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Abstract: Anthrax toxins are produced by Bacillus anthracis throughout infection and shape the
physiopathogenesis of the disease. They are produced in low quantities but are highly efficient.
They have thus been long ignored, but recent biochemical methods have improved our knowledge in
animal models. This article reviews the various methods that have been used and how they could be
applied to clinical diagnosis.

Keywords: anthrax; toxins; lethal factor; edema factor; protective antigen; ELISA; mass spectrometry

1. Introduction

Bacillus anthracis is a Gram-positive spore-forming bacterium, considered one of the most potent
and critical bioterrorist agents, and subsequently is listed as Category A select agents by the Centers for
Disease Control and Prevention (CDC). It is responsible for anthrax, a zoonotic disease, mainly affecting
herbivores, humans being only occasional hosts. There are three main forms of human anthrax and
a recently described atypical form, depending on the route of entry of the pathogen: cutaneous,
gastrointestinal, inhalational, and injectional anthrax.

B. anthracis toxins largely shape the pathogenesis of the disease in mammals, even though these
proteins are produced at very low levels. Indeed, anthrax toxins are highly efficient, as most of their
effects are biochemically amplified. Thus, their detection is very challenging, as the toxins are present
in the blood at very low levels, below classical detection methods, and are not accessible to the genetic
amplification methods used for molecular diagnosis.

However, recent studies have proposed new methods for the detection of anthrax toxin, leading
to reassessment of the pathogenesis of anthrax through the lens of the toxins, and leading to exciting
perspectives for anthrax diagnosis. B. anthracis needs having sensitive, rapid, and scalable methods of
detection of the organisms as of its toxins.

2. Why Detect Anthrax Toxins?

Anthrax toxins act at two critical stages of the infection [1]. Early in the infection, they paralyze
the immune response of the host by targeting innate and adaptative immune cells. During the late
stage of the infection, the toxins are involved in the failure of vital organs by acting on target cells.

An uncharacteristic clinical picture, with the exception of the cutaneous form, and first-line
antibiotic treatment can complicate the initial diagnosis of anthrax. It is currently based on bacterial
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isolation in cultures and the detection of specific markers of B. anthracis, as antigens or nucleic acid using
pagA PCR and, more recently, detection of BA_5345, a chromosomal marker allowing differentiation
between B. anthracis, B. cereus biovar anthracis, and B. thuringiensis [2–4]. However, these diagnostic
approaches have their limits, as bacterial clearance due to early antibiotherapy and the low sensitivity
of the test and time required to perform them are not compatible with rapid management of the disease.
Sensitive and rapid assays for the detection of B. anthracis are needed to facilitate early and accurate
diagnosis and post-exposure treatment. During a bioterrorist attack, for example, the screening must
be rapid and should allow the testing of a large number of samples.

Many technical approaches for the detection, identification, and quantification of the toxins of
B. anthracis have been developed and sometimes used in the laboratory.

3. How Does One Detect Anthrax Toxins and for What Applications?

Anthrax toxins are formed by the association of three proteins that are individually non-toxic—the
protective antigen (PA), the lethal factor (LF), and the edema factor (EF). PA plays a role in the cellular
binding and entry of the toxins. After secretion by B. anthracis, PA83 binds to its cellular receptors:
ANTXR1 or tumor endothelial marker-8 (TEM-8), ANTXR2 or capillary morphogenesis protein-2
(CMG-2), the two majors receptors identified, and, to a lesser extent, LDL receptor protein-6 (LRP-6)
and integrin β1 [5,6]. After binding, PA83 is cleaved by furin proteases [7] into PA20, which is released,
and PA63, which forms an oligomeric structure allowing the binding of EF and or LF [8], thus forming
edema toxin (ET) and or lethal toxin (LT).

LF is a zinc-dependent metalloproteinase that cleaves and inactivates the mitogen-activated
protein kinase kinases (MAPKKs) 1–4, 6, and 7 [9]. It has been recently shown that LF can also cleave
the NLRP1b (nucleotide-binding domain leucine-reach repeat protein) of some susceptible rodents,
constitutively activating the inflammasome and leading to cell death by pyroptosis [10,11].

EF is an adenylyl cyclase converting ATP in cAMP in the cytoplasm of eukaryotic cells [12].
In turn, the important increases in cAMP concentrations activate two main factors—protein kinase A
(PKA) and the exchange protein activated by cAMP (Epac) [13,14].

