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Abstract

The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several
biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors.
In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation
pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our
understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and
characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and
abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in
granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that
localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells
leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-
derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation.
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Introduction

When correct folding of proteins or assembly of oligomeric

proteins in the endoplasmic reticulum (ER) is disturbed, misfolded

or unassembled proteins accumulate inside the ER lumen. If such

proteins are allowed to linger, they may form insoluble aggregates

and thus pose a serious threat to the cell. Normally, cells rapidly

channel misfolded proteins back into the cytoplasm for degrada-

tion by the ubiquitin-proteasome system [1–7]. The recognition of

the misfolded proteins in the ER lumen and subsequent transport

to the proteasome is termed ER quality control [3,5] and ER-

associated degradation (ERAD) [1–5], respectively. Extraction of

misfolded proteins from the ER relies on the ring-shaped

homohexameric ATPase known as p97 or VCP (valosin-

containing protein) in mammals and Cdc48 in yeast [8–12].

The p97 ATPase is a member of the AAA (ATPase associated

with various activities) family of ATPases [13]. The monomer is a

phylogenetically highly conserved and essential protein that carries

two AAA modules, called D1 and D2. These link coordinated

ATP-hydrolysis to conformational changes of the hexameric

complex [14], in a fashion similar to other AAA-type ATPases

[15]. The ATP-powered conformational changes allow p97 to

drive the disassembly of protein complexes and segregate proteins

from their binding partners [16,17]. This catalytic activity of p97,

termed the ‘‘segregase’’ activity [10,18], is probably restricted to

ubiquitylated proteins and is important for a number of cellular

pathways, including membrane fusion [19], protein degradation

[11,20], and transcription factor maturation [18,21]. Although

p97 may bind ubiquitylated proteins directly [18], a series of p97

cofactors recruit and/or process substrates [22–24]. The functions

of these cofactors are diverse, and each probably directs p97

activity to a particular cell function. For instance, the UBX

domain protein, p47, directs p97 to functions in membrane fusion

[19], while another UBX domain protein, Ubxd7, targets the

HIF1a transcription factor for degradation [24]. With only one

exception, Ubxd1 [25,26], all characterized UBX-domain proteins

associate directly with p97 via their UBX domains [24,27,28].

During ERAD, p97 also relies heavily on cofactors. Initially,

p97 associates with the cytosolic side of the ER membrane by

interacting with transmembrane p97 cofactors such as VIMP and

the UBX protein, Erasin [29,30]. These cofactors are tightly

associated with numerous other proteins that probably form a

channel through which the misfolded proteins traverse from the

ER lumen to the cytosol. These retrotranslocation complexes also
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contain E2 ubiquitin-conjugating enzymes and E3 ubiquitin-

protein ligases that ubiquitylate the substrates as they emerge

[2,4]. The heterodimeric cofactor Ufd1-Npl4 may simultaneously

interact with p97 and ubiquitylated substrates [31,32] and assist

p97 with substrate recruitment in ERAD [10] and other

degradation pathways [33]. Then, peptide:N-glycanase associates

with p97 and removes glycans from glycosylated ERAD substrates

[34] before the substrate is finally transferred to the 26S

proteasome and degraded.

To broaden our understanding of p97 it is critical to obtain a

more detailed knowledge of its various cofactors, of which at least

20 have been found so far [22,23]. Certainly, some functions of

p97 are likely to be specific to certain cells or tissues. For instance,

cells that secrete large amounts of protein, such as plasma and

liver cells, probably have a highly active ERAD system and

ERAD-relevant p97 cofactors may therefore be more abundant

in such cells. However, so far no cell- or tissue specific p97

cofactors have been isolated or characterized. Here, we describe

the tissue-specific human protein Rep8 (also known as Ubxd6), a

previously cloned [35], but otherwise uncharacterized UBX

protein present in higher eukaryotes. We found that Rep8 shares

some similarity with the transmembrane p97 cofactor called

VIMP [29]. Accordingly, we found that Rep8 is a transmem-

brane protein, localized in the ER membrane. Rep8 associates

with p97 via its cytoplasmic UBX domain to the N-domain of

p97. In agreement with a previous report [35], we find that Rep8

is almost exclusively expressed in gonads. In the testis we find

Rep8 expression in post-meiotic round spermatids. In ovaries

Rep8 is expressed in granulosa cells. Knock-down of Rep8

expression results in delayed clearance of model ERAD substrates

and reduced amounts of p97 associated with the ER membrane.

