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Abstract

The theoretical foundations of Big Data Science are not fully developed, yet. This study pro-

poses a new scalable framework for Big Data representation, high-throughput analytics

(variable selection and noise reduction), and model-free inference. Specifically, we explore

the core principles of distribution-free and model-agnostic methods for scientific inference

based on Big Data sets. Compressive Big Data analytics (CBDA) iteratively generates ran-

dom (sub)samples from a big and complex dataset. This subsampling with replacement is

conducted on the feature and case levels and results in samples that are not necessarily

consistent or congruent across iterations. The approach relies on an ensemble predictor

where established model-based or model-free inference techniques are iteratively applied

to preprocessed and harmonized samples. Repeating the subsampling and prediction steps

many times, yields derived likelihoods, probabilities, or parameter estimates, which can be

used to assess the algorithm reliability and accuracy of findings via bootstrapping methods,

or to extract important features via controlled variable selection. CBDA provides a scalable

algorithm for addressing some of the challenges associated with handling complex, incon-

gruent, incomplete and multi-source data and analytics challenges. Albeit not fully devel-

oped yet, a CBDA mathematical framework will enable the study of the ergodic properties

and the asymptotics of the specific statistical inference approaches via CBDA. We imple-

mented the high-throughput CBDA method using pure R as well as via the graphical pipeline

environment. To validate the technique, we used several simulated datasets as well as a

real neuroimaging-genetics of Alzheimer’s disease case-study. The CBDA approach may

be customized to provide generic representation of complex multimodal datasets and to pro-

vide stable scientific inference for large, incomplete, and multisource datasets.
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Introduction

Data science is an emerging transdisciplinary field connecting the theoretical, computational,

experimental, biomedical, social, environmental and economic areas [1]. It deals with enor-

mous amounts of complex, incongruent, and dynamic data from multiple sources and aims to

develop algorithms, methods, tools, and services capable of ingesting such datasets and gener-

ating semi-automated decision support systems. Predictive analytics is the process of utilizing

advanced mathematical concepts, powerful statistical computing algorithms, efficient software

tools and services to represent, interrogate, and interpret complex data [2]. As its name sug-

gests, a core aim of predictive analytics is to forecast trends, predict patterns in the data, or

prognosticate the process behavior within the range or outside the range of the observed data

(e.g., in the future, or at locations where data may not be available) [3]. The increase of the

volume and complexity of data outpaces both the growth of computational power needed to

extract actionable information from the data as well as the methodological advances needed to

interpret the intrinsic characteristics of the observed information.

The proposed Compressive Big Data analytics (CBDA) provides a general foundation for

effective representation, efficient processing, and model-free inference for complex heteroge-

neous data archives. Specifically, CBDA allows us to eliminate noise, forecast trends, compute

probabilities, estimate likelihoods, and classify large, incomplete, and heterogeneous data from

multiple sources. We demonstrate the utility of CBDA to identify critical data features associ-

ated with specific traits, track multivariate relations and predict high-order trends in the data.

Complex simulated and observed biomedical data are used to validate CBDA performance.

In this study, big biomedical data is defined as data that exhibits most of the following six

characteristics (the six dimensions of Big Data): large size, format heterogeneity and complex-

ity, representation incongruence, incompleteness, multi-scale composition, and multi-source

origins [4]. This constructive definition is derived by examining the common characteristics

of many dozens of biomedical and healthcare case-studies, involving complex datasets that

required special handling, advanced processing, contemporary analytics, interactive visualiza-

tion tools, and translational interpretation. The definition also identifies methodological gaps,

computational barriers and analytical challenges associated with interrogating big biomedical

data. Specifically, these challenges include i) infrastructure for transferring, handling, aggregat-

ing, processing, and interpreting vast amounts of time-varying data, ii) mathematical founda-

tion for representing and modeling the observed incomplete information, iii) efficient, reliable

and precise computational algorithms for statistical analysis, and iv) novel techniques for

semi-supervised scientific inference.

There are major challenges and gaps in Big Healthcare Data analytics, including (a) choosing

reliable predictive model(s) to apply to the data (e.g., need to define a performance metric), (b)

specification and implementation of optimal algorithm(s), (c) feasibility, scalability and conver-

gence of the protocol on large datasets, and (d) access to appropriate computational resources.

The compressive big data analytic (CBDA) technique tackles most of these challenges.

In this manuscript, we attempt to address some of the above stated challenges by developing

an end-to-end computational protocol that includes data ingestion, harmonization, prepro-

cessing, analysis, inference and interpretation. Two open-source implementations of the

CBDA protocol are available—platform-agnostic stand-alone R package (https://cran.r-

project.org/package=CBDA) as well as a reproducible pipeline graphical workflow (wrapper of

the R-package). Following FAIR (Findable, Accessible, Interoperable, Reusable) principles for

data sharing and in accordance with open-science community standards [5], all of our work is

freely available for independent validation, results reproducibility, independent extension and

validation (https://github.com/SOCR/CBDA).
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To validate CBDA, we compare it to Knockoff filtering [6, 7], which is a novel controlled

variable selection statistical technique using FDR (False Discovery Rate). Knockoff filtering

doubles the number of original features by introducing null-features (~xj) corresponding to all

features (xj) in the original design matrix X. The extra decoy (knockoff) variables serve as a

"control group" that allows estimation of the rate at which the regularized linear modeling gen-

erates false-positive variable-selection results. S2 Text provides additional knockoff practical

and mathematical details. Briefly, knockoff filtering has advantages such as computational effi-

ciency—decoy feature construction does not require any new data, and flexibility—the tech-

nique allows specification of a range of test statistics. However, it requires the number of the

features to be smaller than the number of the cases. A newer model-free knockoff version was

recently described [8], however, the R package implementation has not yet been released.

Similar to CBDA, Bagging and RandomForest techniques [9, 10] also use the core principle

of subsampling to improve the model prediction. However, there are CBDA differences in the

goals and the specific model averaging methods used following the stochastic sample genera-

tion. For instance, bagging averaging typically involves f̂ bag xð Þ ¼ 1

B

PB
b ¼ 1

f̂ �bðxÞ prior to

obtaining the final prediction model, whereas CBDA subsampling targets feature selection.

