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a b s t r a c t

Dynamic causal modelling (DCM) was originally proposed as a hypothesis driven procedure in which a
small number of neurobiologically motivated models are compared. Model comparison in this context
usually proceeds by individually fitting each model to data and then approximating the corresponding
model evidence with a free energy bound. However, a recent trend has emerged for comparing very large
numbers of models in a more exploratory manner. This led Friston and Penny (2011) to propose a post-
hoc approximation to the model evidence, which is computed by optimising only the largest (full) model
of a set of models. The evidence for any (reduced) submodel is then obtained using a generalisation of
ree energy bound
ynamic causal modelling
MRI
onnectivity

the Savage-Dickey density ratio (Dickey, 1971). The benefit of this post-hoc approach is a huge reduction
in the computational time required for model fitting. This is because only a single model is fitted to
data, allowing a potentially huge model space to be searched relatively quickly. In this paper, we explore
the relationship between the free energy bound and post-hoc approximations to the model evidence in
the context of deterministic (bilinear) dynamic causal models (DCMs) for functional magnetic resonance
imaging data.
. Introduction

Bayesian model selection (BMS) is a powerful method to com-
are different models for explaining observed data. BMS is based
n the model evidence, which is the probability of obtaining a par-
icular model, given the data. Even though this quantity is not, in
eneral, straightforward to compute, it is now well established that
tatistical models can be compared using a variational free energy
pproximation to the evidence (Beal and Ghahramani, 2003). This
pproximation has widespread application, and, in neuroimaging,
t has become the method of choice for comparing models of effec-
ive brain connectivity, in particular dynamic causal models (DCMs)
Stephan et al., 2010; Penny, 2012).

Dynamic causal modelling is a mathematical framework to esti-
ate, and make inferences about, the coupling among brain areas

nd how this coupling is influenced by changes in experimental
ontext (Friston et al., 2003). Although it was originally introduced
s a hypothesis driven procedure, in which a small number of neu-
obiologically motivated models are compared, recently, a trend

as emerged for comparing very large numbers of models in a more
xploratory manner.
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Model comparison in this context has hitherto proceeded by
individually fitting all competing models to data and then approxi-
mating the model evidence with the variational free energy bound
(Friston et al., 2007). We refer to this approximation to the model
evidence as the optimised evidence.

Very recently, Friston and Penny (2011) have proposed an alter-
native, post-hoc, approximation to the model evidence that is
computed by fitting only the very largest of a set of models: a full
model from which all other (reduced) models can be formed by
removing model parameters. This scheme approximates the evi-
dence for any nested model within a larger model using only the
posterior density of the full model. We refer to this approximation
as the post-hoc evidence.

The benefit of this post-hoc approach is a huge reduction in the
computational time required for model fitting. This is because only
a single model is fitted to data. This means that a potentially huge
model space can be searched relatively quickly.

In addition to the model evidence approximation, Friston and
Penny (2011) also propose a way to estimate the connectivity
parameters for all reduced models from the posterior density over
the parameters of the full model. More specifically, according to
Friston and Penny (2011) the posterior mean and precision of the
reduced model can also be determined solely from the mean and
precision of the parameters of the full model.

Open access under CC BY license.
The post-hoc approach (Friston and Penny, 2011), can also be
viewed as a generalisation of the well-known Savage-Dickey den-
sity ratio (Dickey, 1971), in which the reduced models have certain
parameters fixed at zero. To our knowledge, the Savage-Dickey
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ethod (Dickey, 1971), has not yet been applied to neuroimaging
roblems, although it has been applied in other fields, from cogni-
ive psychology (Wagenmakers et al., 2010) to cosmological models
Trotta, 2007). The recently proposed post-hoc approach (Friston
nd Penny, 2011) has been developed with neuroimaging models
n mind, and the authors have shown (Friston et al., 2011), using
tochastic DCMs, that there is a very good agreement between the
ptimised and post-hoc model evidences.

In this paper, we explore the relation between optimised and
ost-hoc approximations to the model evidence in the context of
stablished practises in neuroimaging. Most studies of brain con-
ectivity apply deterministic (rather than stochastic) DCM to data,
nder specific experimental paradigms. In addition, the models
sed in Friston et al. (2011), stochastic DCMs, are linear dynamical
odels, while most DCMs comprise bilinear dynamics correspond-

ng to modulatory effects on brain connections (i.e., the underlying
tate-space model is nonlinear in the hidden states). Here we test if
he post-hoc method is applicable to (deterministic) bilinear DCMs.

Since the main goal of DCM is to make inferences on the
onnectivity parameters we also compare the estimates of these
arameters obtained with these two approaches. To this end we use
ynthetic and real functional magnetic resonance imaging (fMRI)
ata from a previously published study on attention to visual
otion (Buchel and Friston, 1997). This is the same dataset used

n Friston et al. (2011). Although we use fMRI data, the methods
escribed here can also be applied to other data modalities and
tatistical models, as long as the models that are compared are
ested.

This paper is structured as follows. In Section 2 we review
ynamic Causal Modelling for fMRI. We then focus on model opti-
isation and different approaches to estimate the model evidence

nd connectivity parameters. We then present and discuss results
rom comparing these approaches using synthetic and real fMRI
ata.

. Methods

In this section we briefly review dynamic causal models (DCM).
e then turn to model inversion and scoring. We look at differ-

nt proxies for the model evidence: the optimised free energy
pproximation and the computationally less-expensive post-hoc
pproximation. The former has been the method of choice in the
ypothesis led comparison of DCMs, whilst the latter allow for
ata-led exploration of much larger model spaces. In addition, we
ompare the estimates for the connectivity parameters obtained
ith these two approaches. Finally, we revisit how these approxi-
ations can be used for Bayesian model selection (BMS).