The detection of the toxins of B. anthracis to diagnose anthrax has been used for decades, since their
discovery and identification in the 1950s [15–19]. Several methods have been developed, with varying
sensitivity and specificity—many first focusing on the protective antigen (PA) and then on the lethal
factor (LF) and edema factor (EF).

3.1. Directly: The First Approach to Detect Anthrax Toxins

An agar-diffusion method based on the technique of Ouchterlony was developed in 1957 to
titrate PA [20] (Table 1). This method enabled the differentiation of the three factors constituting the
toxins of B. anthracis, the titration of each correlating with their lethal capacity [19]. The Ouchterlony
method consists of precipitating the sought antigens with known antibodies on gels and was used
for a long time to determine the presence of toxins in vitro and in vivo [21,22], with an application for
a serological survey after an outbreak of human anthrax in the USA [23–26]. The kinetics of toxin
production have also been studied using the Ouchterlony method in guinea pigs and rhesus monkeys
challenged with spores of B. anthracis [27]. The toxins appeared to be present in the thoracic and
peritoneal fluid of all dead guinea pigs, death occurring within 18–42 h, depending on the strain.
During the infection process, the earliest time of detection was 6 h. In monkeys, the toxin was detected
in the blood 16 h after challenge, as were the bacteria.

This technique enabled direct detection of the toxins but was less sensitive than the indirect
hemagglutination test (IHA) and enzyme-linked immunosorbent assay (ELISA) methods developed
late, and provided more qualitative than quantitative information (Table 1).
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Table 1. Comparison of the direct assays for the detection of anthrax toxins.

Direct Method of
Detection Positive Points Limit of Detection (LOD) Negative Points References

Ouchterlony
method

Replaced in vivo passive
protection and edema

neutralization tests

Less sensitive and
discriminative than indirect
hemagglutination test (IHA)

and enzyme-linked
immunosorbent assay

(ELISA) tests

[20,28]

ELISA PA, LF Results within 2 h
LOD 1 ng/mL for protective
antigen (PA) and 20 ng/mL

for lethal factor (LF)
Late detection [29]

ECLI, PA LOD 1 ng/mL [30]

ECLI, PA
Results in ≈ 35 min

Sensitivity and specificity of
100% and 97%

LOD 2.5 ng/mL [31]

Western-Blot PA,
LF, EF

Interference of serum
proteins

Late detection
[32]

ENIA, PA

No interference by LF or edema
factor (EF)

Capacity to bind a high number
of PA molecules

LOD 10 pg/mL

Mainly qualitative
Concentration must be

>1 µg/mL and <1 ng/mL for
reliable results

[33]

MEF-PA assay Results in 40 min Sensitivity 1 pg/mL [34]

SPR technology, PA LOD 10 pg/mL [35]

TRF, PA Effective rate 90% LOD 0.223 ng/mL for PA83
LOD 0.558 ng/mL for PA63

Interference of anthrax
immune globulin (AIG)

treatment
Slight interference by LF

binding for PA LOD

[36]

AlphaLISA, PA
LOD 100 pg/mL in spiked

naïve sera
LOD 2 ng/mL

PA spiked in serum [37]

HTRF, PA Assay in 15 min [38]

LC-MS/MS, PA
Detection and quantification of

total PA (PA83 + PA63) and
PA83

Detection limits
1.3–2.9 ng/mL in plasma [39]

3.2. Antigen Detection

Mabry et al. [29] developed an ELISA to detect PA and LF, notably in the serum. ELISA allowed
the detection of PA in the late stage of infection in guinea pigs intranasally challenged with a strain of
B. anthracis or after death in a rabbit inhalation model of anthrax. The authors explained the absence
of detection of PA or LF at the early stage of infection by the fact that anthrax toxin released into the
circulation continuously binds to the available tissue receptors until saturation. However, further
studies using more sensitive methods showed this not to be true.

Another technique—western-blotting—allowed late quantification of LF, EF, and PA 48 h after
infection in a rabbit model of cutaneous anthrax infection [32].

Several time-resolved fluorescence (TRF) immunoassays were developed to detect PA. Thus,
a specific, sensitive, and rapid europium nanoparticle-based immunoassay (ENIA) has been studied
for the detection of PA [33]. The immunosorbent assay format was adapted with the use of fluorescent
europium nanoparticles (Eu+ NPs), a nanoparticle with a large surface area and, consequently,
the capacity to bind a very large number of molecules. An anti-PA antibody able to bind PA83 and PA63
was used. The immune complex was then coupled to streptavidin-coated Eu+ NPs and fluorescence
was measured. However, the assay, conducted in PBS and animal plasma, was mainly qualitative
or semi-quantitative.