Thus, like VIMP, Rep8 probably facilitates ERAD by tethering

p97 to the ER membrane.

Materials and Methods

Buffers
The buffers were: Buffer A, 25 mM Tris/HCl pH 7.5, 2 mM

MgCl2, 2 mM ATP, 50 mM NaCl, 1 mM DTT, 10% (v/v)

glycerol, 0.1% (v/v) Triton X-100. Buffer B, 33 mM Hepes

pH 7.3, 150 mM potassium acetate, 10% (v/v) glycerol, 1% (w/v)

DeoxyBigChap (Fluka). Buffer C, 33 mM Hepes pH 7.3, 150 mM

potassium acetate, 10% (v/v) glycerol, 0.2% (w/v) DeoxyBigChap

(Fluka), 1 mg/mL BSA. Buffer D, 20 mM Hepes pH 7.5, 0.25 M

sucrose, 1 mM DTT. Buffer E, 25 mM Tris/HCl pH 8.0,

500 mM NaCl, 1 mM DTT.

Plasmids and expression
For expression of recombinant Rep8, full-length cDNA and

various truncations encoding human Rep8 were transferred to the

appropriate Gateway destination vectors (Invitrogen). The expres-

sion constructs for mouse p97 were kindly provided by Dr.

Hemmo H. Meyer (Zurich, Switzerland). The proteins were

expressed in E. coli BL21*(DE3) (Invitrogen) and purified by

standard methods.

The plasmid, used for expressing ER-targeted RFP, was

generously supplied by Dr. Ulrike Kutay (Zurich, Switzerland).

Yeast two-hybrid screening
Yeast two-hybrid screening, using full length human p97, was

performed on a HeLa cell cDNA library (Invitrogen) using the

ProQuest yeast two-hybrid system (Invitrogen) according to the

protocol, supplied by the manufacturer.

Cell culture
MelJuSo cells, stably transfected to express CD3d-YFP and

ubiquitinG76V-YFP, were generously supplied by Dr. Nico P.

Dantuma (Stockholm, Sweden). HeLa cells, stably transfected to

express HA-tagged TCRa, were kindly supplied by Dr. Cezary

Wójcik (Evansville, Indiana). These cells and HeLa cells that were

stably transfected to express Hrd1 with a biotin targeting sequence

[25], were maintained in Dulbecco’s modified Eagle’s minimal

essential medium (DMEM) supplemented with 10% newborn- or

fetal-calf serum (Invitrogen) at 37uC in a humidified atmosphere

containing 5% CO2.

Electrophoresis and blotting
Proteins were separated on 7 cm68 cm 12.5% acrylamide gels.

Proteins were transferred to BA83 (Schleicher & Schuell)

nitrocellulose membranes by semi-dry blotting and probed with

antibodies as indicated. Densitometry was performed using

UnScanIt v.6.1 software (Silk Scientific).

Purification of p97 from red blood cells
Untagged p97 was purified from outdated human red blood

cells by following a protocol for purification of 26S proteasomes

[36]. After the final chromatographic step, fractions not containing

26S proteasomes were analyzed by dot blotting for the presence of

p97. The p97-containing fractions were pooled and found by

SDS-PAGE to contain pure p97.

Antibodies
Antibodies to human Rep8 were raised in rabbits by

immunization with purified GST-tagged Rep8 residues 57–270,

encompassing the entire cytoplasmic domain of Rep8. The

antibodies to p97 have been described previously [37]. Antibodies

to TMX3, calnexin, and ERp57 were generously supplied by Dr.

