into an improved identification of the genetic variation

responsible for polygenic disorders that is beyond the capability of

the current genome-wide association studies.

Materials and Methods

Figure 5 illustrates the computational procedure used for

transforming a quantitative genetic interaction dataset and for

evaluating its discrimination power before and after the transfor-

mation. The purpose of the data transformation is to improve the

scoring of the various interaction classes using the double-mutant

fitness measurements together with the single-mutant fitness

estimates, obtained through the matrix approximation procedure.

The following sub-sections detail the quantitative interaction

datasets used in its evaluation phase, as well as the distinct steps of

this generic computational procedure.

Genetic interaction datasets
Three large-scale quantitative genetic interaction datasets on

budding yeast (Saccharomyces cerevisiae), as available from different

screening technologies, were used to demonstrate the performance

of our computational data transformation procedure. By far the

largest dataset at the time of the analysis was a pre-release version

of the SGA screening experiment [12]. This massive screening

effort is continuously increasing in coverage and it has recently

been made publicly available via the DRYGIN (Data Repository

of Yeast Genetic Interactions) database [32]. The pre-release

version of the data matrix was based on a total of m~1277 SGA

screens, in which each mutant of interest (so-called ‘query strain’)

was individually crossed to non-essential gene deletion collection

(‘array strains’). More specifically, three types of query strains,

namely 1091 non-essential gene deletions, 101 temperature-

sensitive essential gene alleles and 85 hypomorphic DAmP

(decreased abundance by mRNA perturbation) alleles, were

Figure 2. The effect of scoring function on detection of positive
interactions in GIM dataset. True positive rate (TPR or sensitivity) is
the fraction of gene pairs correctly classified into the phenotypic
suppression (PS) category, and false positive rate (FPR, or 1 - specificity)
is the fraction of non-interacting gene pairs incorrectly classified into
the PS category. Compared to the minimum function, the maximum
scoring function increased the AUC value from 0.732 to 0.766. The
original double-mutant fitness matrix gave AUC of 0.690 (Table 3). In
this illustration, the parameters of the QMA method were adjusted to
the positive PS category individually (QMA adjusted).
doi:10.1371/journal.pone.0011611.g002
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crossed to each of the n~3908 non-essential array strains. Colony

sizes were measured for the pairwise double-mutant combinations

in four replicates; of these measurements, 10% were filtered out for

technical reasons (resulting in missing data points). The double-

mutant fitness values provided by the SGA analysis were

extensively corrected for several sources of systematic variation

associated with the measurement process [32]. The filtered and

normalized double-mutant fitness data matrix, denoted here by

WSGA, was treated as the input of our computational data

transformation pipeline (see Figure 5). In addition to the double-

mutant fitness values, the SGA dataset includes a customized

scoring scheme, which quantizes the extent to which a double

mutant colony size deviates from the colony size expected from

combining the two mutations together (referred here to as ‘SGA

score’). In the evaluation results, this custom-designed SGA score

was used as a reference for our interaction scoring strategy.

The two other genetic interaction datasets were available from

published literature at the time of the analysis; one obtained with

the GIM screening approach and the other with the E-MAP

approach. The GIM dataset contains the quantitative growth

measurements from its pilot experiment [10], which involves

double-mutant fitness measurements among m~5918 query gene

mutations and n~73 array gene mutations from the yeast deletion

collection. Similar to the SGA approach, the double mutants were

also generated by mating and sporulation but in a single pool

combining all non-essential gene deletions of the collection.

Similar to the dSLAM approach, the estimation of the individual

double mutants’ relative growth rates was performed by using bar-

code DNA microarrays. For every screen, two experiments were

run in parallel, one with the query gene deletion strain and

another with a reference deletion. The normalized growth results

were expressed as log-ratios between the query population and the

reference population. Signal-to-noise ratio across technical

replicates was used to filter out non-reproducible measurements

(7% of the gene pairs). The filtered fitness effects were transformed

back to non-log-scale to produce the WGIM data matrix. The E-

MAP dataset was available from the epistatic miniarray profiling

study of quantitative genetic interactions between m~n~743
genes involved in various aspects of yeast chromosome biology [9].