For low signal-to-noise ratio (noisy data), RandomForest also may introduce overfitting,

increasing the salience of selected wide-range features.

The main differences between CBDA and other subsampling techniques are twofold. First,

CBDA relies on a Divide-and-Conquer strategy to iteratively obtain and organize the represen-

tative data samples. This facilitates stochastic sample-based data-driven inference, just like

compressive sensing does for signal reconstruction. Second, CBDA does not make assump-

tions about the data homologies, feature consistency or completeness. It represents a model-

free technique that iteratively harmonizes and ensembles data to provide sample-driven infer-

ence or parameter estimation.

We first present the foundation of compressive big data analytics (CBDA). Then, we

describe one specific CBDA implementation, apply the technique to simulated and real

data, and compare CBDA against some alternative methods. The CBDA protocol is illus-

trated in Fig 1. Its feasibility and scalability are ensured by the Divide-and-Conquer strategy
(see Methods section for details), where a very large training set is reduced to smaller

chunks by iteratively sampling with replacement features and cases following certain input

specifications. These smaller training sets are then analyzed by an ensemble predictor that

combines many different pre-defined algorithms into a single predictive model (i.e., the

SuperLearner-SL, see [11, 12] for details). By using the SL algorithm, we greatly simplify the

choice of the predictive model(s) to apply to the data. We accomplish that by using the large

selection provided by the SuperLearner library (see Methods section and [11–21] for details

on the many different algorithms used in our CBDA protocol). The default algorithms spec-

ifications can be easily expanded from the default values, bypassing the uncertainty associ-

ated to the selection of the most appropriate algorithm for the data under analysis. The best

algorithm(s) within the ensembles can always be retrieved as an output, thus suggesting

future direction for parameter identification/estimation of mechanistic models. To ensure

the method reliability, we employ False Discovery Rate (FDR) controlled variable selection,

which may be implemented using the knockoff (KO) filter algorithm, see [6] for details. By

combining R tools (e.g., SuperLearner) [11] with the LONI pipeline environment for dis-

tributed computing [22] we develop a novel protocol for (a) effective and reproducible anal-

ysis of diverse datasets, (b) comparing selected key features/biomarkers across different

methods or experiments, and (c) enable convergence tracking, large-scale testing and

validation.

Compressive big data analytics
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Methods

This section illustrates the CBDA methodology for representing and analyzing large datasets

with binomial/multinomial outcomes. First, we describe the protocol steps and then outline

the validation procedure using synthetic and clinical datasets. In support of transparent, repro-

ducible, and open-science principles, the CBDA protocol has been developed in the R environ-

ment (https://www.r-project.org). Since a large number of smaller training sets are needed for

the convergence of the protocol, we created a workflow that runs on the LONI pipeline envi-

ronment (http://pipeline.loni.usc.edu), a free platform for high performance computing that

allows the simultaneous submission of hundreds of independent instances/jobs of the CBDA

protocol (see [22] for details). The methods, software and protocols developed here are openly

shared on our GitHub repository (https://github.com/SOCR/CBDA). All software, workflows,

and datasets are publicly accessible. The CBDA protocol steps are illustrated in Fig 1. Detailed

descriptions of the protocol are given in the next sections and in S1 and S2 Text.

CBDA data wrangling

The CBDA protocol starts with three modules that are data dependent, namely Data Cleaning,

Harmonization, and Aggregation (see Fig 1). These first three modules represent standard pro-

cedures and techniques in data wrangling (see [23] for details). Different datasets will require

Fig 1. CBDA framework. CBDA involves the following steps: Step1: Data Cleaning, Step 2: Data Harmonization, Step 3: Data Aggregation and Selection of Prediction

Dataset. The first three steps represent Data Wrangling. Step 4: Random Sampling from the aggregated dataset, Step 5: Data Imputation, Scaling and Balancing (if

needed), Step 6: Controlled variable selection and SuperLearner algorithms, Step 7: Ranking of Mean Square Errors (MSE) and Accuracy metrics, and finally, Step 8:

Feature Mining and Inference.

https://doi.org/10.1371/journal.pone.0202674.g001
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ad hoc data wrangling procedures and cannot be all comprehensively generalized. Each dataset

is labeled as DSoriginp (p = 1,2, . . ., n). We will use the terms rows/cases and columns/features

to indicate the dimensions of each dataset. Step 1 Data cleaning ensures that: (i) all the data

types are correctly interpreted, e.g., casted into the R data frame; (ii) missing values are cor-

rectly identified and labeled; (iii) known dependencies are addressed, e.g., eliminating the fea-

tures that are perfectly correlated to each other and/or to the outcome/response variable; and

(iv) identifying and eliminating static features, e.g., constant values.

Step 2 Data Harmonization is performed by identifying features that are common across

different datasets, ensuring they are consistently casted across datasets (i.e., double, integer,

categorical). Step 3 Data Aggregation and Selection of Prediction Dataset follows on

harmonization, by merging multiple datasets together correctly (for example, using common

features as keys). At the end of Step 3, a prediction set is randomly sampled from the dataset

and held off for validation (i.e., [Xval, Yval], usually 20% of the original number of rows/

cases). We set the random seed to a fixed value to enforce reproducibility of the results, and

at the same time, to comply with the requirement that no validation data can be used for

training.

CBDA sampling scheme

Following Steps 1–3, we have set aside the prediction dataset for validation and we are left

with a subset of the original Data labeled training set [Xtemp, Ytemp]. The next steps of the

CBDA protocol are data independent and pertain training/learning and feature mining. They

can be applied to any type of dataset, as long as the data wrangling steps have been performed

successfully.

