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Abstract

Individual biomarkers of renal injury are only modestly predictive of acute kidney injury (AKI). 

Using multiple biomarkers has the potential to improve predictive capacity. In this systematic 

review, statistical methods of articles developing biomarker combinations to predict acute kidney 

injury were assessed. We identified and described three potential sources of bias (resubstitution 

bias, model selection bias and bias due to center differences) that may compromise the 

development of biomarker combinations. Fifteen studies reported developing kidney injury 

biomarker combinations for the prediction of AKI after cardiac surgery (8 articles), in the 

intensive care unit (4 articles) or other settings (3 articles). All studies were susceptible to at least 

one source of bias and did not account for or acknowledge the bias. Inadequate reporting often 

hindered our assessment of the articles. We then evaluated, when possible (7 articles), the 

performance of published biomarker combinations in the TRIBE-AKI cardiac surgery cohort. 

Predictive performance was markedly attenuated in six out of seven cases. Thus, deficiencies in 

analysis and reporting are avoidable and care should be taken to provide accurate estimates of risk 

prediction model performance. Hence, rigorous design, analysis and reporting of biomarker 

combination studies are essential to realizing the promise of biomarkers in clinical practice.
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Introduction

Acute kidney injury (AKI) is a frequent complication of hospitalized patients, particularly 

following cardiac surgery and critical illness (1). AKI is associated with increased morbidity 

and mortality (2, 3). There is great interest in using biomarkers to predict risk of AKI, for 

several reasons. AKI is typically diagnosed based on changes in serum creatinine, a marker 

of renal function rather than injury (4, 5), which contributes to frequent delayed diagnosis or 

misdiagnosis (5). It may be possible to use biomarkers to diagnose AKI earlier and/or more 

accurately than is possible with serum creatinine (6). Biomarkers may also play an important 

role within the context of creatinine-defined AKI. When serum creatinine is used to 

diagnose AKI, the diagnosis is generally not made until several days after the injury, 

potentially too late to intervene (7). It may be possible to use biomarkers to predict AKI 

prior to changes in serum creatinine, opening a therapeutic window. If biomarkers can be 

shown to accurately predict AKI, they could be used as inclusion criteria to enrich clinical 

trials or serve as intermediate outcomes (7, 8). Biomarkers that can accurately predict AKI 

and related complications could also potentially advance clinical care (8, 9).

Much work has been done to study associations between individual biomarkers and AKI (8, 
10, 11). Although many associations are strong and well-established, the predictive 

performance of these markers has been modest. AKI is a complex disease, and many 

possible modes of injury exist even in the relatively homogeneous setting of cardiac surgery 

(1). Consequently, interest now centers on identifying combinations of injury markers that 

can predict AKI; such a strategy has been recommended in several reviews (9, 12–15).

The goals of this article are to provide an overview of current statistical practice in 

developing biomarker combinations for AKI and to discuss common issues surrounding the 

conduct of these analyses. In particular, we will consider the role of three potential sources 

of bias frequently encountered in the statistical evaluation of biomarker combinations: 

resubstitution bias, model selection bias and bias due to center differences.

Resubstitution bias and model selection bias have previously been discussed at length (16, 
17). Briefly, resubstitution bias arises when a dataset is used to fit a predictive model, and 

then the model’s performance is assessed by its apparent performance on the same dataset; 

that is, the data are “resubstituted” into the model. Model selection bias results when several 

models are evaluated and the model with the best performance is chosen. Both resubstitution 

and model selection optimistically bias estimates of model performance unless methods are 

used to account for them. Note that resubstitution bias and model selection bias are widely 

known (18, 19) but without standard terminology. These biases are commonly referred to 

jointly as “optimistic bias,” but it is useful to distinguish the two sources of bias with 

separate labels (17). Bias due to center differences can arise in studies involving multiple 

centers. In particular, differences by center can confound the estimate of model performance, 

biasing the results in either direction (20). A challenge here is that not all differences among 
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centers represent bias. For example, if one center tends to get sicker patients, and those 

patients tend to have both worse outcomes and correspondingly higher levels of an injury 

marker, this in itself does not present bias. However, suppose the center that tends to get 

sicker patients also uses different protocols for fluid administration that tends to either 

increase or decrease the measurement of a biomarker. Then the association of the biomarker 

with the outcome will either be over- or under-estimated if data are simply pooled across 

centers.