The mutations included deletions of 663 non-essential genes and

hypomorphic alleles for 70 essential genes, constructed using the

DAmP strategy. In addition to relatively heavy filtering (34%

missing rate), these screening data were already custom-processed

and scored against an expected fitness [31], resulting in a

symmetric and close to zero-centered data matrix WE-MAP.

Data preprocessing options
After the custom-normalization and filtering out unreliable

measurements, there may still remain sources of experimental

variation that can confound the true phenotypic variation. As the

first data transformation step for a given double-mutant fitness

matrix W (Figure 5), we investigated whether some simple data

preprocessing option, such as removing potential location shifts in

W before performing its approximation, was able to improve the

discrimination power of the data matrix. The presumption was

that such a data preprocessing could potentially make the null

model for the non-interacting genes more distinctive, and

therefore facilitate its estimation by means of matrix-approxima-

tion methods, especially in those datasets, such as SGA and GIM,

in which the original double-mutant fitness measurements were

available. It was also hypothesized that in the custom-scored

datasets, such as E-MAP, this kind of data pre-processing would

Table 4. The detection accuracies of the four interaction categories in the E-MAP dataset before and after applying the QMA
method.

Method/Category* Sensitivitya Specificityb Partial AUCc Overall AUCd

Phenotypic Suppression{

Fitness matrix 0.93354 0.99987 0.94920 0.96918

QMA fixed 0.91827 0.99349 0.93356 0.96038

QMA adjusted 0.93654 0.99680 0.94782 0.96896

Phenotypic Enhancement{

Fitness matrix 0.95016 0.99948 0.96096 0.97530

QMA fixed 0.95232 0.99924 0.95977 0.97508

QMA adjusted 0.87044 0.97047 0.91492 0.95288

Synthetic Sick

Fitness matrix 0.50371 0.66926 0.60608 0.74443

QMA fixed 0.52204 0.73030 0.63454 0.77125

QMA adjusted 0.57121 0.83342 0.72329 0.84615

Synthetic Lethality

Fitness matrix 0.71865 0.91313 0.77677 0.86101

QMA fixed 0.72757 0.91658 0.78968 0.87185

QMA adjusted 0.73722 0.91756 0.82527 0.90353

*The minimum scoring function was used is each category.
{The detection accuracy is highly overestimated since 85.87% of the PS pairs in the BioGRID were extracted from the E-MAP dataset.
{The detection accuracy is highly overestimated since 94.14% of the PS pairs in the BioGRID were extracted from the E-MAP dataset.
aTrue positive rate (TPR, or sensitivity) at 10% false positive rate (FPR).
b1-FPR (or specificity) at 70% TPR.
cArea under the curve (AUC) at 50% FPR.
dAUC at 100% FPR.
doi:10.1371/journal.pone.0011611.t004
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provide only a marginal, if any, contribution to the overall

performance of the data transformation procedure. More

specifically, three different preprocessing options were evaluated

for each of the data matrices individually: subtraction of the row or

column means component-wise from the rows or columns of W
separately, or subtraction of the grand mean calculated as the

average of the values over all the entries in W.

Matrix approximation methods
At the core of the data transformation procedure is the rank-one

matrix approximation-based estimation of the single-mutant

fitness effects w (Figure 5). The approximation of the double-

mutant fitness matrix W, or its preprocessed version, was based on

the observation that significant genetic interactions are rare and

that the multiplicative model is a reasonable approximation in the

case of no interaction [42,46]. Accordingly, the double-mutant

fitness matrix alone should carry enough information for accurate

estimation of the single-mutant fitness values, which typically are

not measured in the large-scale interaction experiments, but could

be estimated computationally. The standard practice for calculat-

ing a low-rank matrix approximation is by means of the singular

value decomposition (SVD). Formally, the SVD of a real n|m
matrix W can be written as

W~
Xm

i~i

lixiy
T
i , ð1Þ

where li is the ith eigenvalue of W, and xi and yi are the

corresponding left and right eigenvectors, respectively. It is well

known that if the summation is truncated to the first k terms, then

the right hand side of Eqn. 1 is the least-squares rank-k

approximation to W [57]. The special case of SVD with k~1
yields two components, x and y, where the n-dimensional array

vector x models the within-screen variability and it is therefore

used as an estimate of the single-mutant fitness vector w, while the

m-dimensional query vector y models the between-screen

variability and it can therefore be used for normalization purposes.

