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Objectives
Pseudotumours (abnormal peri-prosthetic soft-tissue reactions) following metal-on-metal 
hip resurfacing arthroplasty (MoMHRA) have been associated with elevated metal ion levels, 
suggesting that excessive wear may occur due to edge-loading of these MoM implants. This 
study aimed to quantify in vivo edge-loading in MoMHRA patients with and without 
pseudotumours during functional activities.

Methods
The duration and magnitude of edge-loading in vivo was quantified during functional 
activities by combining the dynamic hip joint segment contact force calculated from the 
three-dimensional (3D) motion analysis system with the 3D reconstruction of orientation of 
the acetabular component and each patient’s specific hip joint centre, based on CT scans.

Results
Edge-loading in the hips with pseudotumours occurred with a four-fold increase in duration 
and magnitude of force compared with the hips without pseudotumours (p = 0.02).

Conclusions
The study provides the first in vivo evidence to support that edge-loading is an important 
mechanism that leads to localised excessive wear (edge-wear), with subsequent elevation of 
metal ion levels in MoMHRA patients with pseudotumours.

Article focus
 Quantification of in vivo edge-loading in

MoMHRA patients with and without
pseudotumours during functional activities

Key messages
 Edge-loading is an important in vivo

mechanism that leads to localised exces-
sive wear with subsequent elevation of
metal ion levels in MoMHRA patients with
pseudotumours

 Although orientation of the acetabular
component appears to be an important
factor in edge-loading, the aetiology of
edge-loading is likely to be multifactorial

Strengths and limitations
 This is the first study to provide in vivo evi-

dence of edge-loading in MoMHRA
patients

 Generalisation of the current study find-
ings to MoMHRA with larger femoral

component sizes may be limited as the
femoral component sizes in the current
study are ≤ 50 mm

Introduction
Despite the encouraging short-term clinical
follow-up studies of metal-on-metal hip
resurfacing arthroplasty (MoMHRA),1-3

recent reports of abnormal peri-prosthetic
soft-tissue reactions are causing concerns.4-10

These so-called soft-tissue pseudotumours,9

defined as non-infected solid and/or cystic
soft-tissue mass in patients with MoMHRA,11

have been associated with elevated serum
and hip aspirate levels of cobalt (Co) and
chromium (Cr), the principal elements in the
CoCr alloy used in MoMHRA implants.9,12,13

As metal-on-metal (MoM) implant wear has
been reported to be positively correlated
with the elevation of metal ion concentra-
tions in vivo,14 this suggests that pseudo-
tumours in patients with contemporary
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MoMHRA implants are associated with increased wear at
the MoM articulation.

Recently, the maximum wear of the MoMHRA acetabular
components revised due to pseudotumour has been
observed to occur near the edge of the implant, indicating
edge-loading.15 Although retrieval studies provide valuable
information, these studies are limited by the fact that the
implants were retrieved as a result of failure, with inevitable
selection bias. This selection bias excludes examination of
well-functioning implants or implants prior to failure. The
extrapolation of in vitro retrieval study results to in vivo con-
clusions may therefore not always be appropriate.

In order to determine if there is edge-loading in vivo, it
is necessary to determine where the hip joint reaction
force passes through the acetabular component. If the
resultant hip joint force were directed near the edge of
the acetabular component, edge-loading would be indi-
cated. Measuring in vivo hip joint forces in patients with
implants in situ during functional activities, however,
presents numerous difficulties. Researchers have utilised
both instrumented total hip prostheses with in-built force
transducers16-19 and mathematical modelling20-23 in
order to measure or predict in vivo resultant forces across
the hip joint. Video fluoroscopy has been used to deter-
mine the in vivo kinematics of the hip joint.24,25 More
recently, a combination of the computed tomography
(CT) and three-dimensional (3D) lower limb motion cap-
ture data has been used to determine the in vivo hip con-
tact force vector with the acetabular component in
MoMHRA patients during functional activities such as
walking and stair descent.26 However, the incidence,
duration and magnitude of edge-loading during func-
tional activities have not been previously quantified.

The aim of this study was to assess whether edge-
loading occurs in MoMHRA patients with and without
pseudotumours by quantifying the in vivo resultant hip
joint segment force relative to the acetabular component
(force path) during functional activities.