Another TRF immunoassay allowed detection of PA (PA83 and PA63 associated with LF) in
human sera from acute (Table 4) and convalescent patients [36], with a variable limit of detection
(LOD). PA was detected in nine of 10 confirmed cases of patients with cutaneous, inhalation, and



Microorganisms 2020, 8, 1103 4 of 14

gastrointestinal anthrax 1–11 days after onset of the disease. In the patient that did not present PA,
anti-PA IgG was detected. The therapeutic anti-PA IgG antibody likely resulted in a large decrease in
PA, below limit of signal detection of just over 1 µM. LF was also detected in nine of these patients,
LF levels being mostly lower than those of PA [40]; the lowest level of LF was 0.035 ng/mL for a
cutaneous anthrax case and the highest, 57.98 ng/mL for an inhalation anthrax patient.

Other assays have been assessed without a true application (Table 1). Hence, tests based on
energy-transfer, such as amplified luminescent proximity homogeneous assay (AlphaLISA) [37] and
homogenous time-resolved fluorescence (HTRF) [38], were developed, enabling the detection of PA
in the sera of anthrax-infected rabbits, with a low detection threshold and rapid obtention of the
results. The presence of PA in serum samples has also been detected using an electro-chemiluminescent
immunoassay (ECLI) in rabbits [30] and in African green monkeys [31], surface plasmon resonance
(SPR) technology [35], and a metal-enhanced fluorescence (MEF) assay [34].

An alternative method using mass spectrometry (MS) was recently established. PA83 and PA63
were immunopurified using magnetic beads covered with two anti-PA monoclonal antibodies (mAbs)
and hydrolyzed by trypsin [39]. The specific tryptic peptides were analyzed using LC-MS/MS, with
low detection limits for plasma, allowing the detection and quantification of total PA (PA83 + PA63)
and PA83.

These techniques all present the following advantages: ease of use, a low detection threshold, and
a rapid test for some (Table 1). However, they do not indicate the functionality of the toxins.

3.3. The Enzymatic Activity of LF and EF as New Targets of Detection and Applications

A method to detect protease activity of the lethal toxin (LT) has been recently reported, combining
the high sensitivity of PCR with the ability to detect the endopeptidase activity of the bacterial factor [41]
(Table 2). Briefly, LF was captured using PA63 heptamers. This complex was added to a peptide-DNA
conjugate, the peptide being specific to LF [42]. The cleaved DNA was released into solution and
amplified by real-time PCR. This method allowed the detection of 10 fg of LF spiked into HEPES and
50 fg spiked into human serum. Another method was based on the detection of a fluorogenic peptide
substrate mimicking MAPKKs in the plasma [43]. After the capture of LF and exposition to the peptide,
the enzymatic activity was determined either by HPLC or a microplate reader. The limit of detection
was less than 5 pg/mL after 2 h using HPLC and 20 pg/mL in 5 h using a microplate reader. Without
the capture of LF, direct monitoring of the enzymatic activity of LF in the sample showed a limit of
detection of <1 ng/mL to 25 ng/mL in 5 h and 15 min, respectively. However, these promising methods
have not been tested on clinical samples.

Table 2. Comparison of assays using enzymatic activity for the detection of anthrax toxins.

Detection of Enzymatic
Activity Positive Points LOD Negative Points References

MALDI-TOF MS, LF No interference from PA83
or PA63 0.005–0.25 ng/mL Late detection of LF [42]

MALDI-TOF MS, LF 0.005–0.25 ng/mL LOD varying according
to the volume sample [44]

MALDI-TOF MS, LT Sensitivity and specificity
of 100%

In plasma, detection limit of
0.033 ng/mL and 0.0075

ng/mL for the 2- and 1.8 h
reaction times

[42,45]

LC-MS/MS, LF
Assay directly in the
sample, without an

immunocapture step

In the plasma, detection
limit of 0.4 ng/mL

High detection limit in the
ear mouse (40 ng/mL)
Lower sensitivity and

specificity

[46]

New PCR-based assay, LF Rapid assay Detection of 50 fg of LF
spiked into human serum [41]
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Table 2. Cont.