.1. Dynamic causal modelling

Dynamic causal modelling is a mathematical framework to esti-
ate, and make inferences about, the coupling among brain areas

nd how this coupling is influenced by changes in experimen-
al context (Friston et al., 2003). It uses differential equations to
escribe the neuronal activity of interacting cortical regions and a
orward model of how this neuronal activity is transformed into an
bserved response. This framework has been applied to fMRI, Elec-
roencephalographic (EEG) and Magnetoencephalographic (MEG)
Kiebel et al., 2009), as well as Local Field Potential (LFP) data
Moran et al., 2009). Here, we focus on fMRI but the methods
escribed below can also be applied to other data modalities.
Here we consider DCMs for fMRI that employ a deterministic
ilinear model for the dynamics at the neuronal level (neurody-
amics) and an extended Balloon model for the haemodynamic

evel. For non-linear, two-state or stochastic DCMs see Stephan et al.
ce Methods 208 (2012) 66–78 67

(2008), Marreiros et al. (2009), and Friston et al. (2011), respec-
tively. The deterministic bilinear neurodynamics are described by
the following multivariate differential equation:

ż(t) =

⎛
⎝A +

M∑
j=1

uj(t)Bj

⎞
⎠ z(t) + Cu(t), (1)

where the dot notation denotes the time derivative. The variable
z describes changes in neuronal activity resulting from the sum of
three effects. First, the matrix A encodes direct, or fixed, connec-
tivity between pairs of regions. The elements of this connectivity
matrix are not a function of the input and can represent both uni-
directional and bidirectional connections. Second, the elements of
Bj represent the changes in connectivity induced by the inputs uj.
These condition-specific modulations or bilinear terms are usually
the interesting parameters. Third, the matrix C encodes the direct
influence of each exogenous input uj on each area.

The overall structure of fixed, A, modulatory, B, and input, C,
connectivity matrices constitutes our assumptions about model
structure. This in turn represents a scientific hypothesis about the
structure of the large-scale neuronal network mediating the under-
lying cognitive function.

As mentioned above, DCM for fMRI uses the extended Balloon
model to describe how changes in neuronal activity give rise to
the observed fMRI signals for each region. The full derivation of
the model equations can be found in Buxton et al. (1998) and
Friston et al. (2000). See also Stephan et al. (2007) for recent
developments. In brief, for a particular region, neuronal activity,
z, causes an increase in a vasodilatory signal, s, that is subject to
auto-regulatory feedback. Inflow, f, responds in proportion to this
signal with concomitant changes in blood volume � and deoxy-
haemoglobin content q:

ds(t)
dt

= z(t) − s(t)
�s

− f (t) − 1
�f

df (t)
dt

= s(t)

�0
d�(t)

dt
= f (t) − �(t)1/˛

�0
dq(t)

dt
= f (t)

E0
[1 − (1 − E0)1/f (t)] − q(t)�(t)(1−˛)/˛.

(2)

The haemodynamic parameters comprise the rate constant of
the vasodilatory signal decay, �s, the rate constant for autoregu-
latory feedback by blood flow, �f, transit time, �0, Grubb’s vessel
stiffness exponent, ˛, and the resting oxygen extraction fraction, E0.
For identifiability reasons, only two of these parameters are esti-
mated from the data for each region: h = {�s, �0}. The others are set
to �f = ˛ = E0 = 0.32.

The Blood Oxygenation Level Dependent (BOLD) signal, y is then
taken to be a static nonlinear function that comprises a volume-
weighted sum of extra- and intra-vascular signals:

h(q, V) = V0

[
k1(1 − q(t)) + k2

(
1 − q(t)

�(t)

)
+ k3(1 − �(t))

]
. (3)

The factors k1, k2 and k3 are dimensionless but depend on the
characteristics of the fMRI recording system. For 1.5 T and TE of
40 ms, k1 ∼= 7E0, k2 ∼= 2 and k3 ∼= 2E0 − 0.2. V0 = 0.02 is the resting
blood volume fraction.

The parameters, �, for a bilinear DCM, indexed by m, comprise
the connectivity matrices as well as the haemodynamic parame-
ters, i.e. � = {A, B, C, h}. The priors, p(�|m), on both the connectivity

and haemodynamic parameters are described in Appendix A. In
current implementations of DCM, independent of modality, the
model parameters are estimated from the data, y, using Bayesian
methods, and models are compared using the model evidence.
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.2. Model evidence

The model evidence, p(y|m), is the probability of obtaining
bserved data, y, given model m, belonging to model space M. This
uantity is at the heart of Bayesian model selection (BMS), but,

n general, it is not straightforward to compute, since this com-
utation involves integrating out the dependency on the model
arameters, �:

(y|m) =
∫

p(y|�, m)p(�|m)d� (4)

Sampling or iterative analytic methods can be used to approxi-
ate the above integral. The method of choice to approximate the

vidence for DCMs has been the variational free energy approx-
mation (Friston et al., 2007; Stephan et al., 2010). This method
nvolves individually fitting (optimising) each model to data and
hen approximating the model evidence with a free energy bound.

e refer to this approximation as the optimised model evidence.
n contrast, Friston and Penny (2011) have proposed a post-hoc
pproximation to the evidence, which is computed by optimising
nly the largest of a set of models. This approach can be viewed as
generalisation of the well-known Savage-Dickey ratio (Dickey,

971). In addition to the model evidence, the post-hoc scheme
lso provides estimates of the parameters for all reduced models
rom the full (optimised) model. Below we describe the variational
cheme used to optimise DCMs and the two different approaches
o approximate the model evidence and parameters (optimised and
ost-hoc approximations).

.3. Model optimisation

In Bayesian inference, prior beliefs about parameters, �, are
uantified by the prior density, p(�|m), which is specified using bio-
hysical and dynamic constraints. Inference on the parameters, �,
fter observing data, y, is based on the posterior density p(�|y, m).
hese densities are related through Bayes’ rule:

(�|y, m) = p(y|�, m)p(�|m)
p(y|m)

, (5)

here p(y|�, m) is the probability of the data (likelihood) con-
itioned upon the model and its parameters. The normalisation
actor, p(y|m), is the model evidence (Eq. (4)). The posterior density
s an optimal combination of prior knowledge and new observa-
ions, and provides a complete description of uncertainty about the
arameters.