The conventional computation of SVD requires that the matrix W
is free of missing entries and outliers, which is rarely the case in the

high-throughput interaction screens. Therefore, the estimation

problem must in practice be solved by numerical means.

Sequential matrix approximation (SMA). In case the

dimensionality of the double-mutant fitness matrix W is

moderate, the matrix approximation problem can be treated

using iterative procedures, which solve the weighted least-squares

optimization problem, in which binary weights can be employed

to ignore the effects of missing entries [58]. If further the matrix W
is symmetric, one can use a numeric estimate for w based on the

eigenvector of the largest eigenvalue of W in its spectral

decomposition (in the symmetric case, w~x~y). This

symmetric strategy was used in our previous work [46], in which

the SMA method was developed and applied to a small-scale,

square (m~n~26) high-resolution genetic interaction data matrix

[43]. To extend SMA strategy to cope with the large-scale genetic

interaction datasets, we have further developed several of its

Figure 3. The effect of preprocessing on detection of synthetic
sick pairs in E-MAP dataset. True positive rate (TPR or sensitivity) is
the fraction of gene pairs correctly classified into the synthetic sick (SS)
category, and false positive rate (FPR, or 1 - specificity) is the fraction of
non-interacting gene pairs incorrectly classified into the SS category.
Subtracting the row means of the provided fitness matrix increased the
AUC value from 0.747 to 0.846. The original double-mutant interaction
matrix gave AUC of 0.744 (Table 4). The QMA adjusted method together
with the minimum scoring function was applied both to the original
fitness matrix (un-processed) and its subtracted version (pre-processed).
doi:10.1371/journal.pone.0011611.g003

Figure 4. Examples of novel positive interaction pairs identi-
fied in the SGA dataset. Residual plot showing the association
between the original double-mutant fitness values (Wab, y-axis) and the
interaction scores (Sab, x-axis), as obtained using the QMA method with
the product scoring function (Sab~Wab{wawb). The large orange
points indicate those 97 pairs that were among the 0.005 percent of the
highest interaction scores, both in the fixed and adjusted version of the
QMA, while the blue circles indicate those pairs that already belong to
the positive interaction category of the BioGRID database (the 88 novel
and 9 known positive pairs are listed in Table S1). The green points
indicate the two interaction pairs, nip100Dsac1D and msc1Dpat1D, that
are further discussed in the text (the arrows).
doi:10.1371/journal.pone.0011611.g004
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components. For instance, SMA was modified to deal with

unbalanced experimental designs, as well as differences between

the screens, resulting in potentially highly rectangular, asymmetric

matrices W [58], such as those provided with the SGA and GIM

datasets. However, it was soon found out that the built-in

sequential procedure, which considers such increasingly larger

subsets of mutation pairs in W that best fit the multiplicative model

to improve the estimation of the single-mutant fitness vector w,

was computationally infeasible when faced with the massive data

matrices originating from the high-throughput genetic interaction

experiments. Therefore, even if the SMA showed good potential,

this strategy was not used here in the systematic evaluation results.