Detection of Enzymatic
Activity Positive Points LOD Negative Points References

MAPKKide based assay,
LF Rapid

After capture of LF,
LOD< 5 pg/mL with HPLC

LOD 20 pg/mL with
microplate reader
Directly in sample,

LOD < 1 ng/mL in 5 h
LOD 25 ng/mL in 15 min

[43]

ELISA, EF
Detection directly in

sample
Rapid (4 h)

LOD 1 pg/mL in human
plasma

LOD 10 pg/mL in animal
plasma

Risk of false-positive with
toxins of Bordetella pertussis

and Pseudomonas
aeruginosa

[47]

ELISA, EF
Detection directly in

sample
Rapid

LOD 2.5 pg/mL in mouse
plasma

LOD 0.85 pg/ear mouse
tissue

Risk of false-positive with
toxins of Bordetella pertussis

and Pseudomonas
aeruginosa

[46]

Monitoring ATP depletion,
EF Rapid (30 min)

Sensitivity of 0.1 µg/mL
Addition of anti-EF

antibodies
[48]

LC/ESI-MS/MS, EF Detection limit 1000 times
lower than that of LF [44]

MALDI-TOF MS, total EF,
ETx

In the plasma,
LOD of 0.02 pg/mL for EF

and ETx
[49,50]

LC-MS/MS, EF Sensitivity and specificity
of 100%

In the plasma, detection
limit of 20 fg/mL [51]

LC-MS/MS, total PA (PA83
+ PA63) and PA83

Detection limits
1.3–2.9 ng/mL in 100 µL

plasma
[39]

MALDI-TOF MS, total PA,
PA83

LOD of 1.87 ng/mL for total
PA and 1.22 ng/mL for PA83 [49,50]

For EF, the depletion of ATP was monitored by inhibition of a luciferase-mediated light-emitting
reaction [48]. However, to ensure that the depletion of ATP is due to EF, anti-EF antibodies had to be
included in the assay. In this way, the assay could be applied for the evaluation of the anti-EF humoral
response in experimental animals infected and/or vaccinated with/against B. anthracis.

Another sensitive enzymatic assay relied on increasing the level of cAMP to detect functional
EF [47]; the production of cAMP by the EF adenylyl cyclase was monitored in the presence of calmodulin
and calcium, using a competitive immunoassay, directly in a matrix. Thus, EF could be detected at
concentrations of 1 pg/mL in human plasma in 4 h and 10 pg/mL in the plasma of various animals.
This method was applied to study the kinetics of production of EF during cutaneous anthrax in a
mouse model of infection [46], allowing rapid and sensitive detection of EF early in the infection at the
initial site of inoculation and in the blood.

A team at the CDC has established a specific and sensitive method using MS for detecting LF
activity in serum in less than 4 h, allowing its integration into the CDC response plan during an anthrax
emergency [42]. Total LF (LF and LT) was first purified and concentrated during an immunocapture
step. The captured LF was then exposed to a specific peptide substrate mimicking MAPKKs. The two
peptides, produced by their cleavage by LF, were analyzed by MALDI-TOF MS. PA did not interfere
with the immunocapture step or the cleavage reactions. The LOD varied depending on the volume of
the sample analyzed: 0.005–0.25 ng/mL for 200 to 5 µL, respectively. An extended reaction time also
improved the detection limit. This method was applied in a model of inhalation anthrax in Rhesus
macaques (RMs) with the detection of LF at the late stage of infection [42].

LC-ESI-MS/MS gave similar results (detection limits, accuracy, and precision) but analysis took
longer [44]. EF activity can also be detected via its adenylyl cyclase activity and the production of
cAMP by LC-ESI-MS/MS.
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Over the years, LF and EF detection have been refined, providing lower detection thresholds
(Table 2) and thus the earlier screening of anthrax.

As LT is the form that acts on cells and tissues, the following three-step method to detect
and measure the LT complex was developed [45]: magnetic immunopurification used an anti-PA
monoclonal antibody (mAb) (capture of free PA and LT), captured LT cleaved a MAPKK-like peptide,
and the products of cleavage were detected and quantified by MALDI-TOF MS. The longer incubation
time allowed confirmation of low-level positives and the ruling out of negatives, with a specificity of
100%. This new development enabled the differentiation of total LF and LF associated with PA (LT).
The same principle was applied for PA and EF, allowing the detection of total EF vs. ET (EF associated
with PA, edema toxin) and total PA vs. PA83 in rabbits and RM during inhalational anthrax [49,50].
Total EF (EF + ET) was concentrated after an immunocapture step using one EF mAb and two PA
mAbs [44,51]. Concentrated EF then cleaved ATP into cAMP, which was detected using LC-MS/MS,
with a detection limit of only 20 fg/mL.