Under Gaussian assumptions, also known as the Variational
aplace (VL) approximation (Friston et al., 2007), the problem of
stimating the posterior density reduces to finding its first two
oments, the conditional mean � and conditional covariance C.

he prior density is also assumed to be Gaussian with mean � and
ovariance ˙ (see Appendix A).

Non-linear deterministic models, such as DCMs, Eq. (1), can be
inearised by expanding the observation equation about a working
stimate � of the conditional mean:

y = h(�, u) + �
h(�, u) ≈ h(�) + J · (� − �),

(6)

uch that J = ∂h(�) , r = y − h(�) ≈ J · (� − �) + � and � ∼ N(0, C�),

∂�

here the error covariance is assumed isotropic over the fMRI pre-
ictions, C� = 	2I.

Under the Gaussian assumptions mentioned above, this approx-
mation, Eq. (6), yields the following equations for the conditional
ce Methods 208 (2012) 66–78

mean, �, and precision (inverse of covariance), P = C−1, which can
be updated recursively in an optimisation scheme, such as VL:

P = JT C−1
� J + ˙−1

� = C(JT C−1
� r + ˙−1�).

(7)

The variational approximation to the posterior density has been
verified for DCM for fMRI using Markov Chain Monte Carlo (MCMC)
(Chumbley et al., 2007). These schemes are more computationally
intensive but allow one to estimate the posterior density without
assuming it has a fixed Gaussian form.

2.3.1. Optimised evidence
As mentioned before, VL updates the moments of the poste-

rior density, q(�|y, m) by maximising the negative variational Free
Energy (henceforth ‘free energy’, Fm), which provides a lower bound
on the log model evidence, log p(y|m), Beal and Ghahramani (2003):

log p(y|m) = Fm + KL(q(�)||p(�|y, m)). (8)

KL is the Kullback–Leibler divergence between the approximate
and true posterior. This quantity is always positive, or zero when
the densities are identical.

It is usually assumed that Eq. (8) is a tight bound such that model
comparison can then proceed using Fm as a surrogate for the log-
evidence. We call this approximation optimised evidence because it
comes out of the optimisation scheme described above. The Laplace
approximation to the free energy (Friston et al., 2007) yields an
estimate, which is not strictly a lower bound on the model evidence
(Penny, 2012; Wipf et al., 2010). Nevertheless, it provides a very
useful model comparison criterion (Penny, 2012).

Other approximations to the optimised model evidence exist,
including the computationally more expensive Annealed Impor-
tance Sampling (AIS) method (Beal and Ghahramani, 2003), and the
simpler but potentially less accurate Bayesian Information Crite-
rion (BIC) and Akaike Information Criterion (AIC) measures (Penny
et al., 2004). In extensive simulations of graphical model structures,
Beal and Ghahramani (2003) found that the variational approach
outperformed BIC and AIC, at relatively little extra computational
cost, and approached the performance of AIS, but with much less
computational cost. In addition, Penny (2012) shows that for the
comparison of DCMs, the free energy approach also performs better
than either AIC or BIC. In this work we use the Laplace approxima-
tion to the free energy (optimised) evidence described above.

All these approximations to the model evidence, however,
are based on inverting all models in the model space. This is
feasible only in a hypothesis driven procedure in which the
model space comprises a small number of models. In large
model spaces, optimising all models to obtain the evidences
rapidly becomes computationally unfeasible. For instance, in
more exploratory analyses, one might be interested in looking
at most, if not all, the possible connections and modulatory
effects. The model space in this case can easily have thou-
sands or millions of different networks. Below, we describe a
less computationally expensive alternative to compute the model
evidences.

2.3.2. Post-hoc evidence
This approach provides the model evidence and parameters

for any nested (reduced) model within a larger (full) model as a
function of the posterior density of the full model (Friston and
Penny, 2011). This is a flexible approach that allows for post-hoc
model selection without the need to invert more than a single

model. In DCM the full model may be, for example, the fully con-
nected network and the reduced models would correspond to
networks with a sparser connectivity contained within this larger
model.
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Fig. 1. Savage-Dickey density ratio: This ratio is calculated by dividing the value
of the posterior distribution over the parameters for the full model evaluated at
� = 0, p(� = 0|y, m), by the prior for the same model evaluated at the same point,
p(� = 0|m). These quantities are shown here for the case of univariate Gaussian prior
M.J. Rosa et al. / Journal of Neur

The method assumes only the existence of a full model, mF ∈ M,
hich shares the same likelihood with the set of reduced models,
i ∈ M and ∀i : mi ≺ mF:

(y|�, mi) = p(y|�, mF ). (9)

This means the reduced models are constructed from the full
odel only by changing the priors on certain parameters �u ⊂ �

s described below. This also implicitly assumes that the hyper-
arameters describing observation noise levels, 
obs, are the same
or the full and reduced models. This is not the case for the opti-

ised model evidence approach, where 
obs are optimised for each
odel.
We can then use Bayes rule to transform the above equality,

q. (9). By re-arranging the terms we can write the ratio of model
vidences in terms of the posterior and priors of the full and reduced
odel:

p(y|mi)
p(y|mF )

= p(�|y, mF )
p(�|y, mi)

p(�|mi)
p(�|mF )

(10)