Alternating robust fitting (ARF). To reduce the

computational complexity when scaling up to the high-

dimensional screening data, we searched for more efficient rank-

one approximation methods used in the context of high-

throughput experiments. One candidate was ARF, a robust

variant of SVD, previously applied to asymmetric data matrices

from gene expression microarray experiments [59]. The method is

based on alternating regression of the rows and columns of W in a

sequential manner. Briefly, starting with an initial estimate for the

unit column vector y, the matching scaling for the row vector x is

obtained by fitting linear regression row-by-row using non-missing

entries of W. In the next step, the estimated row coefficients x are

taken as given, and the linear regression is used in exactly the same

way to calculate new estimates of the column coefficients y. This

process is continued until convergence or enough iteration steps

have been performed. Instead of using the standard least-squares

regression, which is sensitive to outliers (e.g. extreme fitness

measurements), we used least trimmed squares regression similarly

as in the original work [59]. As an initial estimate, we used the

leading term of SVD of the matrix W with missing values

substituted by ones. The ARF method includes two parameters: a

trimming parameter t, which determines the percentage of the

values used in fitting the regression model, and a Boolean

parameter a, which indicates whether or not to include an

intercept term in the regression model. While the ARF method

performed well in the negative interaction categories, it could not

distinguish the positive interaction pairs, even after adjusting its

parameters separately to each interaction class (Figure S1).

Quantile-based matrix approximation (QMA). In this

work, we develop a novel and efficient rank-one matrix

approximation method, named QMA, to address the problem of

detecting accurately also the positive end of interactions, yet being

simple enough for the large-data interaction datasets. The matrix

approximation method is conceptually similar to the Tukey’s

median polish procedure [60], except that QMA uses

multiplicative model instead of additive model, division in place

of subtraction, arbitrary quantile points instead of fixed medians,

and performs one iteration only rather than continuing until

convergence or pre-defined number of iteration steps. More

specifically, we obtain the estimate for w by calculating the p-

quantile points separately for each of the rows in W and then

arranging these quantile in the array vector x. In case there are

negative entries in the matrix W, such as in the E-MAP dataset,

then the (1-p)-quantile is used instead for those rows in which more

than half of the components are negative. In the next phase, the

rows of W are divided by the components of x, thus resulting in a

new matrix W’. Finally, vector y is obtained similarly by

calculating the q-quantiles for the columns in W’. Such estimates

x and y have the desired property that if W was originally a rank-

one matrix, then the QMA method provides an exact

approximation, that is, W~xyT , for any p,q [ (0, 1). The two-

way median estimate is a special case of QMA, with p~q~0:5.

This simple two-phase matrix decomposition method is relatively

fast, with computational complexity of the order of m|n,

compared to the iterative or sequential alternatives. It can also

deal effectively with the technical issues in the large-scale genetic

interaction datasets, namely non-random missing value

distribution (e.g. the filtered measurements), both positive and

negative extreme observations (e.g. the synthetic lethal and

suppression pairs), and fitness effects following non-normal

distributions (e.g. in the SGA and GIM datasets). The R-codes

for the QMA algorithm are available upon request from the

authors.

Scoring of the interaction classes
The final phase of the data transformation procedure involves

scoring of each individual gene pair, say (a,b), on the basis of its

double-mutant fitness measure Wab and the two single-mutant

Table 5. The QMA parameters, pre-processing options, and scoring functions recommended for the different interaction datasets
and classes.

Method/Dataset* QMA parameters (p,q) Pre-processing option Positive interactions Negative interactions

SGA

Fixed (0.55,0.95) No Product Minimum

Adjusted P (0.10,0.95) No Product

Adjusted N (0.95,0.50) No Minimum

GIM

Fixed (0.60,0.50) No Minimum Scaled epistasis

Adjusted P (0.05,0.95) No Maximum

Adjusted N (0.80,0.25) No Scaled epistasis

E-MAP

Fixed (0.50,0.60) Row mean Minimum Minimum

Adjusted P (0.30,0.65) Row mean Minimum

Adjusted N (0.50,0.15) Row mean Minimum

*The QMA parameters and other options were specific to the interaction datasets and classes, resulting in three combinations per dataset: one for scoring both positive
and negative interactions (Fixed), and the others for scoring the positive and negative interactions separately (Adjusted P and N, respectively).
doi:10.1371/journal.pone.0011611.t005
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fitness estimates wa and wb, as obtained from the array vector x
(Figure 5). The objective of such scoring was to decide whether or

not the gene pair encodes a true genetic interaction. It became

soon evident that any single scoring function could not provide

optimal scoring capability for all the interaction datasets and

interaction categories considered. Therefore, we systematically

evaluated the performance of several scoring function alternatives,

including those introduced in previous experimental and theoret-

ical works [42,45], as well as our own candidates for additional

scoring functions. More specifically, we reported in the present

work the results obtained with the following four scoring functions

(referred to as ‘minimum’, ‘maximum’, ‘product’ and ‘scaled

epistasis’):