Lars Ellgaard. Antibodies specific for proteasome subunits were

from Enzo Life Sciences. Anti-pentaHis antibodies were pur-

chased from Qiagen. The anti-GST, anti-GFP, anti-HA and anti-

b-actin were purchased from Sigma. Peroxidase conjugated

streptavidin was purchased from Dako.

Assays
The concentration of cell protein was determined using BCA

(Pierce) or Bradford (Pierce) assays with BSA as a standard.

Concentrations of purified recombinant proteins were determined

from A280nm.

Transfection
Small interfering RNAs (HP GenomeWide siRNA SI04350934

and SI04323347), specific for human Rep8, were purchased from

Qiagen. The siCONTROL siRNA#1 (Dharmacon) was used as

an unspecific control. Exponentially growing MelJuSo or HeLa

cells were washed in PBS and incubated for 24 h with 100 nM

siRNA and 0.4% Dharmafect in DMEM supplemented with 1%

calf serum. The medium was then changed to DMEM with 10%

serum. The cultures were used after another 4 days.

Co-precipitations
Transformed E. coli BL21*(DE3) cells, expressing tagged

protein, were lysed by sonication in one volume of buffer A.

The extracts were cleared by centrifugation (12000 g, 30 min) and

the fusion protein was purified. For precipitation experiments with

HeLa cells stably transfected to express Hrd1 with a biotin tag, the

cells were suspended in 4 volumes of buffer B and incubated with

gentle agitation for 30 min. Cleared extracts were prepared by

Rep8 Is a Tissue-Specific p97 Cofactor
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centrifugation as above. Aliquots of extracts were incubated at 4uC
for 4 h with 20 mL glutathione Sepharose beads (GE Healthcare)

loaded with GST or the GST-tagged proteins. The beads were

washed in 3615 mL of buffer A for recombinant proteins or buffer

C for HeLa cell extracts. The precipitation experiments with

purified p97 were performed in buffer A using about 3 mg p97 per

reaction. Bound proteins were analyzed by SDS-PAGE and

immunoblotting.

Differential centrifugation
Differential centrifugation for subcellular localization of Rep8

was performed essentially as described [38]. To quantify the

amount of p97 associated with cell membranes, dilution series of

the appropriate fractions were quantified by SDS-PAGE and

immunoblotting.

Membrane topology
The orientation of Rep8 in the ER membrane was determined

by Proteinase K and Triton X-100 treatment of microsomes.

Briefly, HeLa cells were harvested and lysed in buffer D by passing

through a 27 gauge needle. Unbroken cells were removed by

centrifugation (300 g, 3 min) and the membrane fraction isolated

by centrifugation (100000 g, 1 h). The membranes were resus-

pended in buffer E. Aliquots of the membrane fraction were

treated on ice with 1 mg/mL proteinase K (Sigma) and/or 1%

Triton X-100 for 1 h. PMSF was then added to 5 mM before the

samples were subjected to TCA precipitation. The precipitates

were washed with ice cold acetone, resuspended in SDS sample

buffer and resolved by SDS-PAGE and immunoblotting.

Pulse-chase experiments
The stability of the model substrates was followed by pulse-

chase analysis of transfectants stably expressing the substrate, as

described previously [39].

Fluorescence microscopy
For fluorescence microscopy, HeLa cells were transiently co-

transfected with plasmids for expressing Rep8 with a C-terminal

GFP-tag and RFP modified to contain a signal sequence and the

ER retention sequence, KDEL. About 48 h after transfection, the

cells were fixed with 4% formaldehyde in PBS and mounted for

confocal microscopy as described previously [25].