Patients and Methods
The duration and magnitude of edge-loading in vivo was
quantified during functional activities by integrating the
dynamic hip joint segment contact force calculated from
the 3D motion analysis system with the 3D reconstruc-
tion of orientation of the acetabular component based on
the CT scan, as recently described by Mellon et al.26

Patient selection. A total of 21 patients (33 hips) were
investigated in this study, which received local research
ethics committee approval. The patients were divided
into two groups (Table I): Group 1 – MoMHRA patients
with pseudotumours (abnormal soft-tissue reactions with
or without cystic elements) confirmed with MRI (six
patients (nine hips)); the three patients with bilateral
implants in this group were found to have pseudo-
tumours in both hips (Fig. 1); and Group 2 (control) –
patients with well-functioning MoMHRA implants with-
out pseudotumours (15 patients (24 hips)). These
patients were recruited from a population of patients
who had participated in a MoMHRA surveillance study at
the authors’ institution,13 as screening hip ultrasound/
MRI scans had been performed in these patients to detect
the presence of pseudotumours. Those patients with
pseudotumours were invited first, and the invitation to
other patients among the total population was subse-
quently based on matching approximately two
individuals from the control group to one from the pseu-
dotumour group with respect to gender, age, size of the
femoral component and time since surgery. Exclusion cri-
teria included the presence of significant pain or impair-
ment which would restrict walking, stair climbing, or
sitting onto or rising from a chair. This was to ensure that
patients in the study were able to perform these func-
tional activities for the motion analysis study.
3D lower limb motion analysis. Markers were attached
on specific anatomical landmarks in accordance with the

Table I. Summary of study patient groups

Characteristic Pseudotumour Non-pseudotumour

Patients 6 15
Hips 9 24
Male 1 (1 bilateral) 3 (3 bilateral)
Female 5 (2 bilateral) 12 (6 bilateral)
Mean age (yrs) (range) 55 (44 to 58) 56 (46 to 60)
Implant type*

 BHR 7 18
 Conserve Plus 2 6
Median femoral component
size (mm) (range)

45 (44 to 50) 46 (46 to 50)

Mean time since surgery 
(mths) (range)

60 (36 to 79) 64 (32 to 88)

Surgical approach Posterior Posterior

* BHR, Birmingham Hip Resurfacing (Smith & Nephew); Conserve Plus
(Wright Medical Technology)

Fig. 1

Coronal Short TI Inversion Recovery (STIR) MRI
image of a typical example of predominantly
solid pseudotumour with low signal intensity
(arrows).
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Plug-In-Gait lower body marker set.27 Data was captured
using a 12-camera Vicon Nexus Motion Analysis System
(Oxford Metrics Ltd, Oxford, United Kingdom) operating at
a video capture rate of 100 Hz and two floor-embedded
force platforms (Advanced Medical Technology Inc.,
Watertown, Massachusetts) with an analogue data capture
rate of 1000 Hz, while patients performed functional activ-
ities (level walking, rising from and sitting down onto a
chair, and stair climbing). Data processing was performed
with commercially available software (BodyBuilder) (Vicon
Motion Systems; Oxford Metrics., Oxford, United
Kingdom) using the Plug-In-Gait model (Version 1.9) with
customisation of the model on a patient-specific basis to
account for individual hip joint centre location determined
using CT data. Inter-segmental hip joint force and
moments were calculated in a sequential process using a
well-established inverse dynamics method.27

CT scans. CT scans of the patients’ pelvis and lower limbs
were obtained using a high-resolution 64-slice CT scan-
ner (Siemens Somatom; Siemens Medical Solutions USA
Inc., New York, New York) with metal artifact reduction
sequence. In order to ensure that the pelvic coordinate
system in the motion analysis system (defined by three

pelvic markers) could also be defined within CT data, the
pelvic motion analysis markers were replaced with radio-
opaque markers at the end of the motion analysis, prior to
CT scanning. The medical imaging software package
SliceOmatic v.4.2 (Virtual Magic Inc., Montreal, Canada)
was used to locate the coordinates of multi-modality
markers, anatomical pelvic landmarks and to determine
orientation of MoMHRA acetabular components (relative
to the anterior pelvic plane defined by anterior superior
iliac spines and pubic tubercle) within the CT images. The
location of the patient-specific hip joint centre in each
resurfaced hip was determined by extracting the 3D
coordinates of a minimum of 30 points distributed over
the head of the femoral and the acetabular components.
Definition of edge-loading. Edge-loading was defined
to occur when the ‘force path’ (the locus of the force vec-
tor intersection with the acetabular component through-
out the load bearing) was within a distance ≤ 10% of the
radius from the edge of the component (i.e. the zone at
the edge of the acetabular component designated as
zone 1) (Fig. 2). The figure of 10% was based on observa-
tions of edge-wear scars from a previously reported
MoMHRA retrieval study.15