Minimum : Sab~Wab{ min wa,wbf g,

Maximum : Sab~Wab{ max wa,wbf g,

Product : Sab~Wab{wawb,and

Scaledepistasis : Sab~
Wab{wawb

~WWab{wawb

�� �� ,
where ~WWab~

min wa,wbf gforWabwwawb,

0otherwise

(

It was noted that the scaled epistasis function, as defined in the

original work by Segre et al. [45], can produce virtually unlimited

score values for some specific cases of the triple (Wab, wa, wb), for

instance, for such positive interaction pairs in which one of the

single-mutant phenotypes is close to that of the wild type and the

other single-mutant has a more severe phonotype than the double-

mutant (i.e. wa&1 and Wabwwb). Therefore, its values were later

truncated to 1000. However, such extreme score values were

encountered only very rarely in the course of the evaluations, and

therefore these had only a negligible effect on the results. The

application of a scoring function individually to each of the gene

pairs (a,b) transformed the double-mutant fitness matrix W into a

score matrix S, which preserves the dimensionality of the original

fitness matrix, but has model residuals as its entries instead of the

double-mutant fitness measurements.

The BioGRID interaction categories
In the evaluation phase, the non-missing entries of the matrices

W and S were evaluated in terms of their information content for

distinguishing both positive and negative interaction classes

(Figure 5). As the ground truth for the genetic interaction pairs,

we used the four different genetic interaction categories as available

from the BioGRID database, version 2.0.51 [54]. This database

contains genetic interactions extracted from both small-scale and

high-throughput interaction screening studies. The interaction

categories used in the present study were: Synthetic Lethality (SL),

mutations in separate genes, each of which alone causes a minimal

phenotype, but result in lethality when combined; Synthetic Growth

Defect (or synthetic sick, SS), mutations in separate genes, each of

which alone causes a minimal phenotype, result in a significant

growth defect; Phenotypic Enhancement (PE), mutation or over-

expression of one gene results in enhancement of any phenotype

(other than lethality or growth defect) associated with mutation or

over-expression of another gene; and Phenotypic Suppression (PS),

mutation or over-expression of one gene results in suppression of

any phenotype (other than lethality/growth defect) associated with

mutation or over- expression of another gene. The PS category is

Figure 5. The schematic of the data transformation procedure.
The input is the provided double-mutant fitness matrix W, with
columns and rows corresponding to the m query and n array strains,
respectively. The example data matrix here depicts a selected sub-
matrix screened using the synthetic genetic array (SGA) technology (the
blue and red matrix entries indicate positive and negative effects,
respectively, whereas the grey elements are missing values). In the first
step, the original fitness matrix W, or its pre-processed version, is
decomposed using a rank-one approximation method, such as
quantile-based matrix approximation (QMA) or alternating robust
fitting (ARF), resulting in two vectors, x and y, which model the
variability across the query and array mutants, respectively. Here, the
array vector x is used as an estimate for the single-mutant fitness
effects w, whereas the query vector y is used for correcting the
technical variation between the screens. The individual gene pairs in W
are then ranked according to their evidence for a genetic interaction,
using specific scoring functions for positive and negative interaction
classes. The output of the procedure is a score matrix S, which has the
same dimensionality as the original data matrix W. The information
content of both W and S are evaluated with respect to the interaction
categories stored in the BioGRID database (version 2.0.51).
doi:10.1371/journal.pone.0011611.g005
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composed of the positive interaction pairs (Sabw0), while the PE,

SS, and SL categories include pairs with different degrees of

negative interactions (Sabv0).