Friston and Penny (2011) consider Eq. (10), under the Laplace
pproximation, as mentioned above. Under this approximation the
osteriors, q, and priors, p, of the full and reduced models are Gaus-
ian densities:

q(�|mi,F ) = N(�i,F , Ci,F ) : Ci,F = P−1
i,F

p(�|mi,F ) = N(�i,F , ˙i,F ) : ˙i,F = ˘−1
i,F

,
(11)

here �i,F and ˘ i,F are the prior means and precisions for the
educed (i) and full model (F), while �i,F and Pi,F are the posterior
eans and precisions. Making use of the assumptions of Eq. (11)

n Eq. (10) the log model evidence for any reduced model can be
ritten as a simple analytic function of the means and precisions

f the prior and posterior of the full and reduced model:

il = log p(y|mi) = 1
2

log
|˘i||PF |
|Pi|||˘F |

− 1
2

(�T
F PF �F + �T

i ˘i�i − �T
F ˘F �F − �T

i Pi�i) + FF . (12)

This is useful because the requisite means and precisions of the
educed model can be derived in a straightforward way from the
eans and precisions of the full model (see below).
The post-hoc approach can also be viewed as a generalisation

f the Savage-Dickey density ratios (Dickey, 1971), in which the
educed models have certain parameters fixed at zero. To obtain
hese ratios we integrate Eq. (10) over the parameters. To do this
e first partition the parameter space into two subsets of parame-

ers � = {�u, �c}. The subset �u ⊂ � contains all the parameters which
iffer between the full, F, and reduced model, i. The remaining
arameters �c are shared between the models, with equal priors:
(�c|mi) = p(�c|mF). We refer to �u and �c as the unique and com-
on parameters, respectively, and assume the priors factorise, i.e.

(�|mi) = p(�u|mi)p(�c|mi). With this notation, we can write Eq. (10)
s follows:∫

p(�|y, mi)
p(y|mi)
p(y|mF )

d� =
∫

p(�|y, mF )
p(�|mi)
p(�|mF )

d�

p(y|mi)
p(y|mF )

=
∫ ∫

p(�|y, mF )
p(�|mi)
p(�|mF )

d�u d�c,
(13)

here
∫

p(�|y, mi)d� = 1. If we then use p(�u, �c|y, mF) = p(�c|�u, y,

F)p(�u|y, mF) and the fact that the priors over �c are the same for

oth models we obtain the following result:

p(y|mi)
p(y|mF )

=
∫ ∫

p(�c |�u, y, mF )p(�u|y, mF )
p(�u|mi)
p(�u|mF )

d�u d�c
and posterior. The interpretation is very simple: if it is less likely that parameters �
equal 0 after seeing the data (posterior) than before (prior), then p(y|mi)/p(y|mF) < 1
and we have evidence in favour of the full model, mF , and vice-versa.

=
∫

p(�u|y, mF )
p(�u|mi)
p(�u|mF )

d�u. (14)

When the reduced prior is a point mass (delta function),
p(�u|mi) = ı(�

u
), that fixes the subset of parameters �u to a

particular value, �
u
, the last equation, Eq. (14), reduces to the

Savage-Dickey ratio (usually considered when �
u = 0):

p(y|mi)
p(y|mF )

= p(�u = 0|y, mF )
p(�u = 0|mF )

. (15)

This ratio has a simple intuitive interpretation: if we believe it is
more likely that parameters �u are zero after seeing the data than
before, then p(y|mi)/p(y|mF) > 1 and we have evidence in favour of
the reduced model mi. This is depicted in Fig. 1.

The posterior of the full model can again be obtained using the
VL optimisation scheme, q(�|y, mF), described above. Again under
Gaussian assumptions we can write the previous ratio, Eq. (15), as
follows:

Fu
i = log p(y|mi) = 1

2
log

|Pu
F |

|˘u
F | − 1

2
(�uT

F Pu
F �u

F − �uT

F ˘u
F �u

F ) + Fu
F . (16)

This analytic formula is a special case of the post-hoc approach,
Eq. (12), to calculate the model evidence of any reduced model as
a function solely of the posterior mean and precision of the full
model. The difference between Eq. (12) and Eq. (16) is the absence
of quantities from the reduced model and the fact that all means
and precisions are taken only for the subset of unique parameters,
�u, which are not allowed to vary in the reduced model.

2.3.3. Post-hoc parameters
Once the full model has been optimised, Eq. (12) can be used

to compute the model evidences for all reduced models from the
full model. This results from the fact that, as we describe in the
following, the posterior mean and precision of the reduced model

parameters can also be determined from the mean and precision of
the full model.

To obtain these estimates we again assume that the models dif-
fer only in the specification of the priors, i.e. they share the same



7 oscien

l
e
f
t
t
s

m
m
a
s
b

I
b
o
o
d
e
a
t

2

t

p

w
m
t
a
p
a

u
r
g

l

t
1
2
m

p

a
a

w
m

3

e
d

0 M.J. Rosa et al. / Journal of Neur

ikelihood, Eq. (9). Using this assumption we can subtract the lin-
arised approximation to the conditional precision, Eq. (7), of the
ull model from the precision of the reduced model and eliminate
he terms that do not depend on the priors, such as JT C−1

� J. These
erms are the same for all models and therefore cancel out in the
ubtraction. This yields the following result:

Pi − PF = JT
i

C−1
� Ji + ˘i − JT

f
C−1

� Jf − ˘F = ˘i − ˘F ,

Pi = PF + ˘i − ˘F .
(17)

Following exactly the same procedure we obtain the conditional
ean of the reduced model as a function of the mean of the full
odel and the priors for both models. To summarise, the post-hoc

pproach provides estimates of the parameters (means and preci-
ion) under the Laplace assumption for any reduced model that can
e obtained by inverting only the full model:

Pi = PF + ˘i − ˘F

�i = Ci(PF �F + ˘i�i − ˘F �F ).
(18)

This method is exact for linear models (Friston and Penny, 2011).
n the results section we test the validity of this approximation for
ilinear deterministic DCMs. We compare the parameter estimates
btained with the post-hoc approach to the variational estimates
btained from optimising all models, using synthetic and real fMRI
ata. Finally, once the model evidence and parameters have been
stimated for each model, m, using the optimised or post-hoc
pproximations, these estimates can then be used for model selec-
ion as described in the following section.