In situ hybridization
Bases 1–559 of mouse Rep8 cDNA (Genbank sequence

accession BC024492) from an IMAGE full-length cDNA plasmid

(ImaGenes) were subcloned into pCMV-SPORT6, and used to

generate sense and anti-sense digoxigenin-labelled Rep8 RNA

probes by in vitro transcription. In situ hybridization to Bouin’s fixed

adult mouse ovary and testis sections was performed as described

[40]. Bound probe was visualized with NBT/BCIP substrate

(Vector Laboratories) and sections counterstained with nuclear fast

red.

qRT-PCR
Oligo dT-primed cDNA was prepared from testes of prepu-

bertal or adult Tex19.12/2 and littermate control mice as

described [41]. Sequences of primers, used for qRT-PCR, are

listed in the supplementary material (Table S1). 20 mL of qPCRs

containing 250 nM of each primer and 16 Brilliant II SYBR

green master mix (Stratagene) were set up in triplicate and run on

a Bio-Rad C1000 thermal cycler equipped with a CFX96 real

time system. Primer pairs were validated as amplifying at 95–

100% efficiency, and expression levels were calculated relative to

b-actin, using the 22DDCT method. No significant qPCR

amplification was detected in control cDNAs generated in the

absence of reverse transcriptase (not shown).

Ethics
Transgenic animals used for the experiments in this study were

bred and used under the authority and ethical approval of the UK

Home Office (Project Licence PPL60/3785).

Results

Rep8 interacts with p97
In a yeast two-hybrid screen of a HeLa cell cDNA library, using

human p97 as a bait, the conserved but uncharacterized protein

named, Rep8 or Ubxd6 (Swiss-Prot accession: O00124), was

isolated (Fig. 1A). The human protein is 73% identical to its

murine orthologue and 39% identical to its orthologue in zebrafish

(Fig. S1). Database analyses indicate that Rep8 is only found in

higher eukaryotes. The primary structure of Rep8 revealed that

the protein contains a signal sequence followed by a transmem-

brane domain, while the C-terminus contains a UBX domain

(Fig. 1B and Fig. S1). The UBX domain is regarded as a general

p97-interacting domain [24], indicating that Rep8 was a valid

target of p97 in the yeast two-hybrid screen. In addition, the

R..FPR motif known from other UBX proteins to play a critical

role in p97 binding [22] is conserved in Rep8.

By unbiased sequence searching, we also found that Rep8 shows

some similarity to the transmembrane p97 cofactor known as SelS

or VCP-interacting membrane protein (VIMP) (Fig. 1B and Fig.

S1). The VIMP homology in Rep8 is located between the

transmembrane region and the UBX domain and matches the

major helical part of VIMP [PDB: 2Q2F].

In order to confirm the yeast two-hybrid interaction, GST,

GST-tagged Rep8, and GST-tagged truncations of Rep8 (Fig. 1B)

were expressed and purified from E. coli. To circumvent the likely

folding issues of a recombinant transmembrane protein expressed

in bacteria, we also deleted the first 56 amino acids encompassing

the predicted signal sequence and transmembrane domain

(Fig. 1B). The fusion proteins were used in precipitation

experiments with p97, purified from human red blood cells.

GST-Rep8 precipitated p97, whereas under the same conditions

GST did not (Fig. 1C), thus confirming that Rep8 and p97 interact

directly. Precipitation using the Rep8 truncations revealed that the

C-terminal UBX domain was necessary and sufficient for p97

binding (Fig. 1C).

To more thoroughly analyze the interaction between Rep8 and

p97, we sought to map the Rep8 binding site on p97. Most p97-

interacting proteins interact with either the N-domain on p97 or a

short motif in the C-terminus. In general, UBX domain proteins

interact with the N-domain [22]. Accordingly, precipitation

experiments with GST-tagged Rep8 and various 6His-tagged

p97 truncations (Fig. 2A) revealed that Rep8 interacts with the p97

N-domain (Fig. 2B).

To analyze the interaction between endogenous p97 and Rep8, we

raised an antibody to Rep8, and used it to probe p97 immunopre-

cipitates for Rep8 from HeLa (Fig. 2C) and rat testis lysates (Fig. 2D).

Again, we found that Rep8 was bound to p97 (Fig. 2C and 2D),

showing that the two proteins are also associated in vivo.