These methods were applied for various cases of human anthrax, focusing on the detection of
LF. In a patient with inhalational anthrax, LF protein was detected several days after the apparition
of symptoms (Table 3) and the initiation of antibiotic therapy in serum, plasma, and pleural fluid
samples using a quantitative MS technique (see Figure 1), showing that the toxins are not cleared after
antimicrobial therapy and that LF remains detectable in the blood for 12 days [52]. Concentrations
varied between 200 ng/mL and 543 ng/mL depending on the fluid analyzed (543.2 ng/mL in the early
pleural fluid sample). LF Levels were determined during therapy, making it possible to follow the effect
of the antibiotics: LF levels in the serum-plasma and pleural fluid decreased steadily, with a marked
diminution of LF in the plasma to 0.85 ng/mL 1 h after the administration of anthrax immune globulin
(AIG). For another case of human inhalational anthrax, LF levels were assessed in serum samples and
pleural fluid by MS [53] (Table 4). The initial level of LF in the plasma was 58 ng/mL, decreasing to
1.5 ng/mL after AIG completion; the concentration of LF in the pleural fluid was 16.2 ng/mL at initial
drainage, decreasing during treatment.

Table 3. First detection of PA, LF, and EF in humans with cutaneous anthrax and in animal models of
cutaneous anthrax (*BLI: bioluminescence).

Method of Detection Model or Cases of
Infection First Time of Detection Level of Toxins References

MS Human Three to eight days after
onset of symptoms

0.0005 < LF < 1.264 ng/mL,
serum [40]

TRF for PA
MALDI-TOF MS for LF Human One to eight days after onset

of symptoms

1.02 < PA < 68.73 ng/mL,
serum

0.035 < LF < 1.264 ng/mL,
serum

[36]

Western blot Rabbit 48 h
3.6 < PA < 49.4 µg/mL
10.3 < LF < 35.2 µg/mL
1.9 < EF < 6.1 µg/mL

[32]

MALDI-TOF MS Mouse 12 h
458 pg LF/injected ear

28 pg LF/cLN
476 pg LF/mL serum

[54]

MALDI-TOF MS Mouse
Early phase of infection

defined as BLI* in injected
ear

16.25 ng LF/g of ear
0.253 ng LF/g of cLN

0.894 ng LF/mL serum
LF detected in heart, lungs,

spleen, liver

[55]

LC-MS/MS for LF
EIA for EF Mouse Thirty minutes to 3 h 30 min

198 ng LF/ear
1.2 pg EF/ear

1.7 ng LF/mL plasma
4.6 pg EF/mL plasma

[46]

After an outbreak of cutaneous anthrax in Bangladesh, LF toxemia was quantified by MS [40].
LF was present in acute serum (day 3 to day 8), with levels from 0.005 ng/mL to 1.264 ng/mL for 69% of
individuals. LF was not detected in convalescent serum (day 16 to day 28), confirming the efficacy
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of the treatment. The same profile was observed for a patient with anthrax-like eschar [56]; LF was
detected in the acute plasma but not in the convalescent samples of the patient.
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Table 4. First detection of PA, LF, and EF in humans with inhalation anthrax and in animal models of
inhalation anthrax.

Method of Detection Model or Cases of
Infection First Time of Detection Level of Toxins References

MS Human Three to four days after
onset of symptoms LF, 294.3 ng/mL, plasma [52]

TRF for PA
MALDI-TOF MS for LF Human Two and eight days after

onset of symptoms

PA, 1.81 & 68.73 ng/mL,
serum

LF, 0.7 & 57.9 ng/mL,
serum

[36]

MALDI-TOF MS Human
A few days after onset of

symptoms
Initial drainage

LF, 58 ng/mL, plasma
LF, 16.2 ng/mL, pleural

fluid
[53]

ELISA Guinea pig
Rabbit

72–81 h (before death)
≈ 48 h

0.1 < PA < 1.7 µg/mL,
serum

80 < PA < 100 µg/mL,
serum

11 < LF < 15 µg/mL, serum

[29]

ELISA, ECLI Guinea pig
Rabbit

24 h
18 h

PA, ≈ 2 ng/mL
1 < PA < 10 ng/mL, serum [30]

MALDI-TOF MS RM Two days post-infection 30 < PA <2 50 ng/mL,
serum [42]

MALDI-TOF MS RM 24 h 0.006 < LF < 0.2 ng/mL,
serum, 60% of animals [58]

MALDI-TOF MS RM 18 h for the first,
24 h for the second

Total LF, 0.026 ng/mL,
serum

Total LF, 0.049 ng/mL,
serum

[45]

MS Rabbits 12 h for LF
24 h for EF [50]