Fig. 2

Diagram showing force paths projected on the acetabular component viewed in the direction
through the centre of the component. The inner bearing surface was divided into concentric zones
defined in 10% increments of the component face radius, with the zone at the edge designated as
zone 1. In hip A (in blue), the force path does not enter the outer most radial zone (zone 1), thus no
edge-loading is observed. In hip B (in red), during walking, the force path enters the outer most
radial zone (zone 1), indicating edge-loading. The black circles (●) indicate force path at heelstrike
and the black triangles () indicate force path locus at toe-off.
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Serum metal ion analysis. The venous blood samples
were collected from all patients in the study in accor-
dance with the consensus protocol.28 Serum Co and
Cr levels were analysed in a blinded fashion using Induc-
tively-Coupled Plasma Mass Spectroscopy (ICP-MS). The
detection limit of Co and Cr in serum was 0.25 μg/l.

Statistical analysis. The data set was assessed for normal-
ity. Inter-group comparisons of the zone duration and the
force impulse variables between the hips in groups 1 and
2 were performed using the Student’s t-test. Inter-group
comparisons of the angles of the acetabular components
and serum metal ion levels were performed using the
Mann-Whitney non-parametric tests. Differences at
p < 0.05 were considered to be significant. SPSS statistical
software release 13.0 (SPSS Inc., Chicago, Illinois) was
used to perform the statistical analyses.

Results
Of the 21 MoMHRA patients analysed, data from two
patients (three hips) in the control group were excluded
due to loss of the sacrum marker during motion analysis
in one patient and movement artefact in the CT images in
the other. Thus, complete data from 30 hips (nine hips
with pseudotumours in six patients in group 1; and
21 hips without pseudotumours in 13 patients in
group 2) were available for analysis.
Edge-loading. During walking, edge-loading (predomi-
nantly superiorly at the 12 o’clock position) was observed
in all nine hips (100%) in the pseudotumour group com-
pared with five of 21 hips (24%) in the group without
pseudotumours. However, during more strenuous activi-
ties of daily living, such as rising from a chair and stair
climbing, edge-loading (predominantly posteriorly at the
10 o’clock position) was observed in all hips in both
groups. Representative force path plots for non-edge-
loading and edge-loading hips during walking are shown
in Figure 2.
Zone duration of force paths. Although edge-loading
occurred in all hips in both groups, the distribution of the
time spent by the force path in each zone differed signifi-
cantly. During the stance phase of walking, the mean
duration of force path in zone 1 (edge-loading zone) was
greater in the hips with pseudotumours (39% of the
stance phase) compared with those without pseudo-
tumours (39% versus 15% of the stance phase; p = 0.05). 

The differences in zone duration between the groups
were activity-dependent (Fig. 3). During stair climbing,
the differences were accentuated. There was a statistically
significant four-fold increase in the mean edge-loading
zone duration in the hips in the pseudotumour group
compared with those in the non-pseudotumour group
(51% versus 11% of the stance phase; p = 0.02). This indi-
cated that the edge-loading lasted for five times as long in
the hips with pseudotumours compared with those with-
out during stair climbing activity. The overall trend in
zone duration between stair ascent and descent was sim-
ilar in both groups.

The differences between the two groups were less pro-
nounced during rising from and sitting down to a chair
(Fig. 3). In fact, the highest zone duration occurred in the
edge-loading zone for both groups, suggesting that, in
terms of edge-loading, rising from and sitting down to a

Fig. 3c

Graphs showing the distribution of ‘zone duration’ (the percentage of total
stance time spent by the force path in each zone) during a) walking, b) stair
climbing and c) rising from a chair. Zone 1 is defined as the edge-loading
zone. The error bars represent standard errors of mean. An asterisk (*) indi-
cates significant difference between the two MoMHRA patient groups.

Fig. 3b

Fig. 3a
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chair was the most provocative activity in the hips with-
out pseudotumours. There was no significant difference
in time duration spent in the edge-loading zone between
the hips with and without pseudotumours during this
activity (p = 0.15).
Force impulse distribution of force paths. Overall, a simi-
lar trend was observed with force impulse distribution of

force paths as seen with zone duration (Fig. 4). During
stair climbing, there was a significant four-fold increase in
the value of normalised force impulse located in the edge-
loading zone in the hips with pseudotumours compared
with the hips without (p = 0.04). This indicated that edge-
loading occurred with four times greater force impulse in
the hips with pseudotumours than the hips without for
each stair climbing cycle.
Orientation of the acetabular component. The hips with
pseudotumours were associated with a higher median
inclination angle of the acetabular component compared
with those without (52.0° (35.5° to 60.7°) versus 45.1°
(27.5° to 62.0°), p = 0.10), higher anteversion angle
(21.2° (8.8° to 47.0°) versus 16.0° (3.4° to 35.0°, p = 0.18)
and significantly higher median combined inclination
and anteversion angle (75.6° (58.4° to 100.0°) versus
58.75° (30.1° to 90.0°), p = 0.04).