During the learner training process, Step 4 Random Sampling ensures that the large train-

ing set [Xtemp, Ytemp] is reduced to smaller chunks by defining ranges from which to select a

certain fraction of cases (Case Sampling Range—CSR) and features (Feature Sampling Range

—FSR). Each sampling step is with replacement and it returns M subsets of cases/rows nj and

features/columns kj that are used to build the smaller training sets [Xj, Yj]j = 1,2,. . ., M. If needed,

Step 5 Data Imputation (see [24] for details), Scaling (see [25] for details) and Balancing (see

[26] for details) are performed on the chunk training set [Xj, Yj] (see S2 Text) for details on the

algorithms used). More details are given in the CBDA Testing Protocol section.

CBDA predictive components

Step 6 Knockoff filter and SuperLearner algorithms. The training set pair [Xj, Yj] is then

passed to the SuperLearner (see [11] and S2 Text for details) and to the knockoff filter (see [6]

and S2 Text for details) algorithms, respectively. The SuperLearner is an ensemble predictor

that combines many different algorithms into a single predictive model (see S2 Text for details

on the algorithms used). The SuperLearner function takes the training set pair [Xj, Yj] and

returns the predicted values based on the validation data Xval. The knockoff filter algorithm

takes the training set pair [Xj, Yj] and returns a subset of features from Xj selected as most

important in explaining Yj.

Step 7 Ranking of MSE and Accuracy metrics. While the results of the Knockoff filter

already return a set of features as likely most important (e.g., here we use the Knockoff filter as

a benchmark to test the CBDA accuracy), the SuperLearner function returns predictions that

we rank based on two metrics: accuracy of predictions (highest to lowest) and mean square

errors (MSE) from the predictions (lowest to highest). The accuracy metric is generated by cal-

culating a confusion matrix on the Yval and the Ŷ j (see mathematical framework for details)

and retrieving the accuracy of the prediction (see S2 Text for details on the confusionMatrix

Compressive big data analytics
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function). The MSE metric is generated by calculating the Euclidean distance between the Yval

binary values and the probability predictions returned by the SuperLearner. We perform fea-

ture mining on the SuperLearner predictions by first extracting the features fj from the top-

ranked predictions (since each prediction is associated with a subset of features selected in

Step 4 of the CBDA). Then we choose how many top-ranked predictions to consider and cal-

culate the frequencies each feature occurs among these top-ranked predictions. In Step 8 Fea-

ture Mining, again, we rank the top predictions based either on the highest accuracy or on the

lowest MSE. Then, we calculate the densities of the features among the top-ranked. If a feature

or set of features is associated to the top-ranked predictions, we will see spikes in the corre-

spondent generated histograms.

Below, we show a concise description of CBDA framework:

Step1-Step5 are described in the mathematical framework (Supplementary Materials).

Step 6: Algorithm

• Start with a generic dataset: [X, Y, Xval, Yval], let Cj ¼ ½Xj;Yj;Xj
val�, j = 1,. . ., M.

• Define machine learning algorithm as ML: MLðCjÞ : Rnj�kj � Rnj � Rm�kj ! Rm,

MLð½Xj;Yj;Xj
val�Þ ¼ Ŷ j :

Step 7:

• Define performance metric as: τ(ML(Cj), Yval): Rm × Rm! R, tðŶ j ;YvalÞ ¼ cj; j = 1,2, . . ., M.

• Rank the samples: {c(j)} = Oq ({cj}), j = 1,2, . . ., q.

Step 8:

Set the feature values: sðiÞj ¼ DirichletjðfiÞ ¼
0; fi =2 sample j

1; fi 2 sample j
:

(

• Set a metric as: F 2 Rq×K, 8bji 2 F; bji ¼ sðiÞj .

• Count the occurrence: Si ¼
Pq

j bji; i ¼ 1; 2; : : :;K.

• Feature mining: S(i) = OK (Si), i = 1,2, . . ., K, O� = {f1, . . ., fi, . . ., fK}.

• Inference: let Cp = [ϕp X, ϕp Y, ϕp Xval] and ½MLpðCpÞ: Rn�kp� � Rn�1 � Rm�kp� ! Rm�1 ! Rm�1,

MLð½FpX;FpY;FpXval�Þ ¼ Yp
val; p ¼ 5; 10; . . . ; p̂, tðYp

val;YvalÞ: Rm � Rm ! R,

t ML ðFp�X;Fp�Y;Fp�XvalÞ½Fp�X;Fp�Y;Fp�Xval�
� �

;Yval

� �
¼ best

p
tðMLðFpX;FpY;FpXvalÞ;
�

YvalÞ
�

.

• Then Fp� is the final dictionary we need.

• At the end, we assess the CBDA performance. Once we obtain Fp�, we can use it along with

the SuperLearner algorithm and the testing set predictors Xexp to estimate predicted out-

come: Yexp = ML([Fp� X, Fp� Y, Fp� Xexp]).

Datasets

We validate the CBDA technique on three independent datasets. The first two, namely the

Null and Binomial datasets, are synthetically generated as cases (i.e., n) and features (i.e., p) for

the purpose of testing the protocol and assessing the CBDA performance. For all the Binomial

datasets, only 10 features are used to generate the outcome variable (these are what we call

Compressive big data analytics
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truly predictive features, see details below in the Binomial Datasets section). The third case-

study represents a real biomedical dataset on Alzheimer’ss disease using clinical and neuroim-

aging measures. These data archives include appropriate and relevant categorical (binomial/

binary and multinomial/polytomous) outcome features.

Null datasets. The first set of data is a "white noise" dataset (i.e., Null dataset), where the

outcome Y is a realization of a Bernoulli vector of length n (i.e., Y = [Y1, Y2, . . ., Yn], with

Yi�Bernoulli(0.5), i = 1,2, . . .., n) completely independent from the set of features X. Each

column of X is an independent realization of a Gaussian random variable with mean equal to

0 and standard deviation equal to 1 (i.e., X = [X1, X2, . . ., Xp], with Xj� N(0,1), j = 1,2, . . ., p.

We will refer to n as number of cases and to p as number of features. We use different ratios

n/p for a more complete assessment of the robustness and convergence of the CBDA proto-

col in the binomial case. Namely, we use n/p ratios of 1/3 (100/300), 3 (900/300) and 5

(1,500/300). We also superimpose an artificial fraction of missing data on these datasets to

test the imputation procedure itself. This superposition of missing data is accomplish using

missing completely at random (MCAR) sampling, via the R function 'prodNA'. This process

artificially introduces missing values by deleting the data elements at the specified indices,

i.e., we introduce MCAR NAs in a given data frame according to the desired missingness

fraction.