LC-MS/MS RM 24 h EF, 0.16 and 0.462 pg/mL,
serum, 40% of RM [51]

LC-MS/MS RM 48 h 84.3 < PA63 < 310 ng/mL,
serum, 100% of RM [39]

LC-MS/MS for LF
EIA for EF Mouse 1 h

LF, 2.63 ng/mL, plasma,
all mice

EF, 5.5 pg/mL, plasma, 42%
of mice

[57]
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A two-step technique based on LC-MS/MS without an immunocapture step was used in a mouse
model of cutaneous anthrax to understand the kinetics of LF during infection [46] and in a mouse
model of inhalation anthrax [57]. Although the detection limit was higher than that of the three-step
method, it allowed the rapid detection of LF at the early stage of infection.

4. Toxins In Vivo

For a long time, little was known about the physiological level of toxins produced by B. anthracis
during infection. The main hurdles were the low quantity of the toxins produced and the limited tools
available to measure them. Recent developments in biochemistery, with more sensitive techniques,
have provided a more precise picture of what happens in vivo during (i) cutaneous anthrax, the most
common form, and (ii) inhalation anthrax, the most fulminant and deadliest form.

4.1. Cutaneous Anthrax

Dal Molin et al. were the first to quantify the level of PA, LF, and EF during cutaneous anthrax in a
rabbit model [32]. Blood samples were collected every 24 h and bacterial factors quantified by western
blotting. They were not detected 24 h after infection, but at 48 h, PA63, LF, and EF were detected,
whereas PA83 was never observed (Table 3). The LF/EF ratio of ≈ 5 remained relatively constant.

Detection may depend on the bacterial load. When mice were subcutaneously infected with
103 spores of the Sterne strain, PA was never detected (from 6 h to 237 h) [33]. However, when mice
were challenged with 107 spores, PA was first detected at 24 h post-infection at a concentration of
approximately 68 ng/mL, when the rodents started to present symptoms of the disease. When the mice
were ill at 42 h and 48 h, PA concentrations increased to 408 ng/mL. At 6 h and 8 h, PA was not detected
in the still healthy mice.

These techniques are not sufficiently sensitive and did not allow observation of what happened
earlier during the infection process. However, they correlated the presence of PA in the blood with
an advanced state of the disease. The development of MS enabled a more rigorous vision during the
course of infection.

In a mouse model of subcutaneous anthrax, LF was quantified 12 h after challenge, in the ear,
the draining cervical lymph nodes (cLN), and serum by MALDI-TOF MS [54] (Table 3). This early
presence reinforces the dogma of the paralyzing effect of LT on PMNs, as demonstrated in vitro on
cells and in vivo by injection of LT, thus protecting the bacteria from the immune system [55].

A further study defined three stages of infection, depending on the location of bacteria—early,
mid, and late. At each stage, LF was quantified in several organs [55]. When the bacilli were detected
in the inoculated ear (early stage), LF was detected in many tissues—the infected ear, serum, cLN,
heart, lungs, spleen, and liver, but not the brain or bone marrow. LF concentrations then increased
during infection, and LF was detected in all tissues analyzed. The authors noted that LF levels at the
infection site were higher than those observed in the serum and bone marrow during the early and
mid-stages of infection, suggesting that LF found at the site of infection may play a greater role in
initial survival and escape from the innate immune response than that of circulating LF.

More recently, the use of LC-MS/MS and EIA assay has provided a picture of the complex kinetics
of LF and EF in a mouse model of cutaneous infection [46] (see Figure 2). Thirty minutes to 3.5 h after
infection with spores of B. anthracis, LF and EF were detected in the site of inoculation (ear) (Table 3),
in accordance with a rapid germination of spores and a rapid toxin production. More surprisingly,
despite the absence of circulating bacteria, LF and EF were also detected in the blood (Table 3).
Although only 29% and 38% of the mice were positive for LF and EF at the site of infection, respectively,
the percentage increased to 94% positive mice for EF and/or LF. The percentage in the blood was
lower (62% positive mice) when detection of the two was combined, LF being the more effective blood
marker of disease. In the ear, the percentage of mice positive for EF and LF increased during infection,
with an associated decreased level of LF and an increased concentration of EF. The measured LF/EF
ratio varied between 320,000 at the early stage of infection and 890 at the terminal phase. As described
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in the study of Weiner et al. [55], the level of LF was higher at the site of infection than in the blood
until the stage with a bioluminescent spleen. LF and EF concentrations in the blood tended to increase
during infection, with a slight decrease of LF at the stage of infection preceding the terminal phase.
The LF/EF ratio was 3 just before the terminal stage of infection, corresponding to the previous value
of 5 determined by Dal Molin et al. in their rabbit model of infection [32] and approaching the values
observed in an inhalation model of anthrax in RMs [51].
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Figure 2. Kinetics of LF and EF level in a mouse model of cutaneous anthrax, adapted from [46] (stage
I to V defined through BLI imaging. Stage I: no BLI, stage II: BLI in the injected ear; stage III: BLI in the
injected ear and in the draining cLNs; BLI in the injected ear, in the draining cLNs and in the spleen;
stage V: mice in septicemia).