Model selection bias and resubstitution bias are of particular concern in the development of 

biomarker combinations: when many marker measurements are available, both the size of 

the combination (number of marker measurements included in the combination) and the 

number of combinations considered may be quite large. Resubstitution bias is generally 

larger when the number of predictors in the model is large relative to the amount of data. 

Model selection bias is most worrisome when many models are considered.

The prevalence of these biases will be assessed through a literature review, and their 

potential impact will be explored by assessing the performance of published combinations in 

a large, independent study of AKI in cardiac surgery patients.

Results

Literature Search and Study Selection

Figure 1 summarizes our literature search. Briefly, 428 articles were screened, yielding 15 

articles (10, 21–34) after the exclusion criteria were applied.

Data Extraction

Table 1 summarizes the 15 selected articles, with additional details provided in 

Supplementary Table 1. Eight of 15 articles (53.3%) were in the setting of cardiac surgery. 

All 15 articles relied on serum creatinine to define AKI. Table 2 presents the data related to 

potential sources of bias. None of the 15 papers explicitly stated the number of models 

considered; the numbers in Table 2 are likely to be a lower bound. It was often challenging 

to determine how the combination(s) presented was chosen and/or how the combination(s) 

was estimated.

Evaluation of Biases

As indicated in Table 2, all papers were likely affected by at least one source of bias. 

Importantly, the reported performance of the combinations was generally good: in most 

cases the area under the receiver operating characteristic (ROC) curve (AUC) was above 0.8, 

and in a third of papers it exceeded 0.9.

In nearly all articles, the same data were used to fit and evaluate the models. In other words, 

most articles did not account for resubstitution bias. Furthermore, four papers had fewer than 

10 events per marker in the final combination; in three papers, there were fewer than 15 

events in total. In Parikh et al. (10) and Parikh et al. (32), three-fold cross-validation was 

used to address resubstitution bias. Cross-validation is a reasonable approach, although 

variants other than 3-fold cross-validation have been shown to perform better (35). However, 
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the purpose of this article is not to critique every methodological choice of authors, but 

rather to examine whether “big picture” issues and common sources of biases were 

addressed.

A third of papers considered 10 models or more to arrive at the final combination(s), 

increasing the likelihood of model selection bias in the estimate of the performance of that 

combination. As noted above, the number of models reported in Table 2 is likely to be a 

conservative estimate. Thus, the performance results provided by some of the other papers 

may also be affected by model selection bias.

Three articles involved multi-center cohorts; none addressed the possibility of bias due to 

center differences, either in the analysis or in the discussion of limitations. Certainly, if 

center differences do not exist (perhaps due to careful design and/or conduct of the study) 

then there will be no bias; however, it is important in a multi-center study to consider 

whether results might be affected by center differences.

Importantly, while most articles acknowledged that the reported study had low power/sample 

size, no study explicitly acknowledged resubstitution bias or model selection bias as a 

possible limitation.

Replication in TRIBE-AKI Data

We were able to assess the performance of biomarker combinations from seven papers (25, 
27, 28, 30, 31, 33, 34) in the Translational Research Investigating Biomarker Endpoints in 

AKI (TRIBE-AKI) study data (10). TRIBE-AKI involves 1219 adults undergoing cardiac 

surgery at six centers. Table 3 gives the seven articles and the performances of the published 

marker combinations when applied to TRIBE-AKI. The performance in TRIBE-AKI was 

typically more modest than the published estimate of performance. This difference was not 

due to a low number of events in TRIBE-AKI: for each article’s definition of AKI, there 

were at least 56 “AKI cases” in TRIBE-AKI (Supplementary Table 1). We note the 

important limitation that for 4 of these 7 articles, the study included general intensive care 

unit (ICU) patients, which represent a more heterogeneous population than the population of 

patients undergoing cardiac surgery who comprise the TRIBE-AKI study (25, 27, 28, 33). 

We report the assays used to measure the biomarkers in TRIBE-AKI and in each study in 

Supplementary Table 2.