.4. Bayesian model selection

The posterior model probability, p(m|y), can be obtained from
he model evidence through Bayes’ rule:

(m|y) ∝ p(y|m)p(m), (19)

here p(m) is the prior distribution over models. Selecting the opti-
al model corresponds to choosing the model m that maximises

he posterior p(m|y). If no model is favoured a priori then p(m) is
uniform distribution, and the model with the highest posterior
robability is also the model with the highest evidence, p(y|m) (Kass
nd Raftery, 1995).

Given two models, mi and mj, we can compare these models
sing Bayes Factors (BFs), which are defined as the ratio of the cor-
esponding model evidences. Equivalently, log-Bayes factors are
iven by differences in log-evidences:

n Bij = ln p(y|mi) − ln p(y|mj) = Fi − Fj. (20)

Bayes factors have been stratified into different ranges deemed
o correspond to different strengths of evidence (Kass and Raftery,
995). ‘Strong’ evidence, for example, corresponds to a BF of over
0 (log-BF over 3) in favour of model mi when compared to model
j. Under uniform priors, Bayes’ rule gives:

(mi|y) = 1
1 + 1/Bij

, (21)

nd a posterior model probability greater than 0.95 is equivalent to
Bayes factor greater than 20.

In the following section we evaluate the methods described here
ith a synthetic and real fMRI dataset from an attention to visual
otion paradigm.

. Results
In this section we compare the optimised and post-hoc model
vidences and parameter estimates with synthetic and real fMRI
ata.
ce Methods 208 (2012) 66–78

The data were acquired by Buchel and Friston (1997) during an
attention to visual motion paradigm. This dataset has been used
to illustrate the post-hoc model selection approach on stochastic
DCMs (Friston and Penny, 2011), as well as other methodologies
from psychophysiological interactions (Friston et al., 1997) to Gen-
eralised Filtering (Friston et al., 2010). This dataset is publicly
available on the SPM website (http://www.fil.ion.ucl.ac.uk/spm/).
In this paper we use ‘DCM10’ as implemented in SPM8, revision
4010.

fMRI data were acquired from a normal subject with a 2 Tesla
Magnetom VISION (Siemens, Erlangen) whole body MRI system,
during a visual attention study. Contiguous multi-slice images
were obtained with a gradient echo-planar sequence (TE = 40 ms;
TR = 3.22 s; matrix size = 64 × 64 × 32, voxel size 3 × 3 ×3 mm).
Four consecutive 100 scan sessions were acquired, comprising a
sequence of ten scan blocks of five conditions. The first was a
dummy condition to allow for magnetic saturation effects. In the
second, Fixation, the subject viewed a fixation point at the cen-
tre of a screen. In an Attention condition, the subject viewed 250
dots moving radially from the centre at 4.7◦/s and was asked to
detect changes in radial velocity. In No attention, the subject was
asked simply to view the moving dots. In a Static condition, the
subject viewed stationary dots. The order of the conditions alter-
nated between Fixation and visual stimulation (Static, No Attention,
or Attention). In all conditions the subject fixated the centre of the
screen. No overt response was required in any condition and there
were no actual changes in the speed of the dots. The data were
pre-processed and analysed using the conventional SPM analysis
pipeline (http://www.fil.ion.ucl.ac.uk/spm/), as described in Buchel
and Friston (1997).

For this work we chose three representative brain regions
defined as clusters of contiguous voxels in an 8 mm sphere sur-
viving an F-test for all effects of interest at p < 0.001 (uncorrected),
using SPM. These regions are: the primary visual cortex (V1), [0,
− 93, 18] mm in MNI space, the middle temporal visual area (V5),
[− 36, − 87, − 3] mm, and the superior parietal cortex (SPC), [− 27,
− 84, 36] mm (Buchel and Friston, 1997). The activity of each region
was summarised with its principal eigenvariate to ensure an opti-
mum weighting of contributions from each voxel within the region
of interest (ROI).

3.1. Synthetic data

Model space. Model space comprised 128 models. These models
have full fixed connectivity (bidirectional connections) between V1
and V5 and between V5 and SPC (Fig. 2a). We allowed Motion to
modulate only the connection from V1 to V5, but Attention was
allowed to modulate any connection in the network, including the
three self-connections (one for each region). In total we have 7 con-
nections that can be modulated by Attention (3 self-connections + 4
intrinsic connections) resulting in 27 = 128 different models. The
full model (Fig. 2a) is the model for which Attention modulates all
these 7 connections.

We note that we chose to specify different models by changing
only modulatory parameters because these connections comprise
the bilinear terms (B matrices) in Eq. (1). This way we can evalu-
ate Eq. (18), which provides estimates for the reduced parameters
based on the full model, under non-linear conditions.

We started by generating data from model 96 by integrating
the DCM equations (Friston et al., 2003) and adding Gaussian noise
corresponding to a Signal to Noise Ratio (SNR) of 2.6 (data and
noise had a standard deviation of about.350 and 0.135, respec-

tively, SNR = 0.350/0.135 = 2.59), as used in Friston et al. (2011).
In this model, Attention only modulates the connection between
V1 and V5. Therefore, we refer to this model as the Forward model
(Fig. 2b). Fig. 2c shows another example model, in which Attention

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 2. Model space: (a) Full model. In this model Attention modulates all the intrinsic connections and self-connections. This is the only model that needs to be inverted
in order to estimate the evidence and parameters of all 27 = 128 models, when using the post-hoc and Savage-Dickey approximations. The following models vary in which
connections are modulated by Attention (dashed arrows). (b) True model from which synthetic data were generated. In this model Attention only modulates the connection
from V1 to V5. Consequently, we call it the Forward model (as opposed to the Backward model). (c) Backward model: in this model Attention modulates the connection from
SPC to V5.