Cutaneous anthrax is mainly a local form that leaves a black scar. Patients generally recover
without treatment, but in some cases, the infection can spread and kill. The data primarily collected in
animal models indicate a more diffuse infection, with virulence factors detected in the blood explaining
the rarely fatal outcome of this form.

4.2. Inhalation Anthrax

In the guinea pig model of inhalation anthrax, PA was detected in sera by ELISA just before or just
after the death of the animals for four of five infected animals [29] (Table 4). PA and LF were detected
in two infected rabbits after their death. Improvements in techniques have allowed faster detection of
PA in these animal models [30] (Table 4). ECLI allowed the detection of PA in 44.4% of rabbits 18 h
after challenge, whereas ELISA allowed the detection of PA in only 11.1% of rabbits 24 h post-infection
(both, however, prior to bacterial detection). The discrepancy in the time of detection is explained
by the difference in the LOD between ELISA (10 ng/mL) and ECLI (1 ng/mL). The PA concentration
increases over time, similar to the increase of bacteremia, with a final concentration that can reach
5 µg/mL. In guinea pigs infected with various doses of Vollum spores, PA was first detected at 24 h in
10% of animals and all bacteremic animals showed detectable PA from 30 h post-challenge, with a
maximal concentration of ≈ 40 µg/mL at the final stage of infection.

After focusing on PA detection, techniques were also developed to detect LF and EF.
The MS method was first used in a model of inhalation anthrax in RMs, in which LF was detected

in the serum of all three RMs infected at a concentration of 30 ng/mL to 250 ng/mL two days after
infection and 30 to ≈ 550 ng/mL the day of the animals’ death (2–4 days) [42]. MS and ELISA were then
used in the same animal model for LF and PA detection, respectively [58] (Table 4). These techniques
were compared to classical diagnostic tools for anthrax, which detect the pagA gene by PCR. It allowed
the observation of a triphasic kinetic profile (Figure 3B) for LF in the serum of four of the five animals
tested: LF was detected in three RMs 24 h after infection (60% of positive RMs), more rapidly than in
the first study [42], at levels ranging from 0.006 ng/mL to 0.2 ng/mL. The LF concentrations were higher
at 48 h and then decreased by 72 h. By 96 h, the LF levels were increasing for three of the animals,
whereas they continued to decrease for the other two. At 120 h, the LF concentration was increasing
for all animals. PA was detected only at 96 h and 120 h, the levels of samples for time points earlier
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than 96 h being lower than the detection limit of 4.8 ng/mL. At the late stages of infection, PA levels
were higher than LF levels. The PCR of pagA was positive for four RMs by 48 and 72 h. The PCR
for pagA reverted to negative at 72 h for one animal, which showed the lowest LF levels, suggesting
microbial clearance. These data suggest that early during infection, either more LF is produced or
it is less rapidly sequestered by the host tissues than PA; the circulating level of PA is sufficient to
potentiate early infection and anthrax bacteremia. In the same animals, EF was first detected in the
serum of two RMs (0.16 pg/mL and 0.42 pg/mL, 40% of positive RM) at 24 h post-challenge and in
the serum of the three others at 48 h [51]. The detection of both LF and EF at 24 h post-challenge
resulted in 80% positive animals. EF remained detectable throughout infection, with a maximal level
of 2220 ng/mL. For the RM that died, the LF/EF ratios ranged from 3.6 to 17.5. The study of Solano et
al. completed this kinetic analysis by focusing on the detection of PA83 and PA63 in the same five
RMs [39]. PA63 was first detected 48 h after challenge in all RMs, at the intermediate phase of the
disease (Figure 3B), at higher levels than LF. Such an excess of circulating active PA could constitute a
reservoir for toxin formation throughout the infection. The continuous hydrolysis of PA83 to PA63
may explain the transient presence of PA83 at lower levels and the absence of its detection during
cutaneous anthrax, although the technique used was less sensitive [32].
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In rabbits, all animals exposed to various doses of Ames spores that developed anthrax had
detectable toxins [50]. LF was first detected at 12 h and EF and PA were detected later (Figure 3B).
The level of PA was higher than that of LF and EF. As observed in RMs [39,45,51,58], EF concentrations
tended to match those of LF and PA at the final phase of infection (Figure 3B). Also as observed in
RMs [39], PA63 predominated, PA83 being detected only punctually.