We present details on the designs of the included studies, and the extent of replication in 

TRIBE-AKI, in Supplementary Table 1. Our goal was to match the exclusion criteria in each 

study when applying published marker combinations to the TRIBE-AKI data. However we 

were sometimes limited by a lack of detail regarding the exclusion criteria in the published 

articles. Furthermore, some exclusion criteria were built into the study design of TRIBE-

AKI, precluding a perfect match. In some cases, we were further limited by the data 

collected by TRIBE-AKI. We note also that incomplete reporting often made it difficult to 

determine whether urine markers had been normalized to urine creatinine or whether 

markers were transformed. Three articles reported the estimated combination (27, 30, 34), 

while we had to re-estimate the combination in the remaining four articles.
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We note that in Luo et al. (31), cases were matched on age, sex, and admission time. 

Furthermore, in Siew et al. (33), cases and controls were frequency-matched on categories of 

eGFR. Such restricted sampling may have played a role in the difference between the 

reported AUC and the AUC in TRIBE-AKI for these papers. Neither paper addressed this 

aspect of study design in evaluating the performance of the combination(s), despite the 

complications that matching introduces when the goal is prediction (20, 36).

Discussion

We have provided an overview of the current state of biomarker combinations research in the 

setting of AKI risk prediction, highlighting the potential role of three common sources of 

bias in 15 published studies. Each of the 15 papers was susceptible to at least one source of 

bias, and 8 were potentially affected by two sources of bias. Three of the 15 articles involved 

a multi-center study, and none of these three discussed the possibility of bias due to center 

differences. In several cases, inadequate reporting made assessment of the articles 

challenging and could be remedied by following recently proposed guidelines (Reporting 

Guidelines for Risk Models, RiGoR (17) and Transparent Reporting of a multivariable 

prediction model for Individual Prognosis Or Diagnosis, TRIPOD (37)).

In two-thirds of papers, the reported AUC was quite good (above 0.8). When possible, we 

applied published models to TRIBE-AKI data, yielding an estimate of model performance 

which we could compare to the published model performance. The performance in TRIBE-

AKI was more modest than the published results in 6 out of 7 cases. This in itself is not 

evidence of bias; differences between the TRIBE-AKI study and the published study could 

also explain some differences. Publication bias (38), a concept related to model selection 

bias, may also play a role. However, most studies did not account for resubstitution bias, and 

studies that considered many candidate models did not report addressing model selection 

bias. Therefore, we posit that these biases likely explain at least part of the reported 

estimates of good model performances. In addition, bias due to center differences may have 

affected the published estimates for the three studies involving multiple centers. Notably, the 

single study in which model performance was higher in TRIBE-AKI was the study with the 

lowest reported AUC by a wide margin.

We chose to focus on biases commonly encountered in the evaluation of combinations of 

biomarkers for risk prediction. However, we provide more extensive guidance on the design 

and analysis of biomarker combination studies in Table 4 (16, 17, 37, 39–68) and an 

expanded discussion of sources of bias that can affect these studies in Supplementary Table 

3 (16, 17, 37, 39–50, 52, 54–58, 60, 61, 63, 66).

We have not addressed issues with commonly used definitions in AKI, including the use of 

creatinine-defined AKI and the dichotomization of continuous changes in creatinine. 

Important work on these topics has been done (69–71) and future research should focus on 

clinically meaningful outcomes that utilize all available information. However, since the 

most widely-used definitions of AKI are based on dichotomizations of changes in creatinine, 

our survey of current practice does not address these issues.
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The Food and Drug Administration (FDA) has recently approved the use of urine [tissue 

inhibitor of metalloproteinases-2 (TIMP-2)]*[insulin-like growth factor-binding protein 7 

(IGFBP7)] to estimate risk of developing AKI (72). This biomarker panel was developed in 

stages (73). In the first stage, investigators screened 340 individual biomarkers and 

biomarker combinations formed by multiplying concentrations of 2, 3, or 4 markers. By pre-

specifying how biomarkers were to be combined, this approach had the advantage of 

avoiding resubstitution bias, with the possible disadvantage of a potentially large loss in 

predictive capacity by not allowing the data to inform the combination. In the second stage, 

the selected biomarker panel was evaluated in independent data, providing an estimate of 

model performance unaffected by model selection bias. Both the development and validation 

studies involved multiple centers, so the potential for bias due to center differences remains. 

The panel, urine [TIMP-2]*[IGFBP7], has been subsequently evaluated in cardiac surgery 

patients (74), and future investigations may further expand its application. The papers 

reporting the development and evaluation of this panel were excluded from the present 

review because the approach of selecting biomarkers and creating “supermarkers” by 

multiplying biomarker values is distinct from the methods typically used to develop 

biomarker combinations.