Binomial datasets. The second set of data is similar to the Null dataset, but the Bernoulli

vector Y is now an explicit function of the set of features X. We establish the dependency of Y

to X by selecting 10 features from X to build a linear additive model Y� X, with non-zero coef-

ficients for only these 10 features, namely Z ¼ bk1
Xk1
þ bk2

Xk2
þ bk3

Xk3
þ : : :þ bk10

Xk10
þ e;

with e � Nð0; 1Þ and b ¼ bkj ðj ¼ 1; 2; : : :; 10ÞÞ. The Bernoulli outcome Y is then generated

by an inverse logit on the outcome of the linear additive model (i.e., Pr ¼ 1

1þe� Z and

Yi�Bernoulli(Pr), i = 1,2, . . .., n). When necessary, various strategies may be used to binarize

the predicted outcomes using the corresponding probability values. Similar to the Null dataset,

we superimpose MCAR missingness on this dataset to test the reliability of the imputation

procedure.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) case-study. This dataset includes

clinical and neuroimaging data for a cohort of elderly volunteers. It consists of three cohorts

of patients (2,500 cases) with three diagnoses (i.e., multinomial): EO-AD (Early Onset Alzhei-

mer Disease, N1 = 406), Normal (N2 = 747) and EO-MCI (Early Onset Mild Cognitive

Impairment, N3 = 1,347). We used both Global (GSA) and Local (LSA) Shape Analysis neuro-

imaging biomarkers based on 56 region of interests (ROI) described in the LONI Probabilistic

Brain Atlas (LPBA, see [27] for details). The necessary data wrangling (Step 1) was performed

on the ADNI data. There were redundant and/or highly-correlated features, among the predic-

tors as well as between predictors and the outcome, i.e., diagnosis. Following Steps 1 and 2

of the CBDA protocol (see Fig 1), the SuperLearner and Knockoff algorithms were employed

to predict the participant clinical diagnosis. Table 1 shows a summary of Alzheimer Disease

Neuroimaging Initiative (ADNI) archive, while S2 Table shows a list of all the features in the

dataset.

CBDA testing protocol

Table 2 summarizes all the specifications used to initialize each experiment, as well as all the

options we implemented for the post-optimization analysis, where we rank all the predictions

and mine for key features. For the Null and Binomial test datasets, an experiment is defined as

an entire set of 9,000 jobs and it is uniquely identified by a set of input specifications that are

read from an argument file.

Compressive big data analytics
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The array of input specifications comprises the following labels:

1. M: number of the instances/jobs for each experiment (set to 9,000 in this study)

2. misValperc: % of missing values to introduce in the Data (just for testing, to mimic real

cases)

3. min_FSR: Lower bound for the % of features/columns sampling

4. max_FSR: Upper bound for the % of features/columns sampling

5. min_CSR: Lower bound for the % of cases/rows sampling

6. max_CSR: Upper bound for the % of cases/rows sampling

The argument file has as many rows as the number of experiments we want to perform on a

single dataset. For each dataset, we run 12 different experiments, combining the fraction of

missing values (misValperc), the FSR, and CSR (see Table 2). Thus, each row of the argument

file will have the following values [M, misValperc, min_FSR, max_FSR, min_CSR, max_CSR].

Sampling ranges for cases (CSR—Cases Sampling Range) and features (FSR—Feature Sam-

pling Range) are then defined as follow: FSR = [min_FSR, max_FSR] and CSR = [min_CSR,

max_CSR] (see Table 2 for the options we investigated).

Depending on the number of features, the lower bound for FSR can be set to include at

least 5–10 features. So, for example, if we have only 100 features in the dataset, a lower bound

of 1% is not feasible, since it would only select 1 feature for the CBDA protocol.

For the ADNI dataset, we did not introduce artificial missing values (i.e., misValperc = 0%),

and we did not implement the FSR ranges [1%-5%] and [5%-15%] because the data wrangling

steps reduced the viable features for learning down to 68. Thus, for the ADNI dataset we only

performed 4 experiments, only varying CSR = [min_CSR, max_CSR] and FSR = [15%, 30%].

To investigate the convergence of the CBDA within the context of the Binomial datasets, we

chose to select subsets of M for the ranking, namely the first 1,000, 3,000, 6,000 and then all

9,000 samples. The specifications for ranking the top predictions are given in the last column

of Table 2. We selected 100, 200, 500 or 1,000 top-ranked predictions. Fig 2 showcases all the

Table 1. Alzheimer Disease Neuroimaging Initiative dataset.

Source Types of Data Sample Size Clinical Relevance

ADNI

Archive

www.adni-

info.org

Clinical data: demographics,

clinical assessments, cognitive

assessments

Imaging data: sMRI, fMRI, DTI,

PiB/FDG PET

Genetics data: Ilumina SNP

genotyping

Chemical biomarker: lab tests,

proteomics

Each data modality comes with a different number of

cohorts. Generally, 500–2,500 subjects (for instance see

[27–29] for previously conducted ADNI studies

ADNI provides interesting data modalities, multiple

cohorts (e.g., early-onset, mild, and severe dementia,

controls) that allow effective model training and validation

https://doi.org/10.1371/journal.pone.0202674.t001

Table 2. Input specifications for all CBDA experiments used to validate the convergence of the CBDA method.

M [number of CBDA

iterations]

Fraction of missing values

[misValperc]

Feature Sampling Range

[FSR]

Cases Sampling Range

[CSR]

Subsets of

M

Top-Ranked

Predictions

9,000 0%

20%

[1%,5%]

[5%,15%]

[15%,30%]

[30%,60%]

[60%,80%]

1,000

3,000

6,000

9,000

100

200

500

1,000

https://doi.org/10.1371/journal.pone.0202674.t002
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possible combinations of the latter two specifications (for a total of 16 combinations, 4x4) for

each experiment in each Binomial dataset. Table 2 summarizes the experimental design speci-

fications for the CBDA protocol, and should be used as a guideline to navigate through all the

Results section. Our goal was to investigate the optimal input specifications for the CBDA pro-

tocol (i.e., decrease the computational time by reducing the number of samples, and increase

the rate of discovery of "true" features).