Contrary to the macaque model, intranasally challenged mice showed detectable LF in the plasma
of all animals 1 h after challenge, at a mean concentration of 2.63 ng/mL [57]. However, as for RMs,
EF was detected in only ≈ 42% of infected animals in the early phase of disease at much lower levels
than LF.

Boyer et al. focused on the two forms of LF—free LF and LT, which were quantified in the serum
of two RMs during aerosol-inhalation anthrax [45] (Figure 3A). Free LF was first detected at 18 h in
the first macaque at a level of 0.026 ng/mL and 24 h post-exposure in the second macaque, before
the detection of LT, bacteremia, or pagA by PCR. Both animals were positive for LF, LT, pagA PCR,
and bacteremia at 36 post-exposure, the level of LF level being higher than that of LT. The triphasic
profile observed in previous and subsequent studies was found in this study for total LF (see Figure 3).
This analysis demonstrated a majority of free LF in the earliest stages of infection and a dominant LT
form at the late stage, with LT representing 100% and 60% of the total LF for the two animals.
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5. Conclusions

Human anthrax is a rare disease, but endemic/enzootic foci persist, and there is an ever-present
bioterrorist risk. It its therefore important to have sensitive and ultra-rapid techniques for early
diagnosis of the disease. The sooner the patient is diagnosed, the more effective the treatment
administered and the better his chances of survival, especially in cases of inhalation anthrax.

This review highlights very significant technical progress that has made it possible to better
understand the mechanism of infection of B. anthracis, with the kinetics of toxin diffusion challenging
certain dogmas. In the future, these techniques may constitute very promising diagnostic tools for the
laboratories that do not use them yet routinely.

The studies cited in this review show that LF, PA63, and EF are secreted very early after infection
and that they rapidly diffuse and circulate very in the blood. LF has been shown to reach certain tissues
just as quickly, playing its deleterious role on the immune system. It is likely that the same is true for
EF and PA. The triphasic profile observed for their concentration during infection in RMs, rabbits, and
mice is consistent with the profile of the course of the disease. Their level increases relatively quickly
during the prodomal phase, then reaches a plateau or slightly decreases during the intermediate phase,
and then increases markedly during the terminal phase. Thus, in the fulminant and usually fatal form
of anthrax, early symptoms are non-specific (corresponding to the prodromal and intermediate phase),
followed by “stormy” deterioration of the patient’s state, with multi-organ failure (terminal phase of
the disease). This implies strong and rapid aggression of the host by B. anthracis, which explains the
faster and greater immune response than that observed for cutaneous anthrax.

The ability to detect the toxins provides several advantages. (1) As their levels increase quickly,
they can be detected early, especially when there is a suspicion of anthrax, before any clinical signs,
which is very important, as the initiation of adapted anthrax therapy during the prodromal phase
significantly improves survival [59]. Moreover, searching for LF and EF increases the chances of
detection. (2) Their detection is independent of the presence of the bacteria, which relieves us of the
potential problems of antimicrobial or immunological clearance of the organism. (3) Extrapolation of
the results obtained in RMs and rabbits for inhalation anthrax [49–51,60] to humans makes it possible
to predict patient survival based on the level of these toxins, with a threshold beyond which antibiotic
treatment is ineffective. The LF/EF ratio can be associated with the stage of the disease and PA is
detectable at the intermediate stage of the disease using current techniques. Knowing the stage of the
disease also allows the readjustment of treatment. Walsh et al. have shown that LF remains detectable
in the blood for 12 days after antimicrobial therapy [52]. Antimicrobial therapy alone may not be
sufficient if toxin levels are too high, as shown in the study of Boyer et al. with RMs [49] and as implied
in the study of Weiner et al. [54], in which late debridement decreases the chances of survival of the
host. 4) It makes it possible to monitor the effectiveness of treatment and seroconversion, either by
directly measuring the toxins or by searching for anti-toxin antibodies, as applied in human cases
of cutaneous, gastrointestinal, and inhalation anthrax [52,53]. Measuring toxin levels may help to
monitor the efficiency of anti-toxin, as it is still the only specific authorized treatment to complement
antibiotics [61].
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