It is essential to thoroughly evaluate a risk model prior to adoption in clinical practice, and 

an important component of model evaluation is an accurate estimate of model performance. 

External validation – using independent data to assess model performance – is desirable but 

often not feasible in early stages of model development. Internal validation, i.e. using the 

data at hand to assess the performance of a model, is a more practical alternative. In 

particular, internal validation can be used to avoid or correct for resubstitution bias (60). 

Model selection bias can be more challenging to account for, although some methodology 

has been developed (75–79). Both sources of bias are potentially large and, at the very least, 

should be acknowledged. Finally, in the case of multicenter studies, it is possible to account 

for differences by center and obtain an unbiased estimate of model performance (80).

External validation results are frequently disappointing (81); the gap between apparent and 

externally validated performance may be due in part to optimistic bias resulting from 

resubstitution or model selection. Without careful design and rigorous statistical analysis, 

studies of biomarker combinations will continue to be published with (often optimistically) 

biased estimates of model performance, leading to disappointment after considerable time 

and resources have been invested in external validation.

Methods

Literature Search and Study Selection

We searched PubMed for all articles published before June 19, 2014 with both “AKI” and 

“biomarkers” in the title or abstract. Abstracts were reviewed, followed by consideration of 

the full text of potentially relevant articles. Articles were excluded if they satisfied any of the 

following conditions: (1) study of animals or children only; (2) review paper, commentary or 

conference statement; (3) outcome of interest was not AKI; (4) abstracts only reported 

results related to association, not prediction; (5) description of a future study; (6) ‘omics 
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study; (7) only one injury marker measured a single time; (8) not published in English; (9) 

did not consider combinations of injury markers for prediction of AKI.

Because the focus of this review is combinations of biomarkers, we considered only studies 

with at least two injury biomarker measurements. Murray et al. discussed AKI biomarkers at 

length, including distinguishing between functional markers and known injury markers (7). 

We used the list of injury markers provided in Murray et al. as the basis for exercising 

condition [7] above.

Data Extraction

For each of the articles satisfying the inclusion criteria, we collected the following 

information: markers studied, method used to combine biomarkers, setting giving rise to 

AKI cases, definition of AKI used, number of models fit, number of AKI cases, number of 

markers/measurements considered in each combination (“size of the combination”), whether 

the study included multiple centers, whether resubstitution bias was addressed, reported 

model performance, and estimated biomarker combination score(s) (if reported). We allowed 

for combinations that included functional markers in addition to injury markers. We define 

“many models” as 10 or more, and “few events” as less than 10 events per biomarker in the 

combination. These thresholds are somewhat arbitrary, so we report the actual numbers to 

aid interpretation. When more than one combination and/or outcome was reported, we 

considered the “primary” combination and/or outcome based on the presentation of the 

results in the abstract, if such a determination was possible.

In the context of predictive models, discrimination refers to the ability of a model to 

distinguish individuals with and without the outcome of interest. The most common measure 

of discrimination is the area under the receiver operating characteristic (ROC) curve, also 

known as AUC. In particular, AUC was reported in all the articles in our review. We 

therefore focus on AUC as the primary measure of model performance, while also 

acknowledging that there are important aspects of model performance not captured by AUC 

(46).

Evaluation of Biases

For each article in our review, we evaluated the evidence of whether the report was likely to 

be affected by the three types of bias discussed: resubstitution bias, model selection bias, and 

bias due to confounding by center. Our evaluation was based on the number of models fit, 

number of AKI cases, size of the combination(s), whether the study included multiple 

centers, and whether resubstitution bias was considered. The number of models fit gives an 

indication of whether model selection bias is likely to be present, while a small number of 

cases and/or large combinations can exacerbate resubstitution bias. Bias due to center 

differences is only a concern when multiple centers are involved.

Replication in TRIBE-AKI Data

When possible, we applied the published models to data from the Translational Research 

Investigating Biomarker Endpoints in AKI (TRIBE-AKI) study (10). Briefly, TRIBE-AKI 

involves adults undergoing cardiac surgery at six academic medical centers. Urine and 
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plasma were collected preoperatively and daily for up to six post-operative days. On the first 

post-operative day, urine was collected every six hours. Patients with evidence of AKI prior 

to surgery, pre-operative serum creatinine above 4.5 mg/dL or end-stage renal disease 

(ESRD) were excluded, leaving 1219 subjects. Biomarkers measured in TRIBE-AKI include 

serum neutrophil gelatinase-associated lipocalin (pNGAL), urine interleukin 18 (uIL18), 

urine neutrophil gelatinase-associated lipocalin (uNGAL), urine albumin, urine kidney 

injury molecule-1 (uKIM1), urine liver-type fatty acid binding protein (uLFABP), urine 

cystatin C and urine creatinine. Participants at each TRIBE-AKI study site provided 

informed consent and the protocols were approved by the respective institutional review 

boards.