Rep8 is a transmembrane protein localized to the ER
membrane

Next, we sought to determine the subcellular localization of

Rep8. To this end, the antibody to Rep8 was used to analyze

Rep8 Is a Tissue-Specific p97 Cofactor
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HeLa cell components separated by differential centrifugation. As

a control, we analyzed the fractions for the peripheral membrane

protein p97 and the transmembrane protein calnexin (Fig. 3A).

The association of these proteins with membranes were as

expected, indicating that the membrane fractionation was

successful. We found that all Rep8 was associated with the high-

speed pellet and was released when the membranes were treated

with detergent but not by washing with sodium chloride or sodium

carbonate (Fig. 3A), indicating that Rep8 is indeed, as predicted, a

transmembrane protein.

We also analyzed the localization of Rep8 by fluorescence

microscopy. Since our antibodies to Rep8 were not suitable for

Figure 1. Rep8 interacts with p97 via the UBX domain. (A) Yeast two-hybrid analyses of the p97-Rep8 interaction using the HIS3 reporter gene.
Co-transformation of bait p97 with prey Rep8 supported cell growth under conditions selecting for the interaction (in the absence of histidine and
presence of 25 mM 3-aminotriazol (3AT); right panel). The known p97-p47 interaction served as a control. (B) Schematic diagram of the Rep8 domain
organization and the various truncations used in the precipitation experiments. (C) Purified p97 was incubated with the indicated, immobilized GST
fusion proteins before analysis of bound proteins by SDS-PAGE and blotting using antibodies specific for p97 (top panel) or GST (lower panel).
doi:10.1371/journal.pone.0025061.g001

Figure 2. Rep8 interacts with the p97 N-domain. (A) Schematic diagram of the p97 domain organization and the various truncations used in the
precipitation experiments. (B) Purified 6His-tagged p97 and p97 truncations were incubated with immobilized GST or GST-tagged Rep8 before
analysis of the bound proteins by SDS-PAGE and blotting using antibodies specific for the 6His-tagged p97 proteins (top panel) or GST (lower panel).
The p97 input has been included for comparison. (C) Endogenous p97 was immunoprecipitated from HeLa cell lysates. The precipitated material was
analyzed by blotting using antibodies to p97 and Rep8. (D) Endogenous p97 was immunoprecipitated from rat testis homogenate. The precipitated
material was analyzed by blotting using antibodies to p97 and Rep8.
doi:10.1371/journal.pone.0025061.g002

Rep8 Is a Tissue-Specific p97 Cofactor

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25061



immunofluoresence, HeLa cells were transiently transfected to express

full length Rep8 with a C-terminal GFP-tag. The GFP-signal

appeared at the ER, and co-localized with RFP that had been

modified to contain a signal sequence and an ER retention signal (ER-

targeted RFP) (Fig. 3B). Interaction with p97 was not required for the

ER localization of Rep8, since a Rep8 truncation, lacking the UBX

domain, also localized to the ER (not shown). Differential

centrifugation revealed that, like endogenous Rep8, all the Rep8-

GFP fusion protein was associated with the microsome pellet (Fig. 3C).

To determine the membrane topology of Rep8, microsomes

from transfected cells were treated with proteinase K. While the

ER luminal protein ERp57 was resistant to proteinase K

treatment (Fig. 3D), the Rep8-GFP signal disappeared completely

upon treatment with proteinase K (Fig. 3D), indicating that the C-

terminal GFP-tag is oriented towards the cytoplasm. As a control,

the microsomes were treated with both detergent and proteinase

K, which, as expected, led to degradation of both Rep8 and the

luminal ERp57 (Fig. 3D).

Rep8 is expressed primarily in reproductive tissue
Previous studies have shown that Rep8 mRNA is primarily

present in reproductive tissues [35]. To determine the tissue

distribution of Rep8 on the protein level, we separated protein

extracts from various rat tissues by SDS-PAGE and probed blots

for the presence of Rep8. We found that Rep8 was almost

exclusively expressed in testes and ovaries, but also present in the

cell lines used here (Fig. 4A). Although both cell types used here

are derived from human cancers, searching online databases (e.g.