High performance computing

The feasibility of the CBDA protocol is significantly enhanced by utilizing a high-throughput,

scalable, efficient and fast computational infrastructure to manage the tens of thousands of

processing tasks that collectively represent the entire CBDA method. We have chosen to

implement CBDA as a graphical workflow that can submit thousands of [Xj, Yj], analysis/jobs

simultaneously via the LONI pipeline environment (http://pipeline.loni.usc.edu and [22]). The

R script that implements the CBDA protocol is generalized so that the job identifier (i.e., label

j) is passed to the script together with other inputs (see the pseudocode in S1 Text for details)

to build a single instance of the CBDA protocol. Once the SuperLearner prediction and the

knockoff filter are generated, a workspace is saved and the instance is completed. A post-opti-

mization workflow is executed once all the instances M are completed: it consolidates and

ranks all the metrics into a single R workspace. An offline R markdown script then generates

histograms and table with results.

Due to some restrictions on the LONI cranium server, our submission queue is limited to

3,000 instances at a time. To investigate asymptotic convergence properties of the CBDA pro-

tocol, we decided to set the total number of instances (i.e., jobs) for each CBDA analysis to

9,000. Fig 2 shows an example of the workflow as implemented in the LONI pipeline GUI

client.

Each job completes within 5–10 minutes upon submission, which makes the CBDA proto-

col very scalable and efficient. Table 3 shows some computational complexity estimates of the

CBDA protocol in three different scenarios: desktop/laptop, small and large multicore servers.

Results

Our experimental design aims to empirically investigate the convergence properties of the

CBDA in mining true predictive features, and more specifically, determine which metric is

best suited to assess CBDA performance. We applied our CBDA protocol to two simulated

datasets, Null and Binomial, where we control the model that generated the data as well as the

number of true predictive features. The simulated Binomial datasets represent a true positive

validation example. Then, we will contrast these results to the Null datasets results and esti-

mate the empirical false discovery rate (or true negative rate) for null-feature selection (i.e., the

false selection of features in the featureless null dataset). The Null data also allows us to exam-

ine the CBDA computational complexity and its robustness in a pure noise scenario. The third

dataset represents a real biomedical case-study using data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) [30]. The details about each dataset are provided in the Datasets

section of the Methods. Throughout this section, we will use the knockoff filter [6] as a bench-

mark for false discovery rate based controlled feature selection.

CBDA results using binomial data

Due to the large number of experiments and the many different specifications, the complete

set of results for the three binomial datasets are illustrated in S3 Text. Fig 3 includes a summary

of all these experiments, namely the analysis of three binomial datasets, 12 experiments and
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9,000 CBDA samples for each experiment. At the top of each panel in Fig 3 we show the num-

ber of cases (i.e., n) and features (i.e., p) in the dataset. This figure summarizes in light blue

color CBDA experiments with high true positive rates, indicating a high frequency of correct

feature identification (i.e., with more than 7 true features identified out of a total of 10) and in

dark blue color CBDA experiments with low true positive rates, depicting a low frequency of

correct feature identification (i.e., with less than 7 true features identified out of a total of 10).

Details of all the experiment specifications are provided in the Methods section.

Briefly, a single CBDA experiment is performed following certain inputs, such as the

total number of samples performed (i.e., M), the fraction of artificial missingness introduced

(missValperc), the sampling rates for cases (Case Sampling Range–CSR) and features (Feature
Sampling Range—FSR). The complete set of results used to generate each experimental combina-

tion shown in Fig 3 is available on our GitHub repository (https://github.com/SOCR/CBDA).

To generate Fig 3, a total of 324,000 CBDA instances were staged and completed on the USC

Fig 2. LONI pipeline workflow for the CBDA protocol. In the graphical pipeline workflow implementation, the CBDA technique is divided into following steps. Step

1–5 is data wrangling and sampling; Step 6 represents the SuperLearner loop; Step 7 is consolidation, performance metrics generation, and ranking; and Step 8

includes consolidation of performance metrics and inference on the top features.

https://doi.org/10.1371/journal.pone.0202674.g002

Table 3. CBDA computational complexity.

CBDA Computational Complexity CPU time per job Total CPU time (M = 9000)

Desktop/Laptop ~3–10 mins [x M]

~450–1500 hrs

Small Multicore Server

(# cores n ~20–30)

~3–10 mins [(x M)/n]

~15–75 hrs

Large Cloud Server

(Cranium, # cores n ~3000 cores)

~3–10 mins [(x M)/n]

~15–20 mins

https://doi.org/10.1371/journal.pone.0202674.t003
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Cranium distributed Pipeline server, Cranium [22]. For each heatmap in Fig 3, the x axis repre-

sents all the 16 combinations between the choice of the subsets of M (i.e., 1,000, 3,000, 6,000 and

9,000) and the choice for top-ranked predictions (i.e., 100, 200, 500 and 1,000, as described in

detail in the last 2 columns of Table 2, see Methods section). The combination label lists the

Fig 3. Heatmaps of CDBA protocol for the binomial datasets. The x axis represents the 16 combinations between the choice of the subsets of M (i.e., 1,000, 3,000,

6,000 and 9,000) and the choice for top-ranked predictions (i.e., 100, 200, 500 and 1,000, as described in the last 2 columns of Table 2 in the Methods section). Namely,

the combinations are ordered as follows: Combination 1 = (1,000,100), Combination 2 = (1,000,200), Combination 3 = (1,000,500), Combination 4 = (1,000,1,000),

Combination 5 = (3,000,100), Combination 6 = (3,000,200), Combination 7 = (3,000,500), Combination 8 = (3,000,1,000), Combination 9 = (6,000,100), Combination