Applying published models to the TRIBE-AKI cohort provides an unbiased assessment of 

model performance that can be compared to the published performance. We could only 

apply published models to TRIBE-AKI if the markers in the model were measured in 

TRIBE-AKI at similar time point(s) relative to the episode of AKI. When it was not possible 

to precisely match the timing of urine collection, we chose the next closest option(s). If the 

estimated combination was provided in the article, we applied that combination to the 

TRIBE-AKI data; if this was not given, we re-estimated the combination in our data based 

on how it was estimated in the original article. If the article did not specify how the 

combination was estimated, we used logistic regression. We replicated the exclusion criteria, 

outcome definition, timing of biomarker measurement, and form of the biomarkers (i.e., 

transformation or normalization for urine creatinine) as much as possible. For papers 

providing the estimated combination, we calculated the apparent and center-adjusted AUCs 

(80) of the combination in TRIBE-AKI data. When the combination had to be re-estimated 

in TRIBE-AKI, the AUC estimate was center-adjusted (80) and corrected for resubstitution 

bias (“optimism-corrected”) using a bootstrapping procedure with 1000 replications (60). 

We estimated 95% confidence intervals by bootstrapping.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of Study Selection
Abbreviations: AKI = acute kidney injury.
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Table 4

Recommendations Regarding the Design and Analysis of Biomarker Combination Studies.

Study Design

 Sample size For binary outcomes, the effective sample size is the minimum of the number of events and the number of 

non-events (39–42).
Consider events per variable (EPV), where the number of variables includes transformations and 

interactions (42, 43).

 Enrollment and follow-up Data from a carefully designed and conducted study are preferable to convenience samples (37, 39, 44, 
45).

Can recruit from multiple sites (17); special considerations may be needed (37).

Inclusion/exclusion criteria and referral pattern can affect generalizability and interpretation (37, 39, 42, 
46, 47).

Treatment may modify risk (37, 43) and/or predictive accuracy (37, 43, 48) and should be addressed in 

analysis/interpretation (42, 49).

Prospective cohort studies are preferable: full control over the sample and data collection (37, 43, 50, 51). 

Avoid loss to follow-up and follow for an adequate length of time (39, 41).

Can use case-cohort or nested case-control studies (37, 43, 48). Specialized study designs exist (45, 52). 

Case-control studies cannot be used to estimate risks (37, 43, 48) without external data.

Matched designs require additional analytic considerations (17, 52).

 Measuring biomarkers Clearly define (including blood/urine and methods of preservation/storage) and measure biomarkers in a 

uniform, standardized way (16, 41, 48–50).

Use assays intended for general use (52) and beware of batch effects (17), and the effect of storage and 

handling of specimens (53). Assays should be standardized, valid and reproducible (41, 48, 54).

Blind measurement of biomarkers to other variables (including the outcome) as appropriate (17, 37, 42, 
43, 45, 50, 55)

 Measuring outcomes Outcome should be relevant to patients and decision-making (37, 43, 48).

Measure outcome blinded to other variables as appropriate (17, 37, 43, 48, 55). Measure outcome 

carefully (17, 39, 41, 56) and uniformly (43) using a well-established method for establishing presence or 

absence (37, 48, 50, 52).

 Timing of measurements Timing must be carefully defined (17, 43, 47, 48) and relevant to patients and clinical decision-making 

(37).
Patients may receive treatment in the interval between measurement of biomarkers and outcome, which 

may modify risk (37)

 Other design issues Determine minimally acceptable values of performance measures at the design stage (52).

Develop a rigorous study protocol with a sound analysis plan (45, 51, 57, 58).

Study objectives and research question should be clear (41, 42, 50, 59)

Model Development

 Choosing candidate biomarkers A candidate biomarker is any biomarker associated with the outcome; the association need not be causal 

(16, 48).

The number of candidate biomarkers increases with transformations and interactions (16, 17, 60).