Of the 21 hips without pseudotumours, 16 (76%) had
inclination and anteversion angles within the safe zone of
Lewinnek29 (Fig. 5). In comparison, only three of the nine
hips with pseudotumours (33%) had their orientation
angles within the safe zone.
Serum metal ion levels. The patients with a pseudo-
tumour had significantly higher median serum Co levels
compared with the patients without (14.3 μg/l (10.6 to
64.1) versus 1.9 μg/l (1.2 to 5.0), p < 0.001) and Cr levels
(21.2 μg/l (13.8 to 45.2) versus 1.8 μg/l (0.7 to 7.6),
p < 0.001) (Fig. 6).

Discussion
Although previous retrieval studies have reported edge-
loading as a mechanism that leads to increased wear in
MoMHRA implants,14,15,30-32 this study integrating
dynamic motion analysis with CT data is the first to quan-

Fig. 4b

Fig. 4a

Fig. 4c

Graphs showing the distribution of normalised hip joint ‘force impulse’ (the
cumulative magnitude of the segment force throughout activity over time
estimated by calculating the area under the force/time curve normalised to
patient body weight) in each zone during a) walking, b) stair climbing and
c) rising from a chair. Zone 1 is defined as the edge-loading zone. The error
bars represent standard errors of mean. An asterisk (*) indicates significant
difference between the two MoMHRA patient groups.

Non-pseudotumour
Pseudotumour

Inclination (°)

A
nt

ev
er

si
on

 (
°)

50

45

40

35

30

25

20

15

10

5

0
0   10   20   30  40  50  60 70

Fig. 5

Scatter graph showing the angles of inclination and anteversion of the
acetabular component for the pseudotumour group (9 hips in 6 patients)
and the non-pseudotumour group (21 hips in 13 patients). Lewinnek’s
safe zone29 is outlined by the dotted rectangle.
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tify duration and magnitude of edge-loading in vivo dur-
ing functional activities in MoMHRA patients. The
observation of edge-loading in patients with well-
functioning MoMHRA in the current study has not been
previously reported; however, similar findings have been
reported with the multi-directional in vivo wear paths
measured in patients with metal-on-polyethylene total
hip replacement.33 In this study by Bennett et al,33 the 3D
loci of points on the acetabular component over which
the femoral component moved, clearly demonstrated
that the wear path extended over the edge of the acetab-
ular component during level walking. Furthermore,

in vivo studies using video fluoroscopy have reported that
edge-loading with heelstrike can occur during normal
walking due to microseparation in metal-on-metal hip
bearings.24,25

While edge-loading occurred in MoMHRA hips both
with and without pseudotumours during functional
activities, the distribution of ‘time duration’ and ‘force
magnitude’ differed significantly. Edge-loading in the
hips with pseudotumours occurred when significantly
greater magnitudes of force impulse were experienced
near the edge of the acetabular component for a signifi-
cantly longer period of time. The significant differences in
time and force impulse distribution of force paths in the
edge-loading zone were activity-dependent, with pro-
portionally greater difference observed during stair
climbing. During a 12-hour period, it has been reported
that patients with total hip arthroplasty perform 42 cycles
of stair climbing, with estimates of 15 000 cycles per
year.34,35 These significant increases in time and force
impulse distribution of force paths in the edge-loading
zone during more strenuous activities of daily living may
be important factors responsible for increased wear in
MoMHRA patients with pseudotumours. It may be
hypothesised that there is a cumulative threshold of con-
tact stress that must be exceeded by repeated episodes of
edge-loading before resulting in significant localised
excessive wear (edge-wear). Therefore, edge-loading can
be a ‘benign’ process that occurs during activities of daily
living in patients with well-functioning MoMHRA. How-
ever, once the contact stress generated by edge-loading
exceeds the tolerance of the MoM bearing due to increase
in frequency, duration and/or magnitude of contact
force, a vicious cycle of wear may ensue that leads to
edge-wear scars reported in retrieval study of MoMHRA
implants revised due to pseudotumours.15 Thus, the in
vivo observation of edge-loading with significantly
increased duration and magnitude of force impulse may,
in part, explain significantly elevated serum metal levels
in the pseudotumour patient group. In fact, no patient in
the pseudotumour group had ‘normal’ median serum
and aspirate levels of Co and Cr ions reported in well-
functioning MoMHRA.36-39