Fig. 3. Synthetic data – model evidence: (a) Optimised log-model evidence (relative to worst model) versus post-hoc log-model evidence (128 synthetic models). (b) Same
data but plotted as a function of graph size (number of edges or modulated connections). The red circles correspond to the post-hoc estimates, while the black correspond
to the optimised approach. The full circles indicate the best models for each approximation. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of the article.)
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ig. 4. Synthetic data – Bayesian model selection: (a) Optimised model posteriors. T
). This model is also the best model for both approximations. (b) Post-hoc posterio
he Forward and Backward model is 1.94 (as expected from Fig. 6).

odulates the connection between SPC and V5. We refer to this
odel as the Backward model.
To obtain the model evidence and parameter estimates for

ll 128 models using the optimised approach we had to invert
optimise) all these models. The optimisation procedure took
pproximately 5 h in a 64-bit workstation. In comparison, for the
ost-hoc approach we only had to invert the full model, which took

ess than 2 min.
Model evidence. Fig. 3a shows the optimised model evidence

lotted against the post-hoc evidence for all 128 models. Here the
vidence is relative to the worst model. As can be seen, the post-
oc measures correlate extremely well with the estimates obtained

rom optimising all models (they lie along the y = x line). The actual
orrelation value is almost 1 (r ≈ 1, p-value < 1e−308). Fig. 3b shows
he relative evidences for the two approaches but as a function of
raph size (number of edges). Again, the estimates for the model
vidence obtained using the two approaches are extremely simi-
ar. Reassuringly, the true model (Forward model) has the highest
og-evidence for both approximations and for the correct graph size
full circle): only one connection being modulated, in this case from
rea V1 to area V5.

Using the same synthetic data generated from model 96 (the
orward model in Fig. 2b) we looked at the model posterior proba-
ilities for all 128 models. Again for the optimised approach we

nverted all models, whilst for the post-hoc approach only the
ull model was inverted. As can be seen in Fig. 4, even though, as

xpected due to the number of models, the posterior mass is diluted
ver the models and no single model has very high probability, the
rue model (marked by the asterisk) has the highest posterior in
oth the optimised and post-hoc approaches.
ta were generated from model 96, Forward model (Fig. 2b) (marked by an asterisk,
abilities. The backward model is model number 126 and the Bayes factor between

Model parameters. We then looked at the connectivity parame-
ter estimates obtained with the optimised and post-hoc estimation
approaches. Fig. 5a shows the true connection strengths that were
used to generate the data, again from the same model (Forward
model). We have 7 connections but only one of them (from V1 to
V5) has a value different from zero. The second row of plots in
Fig. 5 shows the parameter estimates (mean and 95% confidence
intervals) obtained with the optimised and post-hoc approaches,
respectively, corresponding to the best model identified previously
(Fig. 4). As can be seen, both approaches identify the second param-
eter as being the only connection significantly different from zero.
The true parameter value is 0.23 and both the optimised and post-
hoc posterior means for this parameter are estimated as 0.29. The
parameter estimates are summarised in Table 1.

These results show that, even though Eq. (18) is only an approxi-
mation in the case of non-linear models, it provides good estimates
for bilinear DCMs.

Signal-to-noise ratio. The previous results have been obtained
by generating data from one model and looking at how the differ-
ent approaches to estimate the evidence and parameters compare
using a fixed SNR similar to the SNR of the real fMRI dataset. This
dataset comes from a block design paradigm and therefore has rela-
tively high SNR. In this section we explore the behaviour of the two
approaches for different values of SNR. To this end we performed
two different model comparisons: (i) we generated data from the
Forward model and compared this model to another model called

the Backward model (Fig. 2); (ii) we generated data from the full
model and compared this model to the Forward model described
above. For both these comparisons we varied the SNR of the data
from 0.35 to 3.35 in intervals of 0.1.
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ig. 5. Synthetic data – parameter estimates: (a) True parameters from which the d
1 to V5. (b) Optimised and post-hoc parameter estimates for the best model (Fig
orrespond to the 7 connections possibly modulated by Attention.

We also repeated the data generation, optimisation and model
omparison 10 times for each SNR, in order to have 10 realisations
f the same result. We then plotted (Fig. 6) the mean log-Bayes fac-
or and 95% confidence intervals for each comparison as a function
f the SNR. To obtain these results with the optimised approach
e had to invert both the Forward and Backward models (first
omparison), and Full and Forward models (second comparison)
or each SNR and realisation. For the post-hoc approach we had
nly to invert the Full model for each SNR and repetition in both
ases.

able 1
arameter estimates: posterior mean and 95% confidence intervals of the best model
btained with the optimised and post-hoc methods for synthetic and real data (first
nd second row of results for each connection, respectively). The subscript op means
ptimised, and ph means post-hoc.

Data Connection �true �op �ph

Parameter estimates
Synthetic V1 0 0.00 ± 0.00 0.00 ± 0.00
Real – 0.80 ± 0.45 0.80 ± 0.45

V1 → V5 0.23 0.29 ± 0.10 0.29 ± 0.10
– 1.14 ± 1.08 1.14 ± 1.08

V5 → V1 0 0.00 ± 0.00 0.00 ± 0.00
– −0.79 ± 0.52 −0.79 ± 0.52

V5 0 0.00 ± 0.00 0.00 ± 0.00
– 0.85 ± 0.96 0.85 ± 0.96

V5 → SPC 0 0.00 ± 0.00 0.00 ± 0.00
– 0.00 ± 0.00 0.00 ± 0.00

SPC → V5 0 0.00 ± 0.00 0.00 ± 0.00
– −2.79 ± 1.16 −2.79 ± 1.16

SPC 0 0.00 ± 0.00 0.00 ± 0.00
– 0.00 ± 0.00 0.00 ± 0.00
ere generated; Only the second parameter is modulated: forward connection from
he error bars correspond to 95% confidence intervals. The parameters 1–7 (x axis)

Fig. 6a shows that, as expected, the log-Bayes factors increase
with higher SNR. However, our simulations suggest that the opti-
mised approach seems to reach significant results (log-Bayes factor
higher than 3) slightly faster than the post-hoc approach. The fact
that the log-Bayes factors are positive (with increasing SNR) means
that both methods are selecting the true model as the best model,
with increasing confidence. One other thing to note is that the error
bars are relatively smaller for the post-hoc approach, suggesting
that the results for the optimised evidence are more inhomoge-
neous. At low SNR (below 1) the log-Bayes factors are close to zero
with the error bars enclosing this number, as expected. In this case
none of the methods select a winning model. However, for very
low SNR (first two points) both methods seem to slightly prefer
the backward model (BF < 1). This result might be due to the dif-
ficulty of estimating the models under very low SNR conditions,
which can lead to inaccurate model selection results with both
methods.