Use subject-matter knowledge to choose candidate biomarkers (40, 48, 56).
Interaction terms rarely add predictive ability; should restrict to a small number of interactions with prior 

rationale (37, 60).

 Handling continuous predictors Categorizing continuous biomarkers results in a loss of information (16, 42, 44, 46, 48, 49, 51, 60).
Can model biomarkers linearly as a starting point, and consider systematically testing simple 

transformations (40, 46, 48).

 Missing data Complete case analysis can lead to bias and increased variance (44, 48, 60, 61) depending upon the extent 

and mechanism of missingness (17, 48, 60, 61).

Multiple imputation is recommended (41, 43, 46, 61)

 Predictor selection Smaller and simpler models may have practical advantages (16, 51, 56, 62).
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Study Design

Stepwise methods (16, 42, 43, 46, 60) and univariate screening can be problematic (37, 48).

Predictive role in isolation no guarantee of performance in combination (16, 48).
Use clinical knowledge, previous studies and practical considerations to reduce the number of candidate 

biomarkers (37, 43, 46).

No consensus on model selection (48).

 Methods for combination Multiple methods can be used (17, 37, 50) though regression methods are common (37).

Logistic regression is common for binary outcomes with no loss to follow-up (37, 40, 43).

Usually use multivariable techniques (51, 63).

No method can be shown to perform best on every real dataset (60).

Consider model assumptions (51).

Evaluation

 Performance metrics Predictive accuracy, not measures of association or p-values, is what matters (42–44, 64). How a model 

was derived is of little importance if it performs well (40, 51, 61) in terms of validity (accuracy of risk 

estimates) (46, 65). Duration of follow-up is critical in interpreting performance (37).

Calibration (16, 37, 43, 48, 61) and discrimination (37, 43, 48, 61) are commonly assessed and presented 

with bootstrap-based confidence intervals (17, 42, 66). Discrimination is particularly important for model 

development; both are important for model validation (37).
Can evaluate discrimination by assessing AUC, mean risk difference, true/false positive rates, ROC curves 

and histograms of predicted risks (16, 43, 46). AUC is not affected by miscalibration (46). Multi-center 

studies require specialized techniques (17).

Assess calibration graphically; can use Cox’s method to estimate the calibration intercept and slope (37, 
43, 46, 61).

 Internal validation A necessary step in model development (37, 41, 46, 51, 64). Can help to avoid external validation failure 

by uncovering problems that may make models misleading or invalid (60).

The apparent performance of many prediction models tends to be optimistic (37) due to resubstitution bias 

(especially with low EPV) and model selection bias (37, 43), and must be interpreted with extreme caution 

(60).

Bootstrapping is preferred as it uses all of the available data (43, 46, 48). If model-building can be fully 

specified in advance, it can (and should) be incorporated into the bootstrap (37, 48, 52, 65). If model 

selection cannot be automated, test data are needed (60).
Bootstrapping gives an honest estimate of internal validity, penalized for optimism due to resubstitution 

bias and model selection bias (43, 48, 60).

 External validation Strongly recommended (37, 41, 43, 51, 52, 55, 58, 60, 61, 64, 67, 68) for promising prediction tools (those 

with a rigorous derivation process) (55). Internal validation is not a sufficient substitute (64), though it is 

generally an advisable step (65).

Consider the prospective broad clinical application of the model (64, 67).

The completely specified model should be applied (64, 68) to assess the generalizability and applicability 

of the model (47, 61).
May fail for many reasons: different measurement methods and/or definitions, selection bias, inclusion/
exclusion criteria, subject source, settings/location (may affect case mix), recruitment, and clinical and 

demographic characteristics of the population (17, 37, 54, 61).

Performance is often worse in new samples (37, 44), though this does not necessarily imply a validation 
failure: diminished accuracy is not the same as inaccuracy.

 Existing models Newly developed models should be quantitatively compared to existing models (37).

Developing a different prediction model per setting makes research localized (37); instead, if models 
already exist in the same or a related setting, investigators should consider evaluating or comparing, and 

perhaps updating or recalibrating, existing models (43, 44, 51, 61) as part of an ongoing validation process 

(46).

Recalibration can be used to improve calibration without needing more data (43, 60).

Discrimination cannot be improved in this way, and will not be affected by recalibration (60).

Reporting Adhere to existing guidelines (17, 63).
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