Oncomine, BioGPS) did not reveal any clear correlation between

Rep8 expression and cancer (data not shown).

Testes contain a mixture of different somatic cell types and

germ cells at various stages of differentiation. In order to

investigate which cell type in the testis is responsible for the high

expression levels of Rep8, we performed qRT-PCR on developing

testes from prepubertal mice undergoing the first wave of

spermatogenesis. The most advanced male germ cells in

prepubertal testes are undergoing mitotic proliferation at around

6 days post partum (dpp), progressing through the pachytene stage

of meiosis at around 16 dpp, differentiating into early round

spermatids at around 20 dpp, and starting to elongate at around

30 dpp. The Sdmg1 marker for somatic Sertoli cells [40], the

Stra8 marker for mitotic (spermatogonia) and early meiotic

(preleptotene spermatocyte) male germ cells [42], the Sycp3

marker for meiosis [43] and the Prm1 marker for round and

Figure 3. Rep8 localizes to the ER membrane. (A) The insoluble fraction of a HeLa cells lysate was isolated by centrifugation. Pellets were mixed
with sucrose, 0.5 M NaCl, 100 mM Na2CO3 or 0.1% SDS as indicated, and separated by centrifugation into a pellet (P) and supernatant fraction (S)
prior to analysis by SDS-PAGE and blotting using antibodies to p97, calnexin, actin and Rep8. To ease comparison, the pellets were resuspended in
the same volumes as the supernatant prior to analysis. All Rep8 was insoluble and only released with SDS, but not with sucrose, sodium chloride or
sodium carbonate. (B) Confocal micrographs of formaldehyde-fixed HeLa cells transfected to express Rep8 with a C-terminal GFP-tag (left panel) and
RFP modified to contain a signal sequence and an ER-retention signal (ER-targeted RFP; middle panel). In the merged image (right panel), the signals
overlap (yellow). (C) Differential centrifugation of HeLa cells transfected to express Rep8-GFP as in (A). TMX3 and the proteasome subunit Rpn2 served
as controls for a transmembrane and soluble protein, respectively. (D) Microsomes from HeLa cells expressing Rep8 with a C-terminal GFP tag were
treated with proteinase K and Triton X-100 as indicated, before they were analyzed by SDS-PAGE and blotting. The C-terminus of Rep8 was detected
by an antibody to the GFP-tag. The luminal ER protein, ERp57, served as a control.
doi:10.1371/journal.pone.0025061.g003
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elongating spermatids [44] were all expressed, as would be

expected during this developmental time course (Fig. 4B). Rep8

expression in prepubertal testes increased dramatically between

the 16 dpp and 29 dpp time points, coincident with the

appearance of late meiotic spermatocytes and post-meiotic round

spermatids in the testis (Fig. 4B). Furthermore, adult testes from

Tex19.12/2 mice, which contain all the somatic cell types in the

testis, but have significantly reduced numbers of late meiotic

spermatocytes and post-meiotic spermatids [41], have reduced

Rep8 expression (Fig. 4C). Thus, the high levels of Rep8

expression in the testis depends on the presence of late meiotic

spermatocytes/post-meiotic round spermatids in this tissue.

In order to test whether Rep8 is expressed in the developing

germ cells in adult testes, we performed in situ hybridization. In

adult mouse testes, high Rep8 expression was evident in the

developing germ cells within the seminiferous tubules (Fig. 4D).

Rep8 mRNA levels are low or undetectable in the interstitial

somatic cells in the testis (Fig. 4D), in mitotic or meiotic male germ

cells inside the testis tubules (Fig. 4E), and in early stages of post-

meiotic round spermatid differentiation (Fig. 4E, stage I–VI). Rep8

mRNA is abundant during the late stages of round spermatid

differentiation (Fig. 4E, stage VII–VIII), and as the round

spermatids start to elongate (Fig. 4E, stage IX–X). However,

Rep8 mRNA levels are low or undetectable in elongated

spermatids (Fig. 4E, stage I–VI, stage VII–VIII). These in situ

hybridization data are consistent with the qRT-PCR data for

Rep8 expression in the testis. Thus, the high levels of Rep8

expression in the testis appear to be caused primarily by a pulse of

Rep8 upregulation in germ cells during late round spermatid

differentiation.