The results for the second comparison, where the true model is
the full model (Fig. 6b), are very similar. The log-Bayes factors for
the optimised approach increase significantly faster than the post-
hoc approach, but the error bars are again slightly bigger. Here too
the log-Bayes factors increase positively, which means that both
methods are selecting the full model as the best model, even though
this model is penalised for extra complexity. However, in the low
SNR case (first 4 points, between 0.35 and 0.65) both methods seem
to select the Forward model as the best model (negative Bayes fac-

tors). This means that in the almost complete absence of data (i.e.
presence of high levels of noise), the full model is highly penalised
and both model selection methods prefer the simpler hypothesis,
the Forward model.
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ig. 6. Signal-to-noise ratio – Bayes factors: (a) log-Bayes factors (between the for
5% confidence intervals) as a function of the signal to noise ratio used to generate th
veraged over 10 repetitions of the same comparison (with 95% confidence interva

We then regressed the post-hoc evidences onto the optimised
vidences and looked at the regression coefficients. In Fig. 7 we
lot these coefficients for both comparisons (Fig. 7a and b). As can

e seen in the first case (Fig. 7a) the regression coefficients are all
ignificantly different from zero and seem to slightly increase as
function of SNR. In the full versus forward model case (Fig. 7b)

ig. 7. Signal-to-noise ratio – regression: (a) regression coefficients (and 95% confidence
odel, true model, to the backward model) as a function of the signal to noise ratio; (b) reg

ayes factors (comparing the full model, true model, to the forward model) as a function
and backward model) averaged over 10 repetitions of the same comparison (with
a (from forward model); (b) log-Bayes factors (between the full and forward model)

function of the signal to noise ratio used to generate the data (from full model).

the results are very similar. Again all coefficients are significantly
different from zero and increase as a function of SNR.

The previous results show that there is a linear relationship

between the optimised and post-hoc measures (even in low SNR
conditions) and that this relationship increases with increasing
SNR.

intervals) between optimised and post-hoc Bayes factors (comparing the forward
ression coefficients (and 95% confidence intervals) between optimised and post-hoc
of the signal to noise ratio.
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Fig. 8. fMRI data – model evidence: (a) Optimised log-model evidence (relative to worst model) versus post-hoc log-model evidence (128 models). (b) Same data but plotted
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s a function of graph size (number of edges or modulated connections). The red ci
pproach. The full circles indicate the best models for each approximation. (For int
eb version of the article.)

In summary, the results obtained with synthetic data show that
oth approximations to the model evidence presented here yield
imilar results but the post-hoc approach reduced the computation
ime from a couple of minutes per model to a couple of seconds. In
ddition, even though the SNR of this dataset is relatively high (it is a
lock rather than event-related design) the post-hoc approach was
lso able to obtain the true model in lower SNR scenarios. The post-
oc estimates of the connectivity strengths were also very similar
o the optimised and true estimates.

.2. fMRI data

After testing the methods on synthetic data we turned to the
MRI dataset acquired by Buchel and Friston (1997). Here we used
he time-series from the three brain regions V1, V5 and SPC for one
ubject as described above.

Model space. We used the same set of 128 models as defined
efore. The full model is the same full model used with syn-
hetic data, in which Attention modulates all intrinsic connections
etween the three areas, as well as their three self-connections
Fig. 2a). In the optimised approach all 128 models were fitted to
he fMRI signals. This took roughly the same amount of time to fit
he synthetic data, since we used a similar signal to noise ratio to
he real data. In the post-hoc approach only the full model was fit-
ed to the fMRI data. Again this approach computed the evidences
or all models in a few seconds.
Model evidence. We plotted the post-hoc evidences against the
odel evidence obtained with the optimisation approach. As sug-

ested by the results obtained with synthetic data, these measures
orrelate extremely well with the optimised evidences for this
orrespond to the post-hoc estimates, while the black correspond to the optimised
ation of the references to colour in this figure legend, the reader is referred to the

dataset (Fig. 8a), where r ≈ 1 (p-value < 1e−308). The best model
identified by the optimised evidence is the same model (model 6)
for the post-hoc approach. This model corresponds to a graph-size
of 5, meaning that Attention modulates five connections (Fig. 8b):
self-connections of V1 and V5, plus connections from V1 to V5, V5
to V1, and SPC to V5.

Fig. 9 shows the model posteriors obtained with both
approaches for all 128 models using real fMRI data. As shown above
(Fig. 8b), both methods identify model 6 as the best model with
posterior probability close to 0.16.

Model parameters. The parameter estimates (means and 95%
confidence intervals) for the best model (model 6) are very sim-
ilar for both approaches (Fig. 10). We can see that 5 of the total of
7 parameters seem to have values different than zero (although
the error bars cross the zero line for the fourth parameter), as
suggested by the best model by graph size in Fig. 8b (graph size
5). The values estimated for each connection are summarised in
Table 1.

In summary, the results obtained with the real fMRI dataset are
very similar to the ones obtained for synthetic data. Again the opti-
mised and post-hoc methods provide very similar results both for
the evidences and model parameters.