10 = (6,000,200),Combination 11 = (6,000,500), Combination 12 = (6,000,1,000), Combination 13 = (9,000,100), Combination 14 = (9,000,200), Combination 15 =

(9,000,500), Combination 16 = (9,000,1,000). The y axis represents the CBDA experiment specs, where Experiments 1–6 have no missing values (i.e.,

missValperc = 0%), and Experiments 7–12 have 20% missing values (i.e., missValperc = 20%). Both sets of experiments have the FSR and CSR ranges combined in

ascending order, namely Exp1and Exp 7 = [FSR,CSR] = [1–5%,30–60%], Exp2 and Exp 8 = [FSR,CSR] = [5–15%,30–60%], Exp3 and Exp 9 = [FSR,CSR] = [15–

30%,30–60%], Exp4 and Exp 10 = [FSR,CSR] = [1–5%,60–80%], Exp5 and Exp 11 = [FSR,CSR] = [5–15%,60–80%], Exp6 and Exp 12 = [FSR,CSR] = [15–30%,60–

80%]. See Table 2 for details. Panels A, C and E show the CBDA results using the Accuracy performance metric. Panels B, D and F show the CBDA results using the

Mean Square Error-MSE performance metric (see Methods for details on the performance metrics). Panels A and B, C and D, E and F show the results for the 3

Binomial datasets tested, respectively.

https://doi.org/10.1371/journal.pone.0202674.g003
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pairs [subsets of M, Top-ranked predictions]. For example, Combination 1 has the lowest values

for the combined pair (i.e., [1,000,100]), while Combination 16 has the highest values (i.e.,

[9,000, 1,000]), see legend of Fig 3 details. The maximum count for each cell in the heatmaps is

10 (light blue color), corresponding to identifying all “true” 10 features used to generate the

binomial outcome among the top 15 features selected by CBDA for each experiment and each

combination. Our minimal target level of true positives in each experiment is 7, thus anything

below 7 is marked as 0 in the heatmap (shown as a dark blue spot). An optimal recipe would

return the most "true" features selected with the minimum computational complexity (i.e., low-

est subsets of M ~3,000). Since our study is focused more on compressing the sampling over the

features, rather than over the cases, an assessment on the efficiency of the CBDA protocol is

based on spots in the heatmaps with the lowest FSR ranges (i.e., Experiments 1, 4, 7 and 10,

where FSR = [1%-5%]).

The first finding of this large experiment is that the mean square error (MSE) metric is

more effective in increasing the CBDA performance. This corresponds to observing more light

blue spots in the MSE heatmaps compared to the corresponding heatmaps based on the Accu-

racy measure. The second observation is that with an increased number of features (from 100

to 900, up to 1,500), the CBDA has less optimal combinations that reach our minimal target

level of true positives. In this experiment, we did not change the number of "true" features

across datasets (there were always 10 true features present in the data). The third finding is

that across the 3 binomial datasets, certain experiments (i.e., FSR and CSR pairs) are perform-

ing consistently better, e.g., Experiments 3, 6, 9 and 12 (where we used the highest FSR~[15%-

30%] and CSR~[60%-80%] combinations). However, for features between 100 and 900, experi-

ments with the lowest FSR (FSR~[1%-5%], e.g., Experiments 1, 4, 7 and 10), are often selected

as optimal. Fig 3 suggests that we should choose our CBDA protocol specifications based on

the number of features in our dataset and on an a priori assumption that a maximum of 10 fea-

tures are to be selected for our predictive model. Further analyses and tests will be performed

in order to generalize our conclusions based on a signal/noise ratio between true features and

total features in the dataset.

Comparison of the null and binomial data results

Fig 4 summarizes the CBDA results on the Null and the Binomial datasets and compares those

to the regularized linear model with knockoff filtering. The goal in this case is to validate the

CBDA protocol when no signal is present in the data.

For the best accuracy in the comparison, we used all the 9,000 CBDA samples, ranking the

top 1,000 predictions (this is equivalent to the combination 16 in Fig 3). Each histogram in Fig

4 combines the results of all 12 experiments (using the MSE metric). A common outcome

from the Null datasets analyses is the inconsistent sets of top 15 features returned across differ-

ent experiments. Thus, by combining the experiments together, the histograms for the Null

datasets show uniform distributions of the features selected (flat distribution with no spikes).

This is consistent with the fact that the Null datasets have no signal (see the first column of Fig

4). This result is consistent throughout the three Null datasets, with the correspondent con-

stant densities possibly a function of the CBDA specifications (i.e., FSR) and dataset sizes (i.e.,

number of features). Specifically, the MSE histograms of the combined experiments return flat

distributions at ~1%, 0.12% and 0.07%, respectively for the 3 Null datasets. A similar threshold

can be seen in the second column of Fig 4, where we show the correspondent histograms gen-

erated from the CBDA analysis on the three Binomial datasets. Anything above these thresh-

olds can be considered a signal, or a "true positive". This suggests that a hard threshold for false

discovery rates in the CBDA protocol can be computed theoretically. The complete set of
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results for the histograms in Fig 4 are shown in S3 Text (Supplementary Materials). A total of

234,000 jobs have been performed on the Pipeline Cranium server, resulting from the analysis

of three null datasets, from 8 to 10 experiments and 9,000 CBDA samples for each experiment.

Fig 5 shows combined parallel results using the Null and Binomial datasets, based on a reg-

ularized linear model with knockoff filtering. While the knockoff (KO) filter performs quite

well in the Binomial datasets (as expected), many false positives are present in the Null datasets

analyses. We use a 5% false discovery rate (FDR) as an input for the Knockoff filter algorithm,

so anything above 5% in the histograms should be considered a false positive. Despite the fact

that the Null dataset includes no real signal, the KO filter algorithm returns few spikes (i.e.,

false positives) above the hypothetical threshold imposed in the KO filter call for false discov-

ery rate, i.e. 5%. The CBDA returned uniform distributions for the Null datasets, suggesting a

more robust overall filtering of false positive feature discoveries. Because of the large scale of

Fig 4. CBDA results on the null and binomial datasets. Panels A, C and E show the correspondent histograms

generated from the CBDA analysis on the three Null datasets. Panels B, D and F show the correspondent histograms

generated from the CBDA analysis on the three Binomial datasets. Panels A and B, C and D, E and F show the

combined results of all 12 experiments using the MSE metric.

https://doi.org/10.1371/journal.pone.0202674.g004
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the simulations, the testing protocol is mostly invariant of the proportion of samples that con-

tain a subset of the relevant features, if any. Certainly the probability of salient features being

chosen as part of each iterative subsample depends on the size of the feature space.