Retrieval studies of MoM prostheses have reported that
acetabular components with high inclination angles
demonstrate increased wear secondary to edge load-
ing.31,40 In addition, increased risk of pseudotumour for-
mation has been correlated with steep positioning of the
acetabular component in MoMHRA patients.30,41 In the
current study, there was a trend towards patients in the
pseudotumour group having a steeper acetabular com-
ponent, although the difference was not statistically sig-
nificant (p = 0.10). Increased anteversion combined with
increased inclination has also been reported to be associ-
ated with elevated concentration of metal ions.42

Increases in anteversion and inclination have been sug-
gested to decrease cover of the femoral component by
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Fig. 6b

Boxplots showing the median serum cobalt (Co) (a) and chromium (Cr)
(b) level measurements in the six patients with psuedotumour and the
13 patients without. The boxes represent the median and interquartile
range, and the whiskers denote the range of data excluding outliers (°,
between 1.5 and 3×IQR) and extremes (*, > 3×IQR).
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the acetabular component, thus decreasing the area for
generation of fluid-film lubrication. This is consistent with
the current study’s finding that the patients with pseudo-
tumours, who had significantly elevated metal ion levels
compared with the patients without pseeudotumours,
were found to have a significantly greater median com-
bined inclination and anteversion angle (75.6° versus
58.75°, p = 0.04), with 67% (six of nine) of acetabular
components found outside the safe zone of Lewinnek.29

Although explained in part by the orientation of the
acetabular component, the aetiology of edge-loading is
likely to be multifactorial. Edge-loading was observed in
all hips, including those with acetabular components
within the safe zone of Lewinnek.29 This indicates that
there may be other important causative factors. These
may include implant, patient and surgical factors. Differ-
ent implant designs may influence safe inclination and
anteversion angles of the component. Implants with a
greater angle subtended by the acetabular component
would shift the loci of hip joint force vector away from the
edge for any given orientation by providing more cover.
Although the implants in the pseudotumour group were
predominantly Birmingham Hip Resurfacing systems
(BHR; Smith & Nephew, Memphis, Tennessee) (seven of
nine, 78%), which have a lower included angle than the
Conserve Plus (Wright Medical Technology, Memphis,
Tennessee) implants, the number of implants in this study
was too small to detect any difference. Moreover, the
optimal implant orientation may also be different for each
individual patient due to variables such as bony anatomy.

The results of this study need to be considered in light of
the potential limitations. First, a resultant hip joint segment
force measured in this study is a computational quantity
derived from combined measurement of body position and
simultaneous measurement of ground reaction force, repre-
senting the sum of hip joint reaction forces and muscle
forces. As such, hip joint segment force does not provide any
specific information in terms of muscle activation nor
account for the stress on the MoMHRA implants at the artic-
ulation. However, the focus of the study was on the compar-
ative differences between the two patient groups. Secondly,
the sizes of the femoral component in the well-functioning
MoMHRA group in the current study were ≤ 50 mm, which
were deliberately matched to the small sizes in the pseudo-
tumour group. Thus, any generalisation of the current study
findings to MoMHRA with larger femoral component sizes
should be done with caution. Lastly, the power of the study
may be low due to small sample sizes. The sample size of the
pseudotumour group was limited clinically by the number
of patients with MRI confirmed diagnosis from the on-going
clinical study. However, the selection of the control group
was carefully matched for gender, age, femoral component
size and time since index surgery, in order to minimise the
potential confounding factors. Despite the small number of
patients, the trends observed were consistent and signifi-
cant differences were found.

In conclusion, edge-loading in MoMHRA hips with
pseudotumours occurred in vivo with significantly lon-
ger duration and greater magnitude of force compared
to the MoMHRA hips without pseudotumours during
activities of daily living. The results of this study, there-
fore, provide the first in vivo evidence to support that
edge-loading is an important mechanism that leads to
localised excessive wear, with subsequent elevation of
metal ion levels in MoMHRA patients with pseudo-
tumours. Although orientation of the acetabular com-
ponent appears to be an important factor in edge-
loading, the aetiology of edge-loading is likely to be
multi-factorial. Further research is required to elucidate
the relative importance of implant, patient, and surgical
factors that lead to edge-loading in order to minimise
the occurrence of such an adverse clinical outcome and
to ensure long-term implant survivorship.
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