In order to test whether the high levels of Rep8 mRNA

expression in the adult ovary [35] are also caused by expression in

the developing germ cells, we performed in situ hybridization on

adult ovaries. In contrast to the testis, the high levels of Rep8

expression in the ovary appear to be caused primarily by

expression in the somatic cells rather than the germ cells

(Fig. 4F). Rep8 mRNA levels are low or undetectable in the

oocytes, and in the somatic corpora lutea and stromal cells present

in the ovary (Fig. 4F). However, Rep8 mRNA is abundant in the

somatic granulosa cells that surround the oocyte in the developing

follicles (Fig. 4F). The high levels of Rep8 expression in ovaries and

testes therefore does not appear to be caused by a common Rep8-

expressing cell lineage in male and female gonads. Rather, Rep8

expression in adult gonads may be a consequence of some

similarity between the cell biology of granulosa cells in the ovary

and round spermatids in the testis.

Rep8 associates with Hrd1
Since we found that Rep8 is a cofactor of p97 that localizes to

the ER membrane, we analyzed if Rep8 was associated with the

E3 ubiquitin-protein ligase, Hrd1, that plays an important role in

ERAD [8]. Extracts from HeLa cells, stably transfected to express

biotin-tagged Hrd1, were precipitated with a streptavidin resin.

Indeed, the biotinylated Hrd1 interacted with Rep8 (Fig. 5A).

However, since we could not detect any interaction between

recombinant Hrd1 and Rep8 purified from E. coli (not shown), the

interaction observed in HeLa cells is probably indirect and bridged

by p97 or other components of the ERAD system.

Knock-down of Rep8 expression inhibits ERAD and p97-
membrane interaction

Since Rep8 is an ER-membrane protein that interacts with p97,

it is possible that proteolysis of ER proteins is impaired in cells with

a decreased content of Rep8. To test this prediction, Rep8

expression in MelJuSo cells was knocked down with siRNA

(Fig. 5B). Knock-down of Rep8 did not alter the level of p97

(Fig. 5B). Thus, cells do not compensate for the lack of Rep8 by

inducing p97.

To test if Rep8 plays a role in ERAD, the degradation kinetics

of the model ERAD substrates, TCRa and CD3d, were analyzed.

In both cases we observed a slight retardation in their degradation

(Fig. 5C and Fig. S2). However, the degradation of a cytoplasmic

p97-relevant proteasome substrate was unaffected (Fig. S3),

indicating that Rep8 specifically targets ER-derived proteasome

substrates.

We then speculated if Rep8 perhaps recruits p97 to the ER

membrane. By differential centrifugation and quantitative immu-

noblotting, the amount of p97 associated with the microsome

pellet was determined. In cells transfected with Rep8-specific

siRNA, the amount of membrane-bound p97 was significantly

reduced compared with the control (Fig. 5D). We therefore

conclude that Rep8 tethers p97 to the ER membrane.

Discussion

The ATPase complex, p97, is a molecular segregase [17]

connected with a broad spectrum of cellular pathways, including

fusion of ER and Golgi membranes [19,45], DNA repair [46],

transcription factor activation [18] and ERAD [11,47]. The

cellular mechanisms involved in directing p97 to these various

functions are probably determined by its range of cofactors. Here,

a previously cloned gene [35], encoding the uncharacterized

human protein Rep8, was isolated as a p97 cofactor.

We found that Rep8 expression is highly tissue specific and most

abundant in gonads. This is in accordance with previous results on

the mRNA level [35]. Furthermore, we have shown that the high

levels of Rep8 expression in the testis is caused by expression in the

post-meiotic round spermatids within this tissue. Rep8 is not the

only ERAD relevant protein known to reside in the testes. Previous

studies have found testis-specific homologues of calnexin (Clgn)

and protein disulfide isomerase (Pdilt) interact to form a testis-

specific chaperone complex in post-meiotic germ cells [48–50].