CBDA robustness

We investigated the robustness of the CBDA algorithm by running the protocol 10 times on

the same synthetic dataset (i.e., Binomial Dataset 3). The Binomial dataset 3 has 300 cases and

Fig 5. Knockoff filtering of null vs binomial data. Panels A, C and E show the correspondent histograms generated

from the Knockoff Filter algorithm on the three Null datasets. Panels B, D and F show the correspondent histograms

generated from the Knockoff Filter algorithm on the three Binomial datasets. Panels A and B, C and D, E and F show

the combined results of all 12 experiments using the MSE metric.

https://doi.org/10.1371/journal.pone.0202674.g005
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900 features, where the "true" features are 1, 100, 200, 300, 400, 500, 600, 700, 800 and 900. For

each replication, we listed the top 10 features selected by the CBDA, using the two perfor-

mance metrics available, namely Accuracy and MSE. Each replication has 9,000 samples gen-

erated by the CBDA protocol on the large dataset (similarly to our previous set of experiments

shown in Fig 3). We use the specifications of experiment 6, where we set the missing values to

0, the CSR to the [60%-80%] range and the FSR to the [15%-30%] range. Overall, features 300,

800, 900, 400, 100, 600, 500, 1 and 700 have been consistently selected within the top 10 fea-

tures across the 10 replications using the MSE metric (see S1 Table for details and https://

github.com/SOCR/CBDA for the complete set of results across the 10 replications). We per-

formed the same experimental design (i.e., CSR, FSR and 10 replications) on the other Bino-

mial dataset obtaining similar results in terms of a consistent selection of top true features (see

S1 Table for details). These results confirm the robustness of the CBDA protocol on simulated

data.

CBDA application to ADNI clinical data

We performed four different experiments, each one with 9,000 independent samples, using

the ADNI dataset, see Table 1 for details on the ADNI Archive and S2 Table for details on the

list of features. The Feature Sampling Ranges used are [5%,15%] and [15%,30%], since the

range [1%-5%] was not viable, given the number of features available for analysis (i.e., 64). The

Case Sampling Ranges were [30%-60%] and [60%-80%], respectively. We chose to hold off

20% of the cases (i.e., α = 20%) for the balanced validation set. Throughout the analysis, impu-

tation (see [24] for details), normalization (see [25] for details) and balancing (see [26] for

details) was performed.

As described in the Methods section, the ADNI dataset consists of 2,500 participants repre-

senting three clinical phenotypes. These three cohorts represent EO-AD (Early Onset Alzhei-

mer Disease, N1 = 406), Normal (N2 = 747) and EO-MCI (Early Onset Mild Cognitive

Impairment, N3 = 1,347).

CBDA protocol ranked the top 1,000 predictions out of the 9,000 learning samples (i.e.,

Combination 16 in Fig 3) and consistently returned across the 4 experiments the following

top 10 features (listed in order of importance): CD Global, weight [kg], sex, age, Right cingu-

late gyrus, FAQ Total, Left gyrus rectus, Right putamen, cerebellum and Left middle orbito-

frontal gyrus. We used these 10 features as input features for a final SuperLearner analysis on

the validation set, obtaining a 95% confidence interval of [87.67%, 93%] for accuracy. We

didn’t enforce stopping criteria in this case, assuming that a predictive model with only 10

features would be an adequate and parsimonious set of specifications. The confidence inter-

vals of the sensitivity (85% and 94%) and specificity (91% and 98%) to predict the participant

phenotype, across the 3 cohorts, are shown on Table 4. The Synthetic Minority Oversam-

pling Technique (SMOTE) rebalancing approach (see [26] and S2 Text for details) signifi-

cantly improved the accuracy, sensitivity and specificity of our predictions for each of the

three cohorts. The complete set of results is shown at the following link: https://github.com/

SOCR/CBDA.

For completeness, we also tested the CBDA protocol with a binary outcome (i.e., AD

patients vs. asymptomatic Normal controls) to compare these results against previous studies

[31–33]. These results are shown in S3 Table. We used the top 10 features selected by the

CBDA protocol and the CBDA results are similar to our previous study in terms of accuracy

and other performance metrics. The CBDA approach presented here improves the classifica-

tion step by considering a multinomial outcome, e.g., AD vs. Normal vs. MCI. The hardest

classification task is in fact in separating the AD from the MCI patients.
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Conclusions and discussion

Many challenges and opportunities are embedded in the Big Data revolution. Magnitude,

complexity, incongruency and heterogeneity are just some of the attributes of the massive

dynamic and spatio-temporal data that we are trying to collect, harmonize, interrogate and

mine for actionable knowledge. A divide-and-conquer approach is reasonable to tackle each

and every challenge and transform it into an opportunity for developing new tools and foster

scientific discovery. The massive amount of information embedded in Big Data is by no means

complete and coherent, and one key challenge is to reconstruct a mechanistic explanation out

of sparse large datasets. A trade off exists between accuracy of our predictive analytics and the

speed at which this hidden actionable knowledge can be acquired. A reasonable compromise

will entail an efficient computational platform that can handle the interrogation of chunks of

the Big Data, ensuring that the reconstruction steps converge given certain properties of the

data processed and the algorithmic framework of the learning stage.