4. Discussion

In this paper we present and evaluate a recent approach, post-

hoc approach (Friston and Penny, 2011), for estimating the model
evidence and parameters of deterministic DCMs. This method offers
substantial computational advantages to the variational free energy
approach that is currently used (Friston et al., 2007).
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Fig. 9. fMRI data – Bayesian model selection: (a) Optimised model posteriors.

Our results show very good agreement between optimised and
ost-hoc model evidences, for both synthetic and real fMRI data.
his suggests that the post-hoc method offers valid estimates of
he evidence with little computational cost. The post-hoc approach
educed the computation time needed to optimise and compare

undreds of models from several hours to a few minutes.

The reason why in some cases (e.g. when comparing the
ull versus a much smaller model (Fig. 6b)), the difference in

ig. 10. fMRI data – parameter estimates: Optimised and post-hoc parameter estimates
ntervals. The parameters 1–7 (x axis) correspond to the 7 connections possibly modulate
est model, model 6, is marked by an asterisk, *. (b) Post-hoc model posteriors.

log-evidences obtained by the post-hoc approach grows slower
with SNR than the optimised approach, lies in the hyperparame-
ter estimates. In the post-hoc approach the hyperparameters are
assumed to be the same for all models (equal to the estimates
for the full model), while in the optimised approach they are esti-

mated for all models. When two similar models (e.g. forward versus
backward model (Fig. 6a)) are compared, there are no significant
differences in the behaviour of the two methods with SNR. This

for the best model, model 6 (Fig. 9). The error bars correspond to 95% confidence
d by Attention.
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esults from the fact that the hyperparameters estimated by the
ptimised approach do not vary significantly (p-value > 0.05 for all
NRs – full results not shown) between the models, and there-
ore both approaches obtain similar log-evidence differences even
or high SNRs. However, when two very different models (e.g. full
ersus forward model) are compared, for high SNRs (e.g. 3.5), the
ifference in the hyperparameter estimates between models can be
ignificant (p-value < 0.05 for SNRs higher than 2.5 – full results not
hown). These estimates enter in the calculation of the optimised
og-evidence and, for this reason, the optimised approach is more
onfident (bigger differences in log-evidences) for high SNRs than
he post-hoc approach. This disparity, however, does not hinder the

odel comparisons since both approaches identify the same best
and true) model in the full range of SNRs studied.

The post-hoc method also provides estimates of the model
arameters. Here we found that the post-hoc and optimised
pproaches yield very similar results. We have also shown that the
ost-hoc approach for estimating the model parameters, which is
xact for linear models (assuming the hyperparameters are con-
tant), seems to be a reasonably good approximation for non-linear
odels, such as DCMs. This results from the fact that by construc-

ion the models differ only in their priors. The model structure is
he same for all models, and therefore their first-order approxi-

ation should also be the same. Although (bilinear) DCMs are not
ery non-linear, the degree of non-linearity should not affect the
ost-hoc estimates more than it affects the optimised approach.
his is because the optimisation procedure that is implemented
y the Variational Laplace algorithm, linearises the models at each

teration so as to obtain the posterior means and precisions.
As an aside, we note that we have also compared the post-hoc

pproximation to the model evidence, Eq. (12), to the Savage-
ickey approximation, Eq. (16), which is a special case of the

ormer. As expected, these two measures yielded numerically iden-
ical results, including identical model posteriors. Moreover, when
e regressed the Savage-Dickey Bayes-factors onto the post-hoc
ayes-factors for a wide range of SNRs (same as described in Sec-
ion 3), we obtained regression coefficients equal to 1 for all SNRs.

Although the post-hoc approach is very computationally effi-
ient, the number of possible models to compare can rapidly
xplode when considering networks with many regions and all pos-
ible connections between them. In this case, it might be impossible
o compute the evidences and parameters for all models and one

ight have to sample the space of models. For instance, Pyka et al.
2011) use genetic algorithms to accelerate model selection of large
umbers of DCMs. We are currently working on greedy searches
nd stochastic search algorithms that efficiently compute the post-
oc evidences and parameter estimates in arbitrarily large model
paces.

To conclude, our results provide evidence supporting the use
f the post-hoc method proposed by Friston and Penny (2011) for
odel selection (and parameter inference) of bilinear deterministic
CMs.

. Software

The software used for this work is available in the SPM8 software
ackage (http://www.fil.ion.ucl.ac.uk/spm/).
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Appendix A. Priors

In this paper we used the priors from ‘DCM10’ as implemented
in SPM8 (revision 4010). The priors on both the connectivity and
haemodynamic parameters are assumed to be Gaussian and fac-
torise over parameter types:

p(�|m) = p(A|m)p(B|m)p(C|m)p(h|m). (A.1)

The priors on the fixed parameters (A) depend on the number
of regions, n, to encourage stable dynamics. The priors on the fixed
self-connections (Aii) are defined as follows:

p(Aii|m) = N(−1/2, 	2
ii ), (A.2)

where 	2
ii

= 1/(8 × n). In our case n = 3 regions, therefore
	ii = 0.0417. The priors on the rest of the fixed parameters (Aij) are
calculated as follows:

p(Aij|m) = N
(

1
(64 ∗ n)

,
8
n

+ 1
(8 × n)

)
. (A.3)

In our case, this yields p(Aij|m) = N(0.0052, 2.7083). The rest of
the connectivity parameters (modulatory and input parameters)
have shrinkage priors:

p(Bk
ij
|m) = N(0, 1),

p(Cij|m) = N(0, 1).
(A.4)

The unknown haemodynamic parameters are h = {�s, �0}. These
are represented as

�s = 0.64 exp(��s )
�0 = 2 exp(��0 ),

(A.5)

and have Gaussian priors:

p(��s ) = N(��s ; 0, 0.135)
p(��0 ) = N(��0 ; 0, 0.135).

(A.6)

The overall prior density can then be written as p(�|m) = N(�,
˙), where � and ˙ are concatenations of the above means and
variances.
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