Evaluation of the detection accuracy
The detection accuracy of the data matrices W and S in

distinguishing the four interaction categories (SL, SS, PE and PS)

from the background variability (i.e. the complement of the

category in the dataset under evaluation) was assessed using the

receiver operating characteristic (ROC) curves [61]. Briefly, the

ROC curve characterizes the relative trade-off between the true

positive rate (TPR) and the false positive rate (FPR) of the data

matrix over the range of possible discrimination thresholds for a

selected scoring function. Here, TPR (or sensitivity) is the fraction

of the gene pairs correctly classified into its true category, and FPR

(or 1 - specificity) is the fraction of the non-interacting gene pairs

incorrectly classified into the BioGRID category. The overall

prediction performance was summarized using the area under the

ROC curve (AUC). For an ideal classifier, TPR = 1, FPR = 0 and

AUC = 1, whereas a random classifier has on average AUC of 0.5.

To investigate the performance of a method at low FPR levels, we

calculated the partial area under the curve up to a selected FPR

threshold, and standardized it to have the maximum value of one

[62]. In many applications, where the goal is to find a set of

candidate interaction pairs for further conformational studies, only

the gene pairs identified at low FPR levels are relevant. Therefore,

in addition to the overall AUC levels, we evaluated the practical

performance of the methods using different FPR and TPR

thresholds.

Implementation issues for the methods
The array and query vectors, x and y, from the QMA or ARF

methods are unique up to scaling. To provide unique estimates of

the single-mutant fitness vector w, we scaled the array vector x
using the set of mutants shared by the array and query strains.

More specifically, we defined that w equals to x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk k yk kM

p
,

where M is the median of the non-negative ratios ŷyj

.
x̂xj over those

components j that belong both to the array and query arrays; here,

x̂x and ŷy are rescaled to unit length, that is, x̂xk k~ ŷyk k~1. The

ARF method gave sometimes estimates x and y with all elements

negative. Therefore, in those case in which the median of x was

negative, we multiplied both x and y by 21 (this does not affect

the rank-one approximation xyT , only the single-mutant fitness

estimate w). Similar to the ARF methods, the two parameters of

the QMA (p,q) were adjusted individually to each of the three

datasets, with three parameter combinations per dataset: one for

scoring all the four categories (QMA fixed), and the others for

scoring either the negative or positive categories separately (QMA

adjusted). It should be noted that the parameter p determines the

unit vector x̂x, whereas the parameter q affects the length xk k only.

To guarantee that the array vector x could be used similarly in the

estimation of each of the single-mutant fitness effects in w, the

evaluations presented here were based on the sub-matrices of W
and S, constructed by including only those columns in which the

query mutant corresponds to one of the array mutants. This makes

the estimation results more comparable at the cost of losing some

the gene pairs in the evaluation phase.

Supporting Information

Figure S1 The full ROC curves showing the detection accuracy

of the different genetic interaction categories in the SGA dataset

using the QMA and ARF methods. The four interaction

categories are shown as separate panels, and the two methods as

separate sets of ROC curves on the two pages.

Found at: doi:10.1371/journal.pone.0011611.s001 (0.13 MB

PDF)

Figure S2 The full ROC curves showing the detection accuracy

of the different genetic interaction categories in the GIM dataset

using the QMA and ARF methods. The four interaction

categories are shown as separate panels, and the two methods as

separate sets of ROC curves on the two pages.

Found at: doi:10.1371/journal.pone.0011611.s002 (0.10 MB

PDF)

Figure S3 The full ROC curves showing the detection accuracy

of the different genetic interaction categories in the E-MAP dataset

using the QMA and ARF methods. The four interaction

categories are shown as separate panels, and the two methods as

separate sets of ROC curves on the two pages.

Found at: doi:10.1371/journal.pone.0011611.s003 (0.11 MB

PDF)

Table S1 Candidate gene pairs showing evidence for positive

genetic interactions as identified in the SGA dataset using the

matrix decomposition strategy and the product scoring function

(named ‘QMA score’). The nine ORF pairs already stored in the

BioGRID-PS category are boldfaced.

Found at: doi:10.1371/journal.pone.0011611.s004 (0.01 MB

PDF)
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