The compressive big data analytics method takes a divide-and-conquer approach utilizing

ideas from Compressive Sensing (CS) and Signal Processing (SP), e.g., randomized undersam-

pling, to iteratively sample, estimate and infer using an adaptive error correction/control [6, 7,

34–36]. The CBDA approach has several parallels with CS strategies. Compressive Sensing

aims at using an observation matrix to capture a signal, and reconstruct the signal by sparsely

captured information. In our CBDA approach, we also define an observation matrix, or we

can say a dictionary (feature selection) matric to observe Big dataset, we keep few useful infor-

mation just as CS reserves sparse information, but our goal here is to do prediction, not recon-

struction. We use an ensemble algortihm (i.e., SuperLearner) to combine as many machine

Table 4. CBDA multinomial classification results on the ADNI dataset. Confusion Matrix and Statistics.

Reference

Prediction AD MCI Normal
AD 69 17 1

MCI 12 243 8

Normal 0 9 140

Overall Statistics

Accuracy 0.9058 [95% CI = (0.8767,0.93)

No Information Rate 0.5391

p-value [Acc>NIR] <2e-16

Kappa 0.8426

McNemar’s Test p-value 0.589

Statistics by Diagnostic Class

AD MCI Normal

Sensitivity 0.8519 0.9033 0.9396

Specificity 0.9569 0.913 0.9743

Positive Pred Value 0.7931 0.924 0.9396

Negative Pred Value 0.9709 0.8898 0.9743

Prevalence 0.1623 0.5391 0.2986

Detection Rate 0.1383 0.487 0.2806

Detection Prevalence 0.1743 0.5271 0.2986

Balanced Accuracy 0.9044 0.9082 0.9569

https://doi.org/10.1371/journal.pone.0202674.t004
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learning, classification, statistical modeling tools to ensure the best predictive model genera-

tion given the available data.

We tested our first generation CBDA protocol on both synthetically generated and real

datasets. Our results on synthetically generated datasets are encouraging. Even with random

undersampling rates (~1%-5%), the CBDA protocol can identify most of the true features.

This is relevant since a predictive model might not need necessarily the whole set of true fea-

tures to generate very accurate predictions. Throughout our validation tests, knockoff filtering

results were generally better than the CBDA protocol where signal was present, suggesting that

CBDA has a more robust framework when dealing with very noisy datasets, or where the sig-

nal is non-existent.

The CBDA classification results on the Alzheimer Disease Neuro Imaging (ADNI) case-

study provide empirical evidence of effective prediction of clinical outcomes, especially if com-

pared to previous studies in the field [31–33]. Korolev et al. [31] developed a multivariate prog-

nostic model for predicting MCI-to-dementia progression at the individual patient level over a

3-year period. Their best performing model incorporated a combination of cognitive/func-

tional markers and morphometric MRI measures and predicted progression with 80% accu-

racy (83% sensitivity, 76% specificity, AUC = 0.87). Another study by Prestia et al. [32]

analyzed the ADNI data and reported a combination of biomarkers (i.e., Aβ42 concentrations

and hippocampal volumes) to identify prodromal AD (i.e., MCI patients progressing to AD).

Their sensitivity was ~79%, with accuracies up to 73%. Another approach was to predict clini-

cal scores from individual MRI scans. Stonnington et al. [33] used relevance vector regression

(RVR) to predict clinical scores from individual scans, obtaining very high correlations. The

RVR results indicated correlation between observed and predictive clinical outcomes (e.g.,

AVLT, MMSE, and ADAS-Cog) in the range 0.4–0.65, which may be sufficient for clinical

diagnoses or prediction of Alzheimer’s progression over time.

The CBDA diagnostic prediction reached average accuracy of ~90% performing multino-

mial classification on Normal, AD and MCI patients, in a cohort of 2,500 individuals. This

substantive prediction performance improvement may be due to (1) the larger number of sub-

jects included in the CBDA study, (2) the flexible and extensive ensemble of machine learning,

classification algorithms and model-free methods built into the SuperLearner, or (3) the com-

pressive sensing strategy of repeated stochastical (re)sampling of the data and the specific

CBDA inference-aggregation protocol. These results provide evidence of the effectiveness of

CBDA to deal with complex and heterogeneous real data application. Further studies will

examine the theoretical CBDA properties (e.g., convergence, asymptotic trends, upper error

bounds, etc.) as well as the performance of the CBDA technique on larger biomedical datasets

where issues of sparsity, incongruence, heterogeneity and missingness may be amplified by

increasing the study population and/or the feature characteristics.

The CBDA protocol is designed and built based on open-source/open-science principles

where the scientific community can independently test, validate and expand on this first gen-

eration technology (https://github.com/SOCR/CBDA). A CBDA Github repository is available

to replicate our results as well as to apply the CBDA protocol to other datasets. The current

CBDA protocol validation will also be expanded to comprise other synthetically generated

datasets with known true features using more complex models for specifying the underlying

signal in the simulated data. Two open-source implementations of the CBDA protocol are

available—platform-agnostic stand-alone R package (https://cran.r-project.org/package=

CBDA) as well as a reproducible pipeline graphical workflow (wrapper of the R-package).

There are several limitations for the protocol. Future expansion and enhancement is

required to maximize its functionality. For instance, the protocol may be scaled up, to effi-

ciently handle datasets of millions of cases and thousands of features, or tested on synthetic

Compressive big data analytics

PLOS ONE | https://doi.org/10.1371/journal.pone.0202674 August 30, 2018 17 / 21

https://github.com/SOCR/CBDA
https://cran.r-project.org/package=CBDA
https://cran.r-project.org/package=CBDA
https://doi.org/10.1371/journal.pone.0202674


datasets simulated with more complex and sophisticated models. We are now working on

both challenges recasting the existing protocol to handle larger datasets. An updated workflow

will be designed to implement Steps 1–5 of the CBDA protocol offline, where thousands of

small matrices will be generated remotely according to the CSR and FSR specs. Then, Steps 6–8
of the existing workflow will be tested by loading each small matrix independently (instead

of loading the entire Big Data). It will need to be investigated how the number of iterations

needed for the CBDA protocol to converge will be affected when low CSR and FSR specifica-

tions are used in larger datasets. Similarly to more recent studies in CS [34–36], we are also

exploring the CBDA mathematical properties, e.g., condutions that may guarantee CBDA

convergence.
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