Sperm from Clgn2/2 mice are infertile and exhibit defects in the

heterodimerization and maturation of egg-binding glycoproteins

in the ER during spermatogenesis. These egg-binding proteins are

not present on the surface of mature Clgn2/2 sperm, and Clgn2/2

Figure 4. Expression of Rep8. (A) The indicated rat tissues and cell extracts were analyzed by SDS-PAGE and blotting using antibodies specific for
Rep8 (upper panel) and tubulin (lower panel). Rep8 was expressed almost exclusively in testes, ovaries and in the cell types used in this study. (B) qRT-
PCR for Rep8 expression during mouse testis development. Bars indicate mean expression relative to b-actin, normalized to the maximum expression
level for that gene during the developmental time course. Error bars indicate standard errors. (C) qRT-PCR for Rep8 expression in adult Tex19.12/2

testes. Mean expression levels relative to b-actin were normalized to control adult testes for each gene. Error bars indicate standard errors. (D) In situ
hybridization of Rep8 to adult mouse testes. Bound sense or anti-sense Rep8 probes were visualized with dark blue/purple precipitate. Sections were
counterstained with nuclear fast red. Scale bar 100 mm. (E) Higher magnification images of Rep8 in situ hybridization to adult testes. The approximate
seminiferous epithelial stage is indicated by roman numerals, and examples of mitotic spermatogonia (sg), meiotic spermatocytes (sc), round
spermatids (rs) and elongated spermatids (es) are annotated. Scale bar 20 mm. (F) In situ hybridization of Rep8 to adult mouse ovary. Scale bar
100 mm. Granulosa cells (gr), oocytes (oo) and corpora lutea (cl) are indicated.
doi:10.1371/journal.pone.0025061.g004
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sperm have defects in egg-binding at fertilization [51–53].

Interestingly, like Rep8, Clgn and Pdilt are highly expressed in

round spermatids, a stage of spermatogenesis where cell-surface

and secreted proteins, that will eventually facilitate interactions

between the sperm and the egg during fertilization, are being

synthesized. Perhaps the special pH, temperature and redox

environment, or the presence of specific substrates in round

spermatids may require expression of ERAD proteins such as

Rep8. Indeed, components of the insoluble protein matrix that is

present in the specialized acrosome structure, where many of these

secreted proteins are stored, may be prone to aggregation and

misfolding [54]. The generation of Rep82/2 knockout mice will be

required to analyze the role of Rep8 in reproductive tissues in

more detail. Although nematodes do not encode any apparent

orthologues of Rep8, simultaneous knock-down of several UBX

domain proteins results in a germ-line phenotype that does not

produce sperm [55]. Perhaps mice lacking Rep8 will display a

similar phenotype.

Rep8 contains a transmembrane domain, a VIMP-like region and

a UBX domain. VIMP is also a transmembrane protein that localizes

to the ER-membrane and plays a role in ERAD [29]. It is known that

VIMP associates with p97 [29], but VIMP does not contain a UBX

domain and the p97 interaction region in VIMP has yet to be

identified and characterized. Another important difference between

VIMP and Rep8 is that VIMP is most likely a selenoprotein whereas

Rep8 is not. The region in VIMP which is homologous to Rep8 is

located just next to the transmembrane domain. The structure of this

region of VIMP is basically an extended helix [PDB: 2QF2], which

probably functions as a spacer to keep the VIMP C-terminal area at a

distance from the membrane. Presumably the VIMP-like area in

Rep8 shares this function.

The UBX domain of Rep8 is sufficient and necessary for

interacting with the p97 N-domain. We also found that Rep8

interacts with the E3 ubiquitin-protein ligase Hrd1. However, since

we were unable to reconstitute this interaction using purified

components in vitro, we speculate that this interaction is indirect and

bridged by other components of the ERAD machinery, perhaps by

p97 itself, which interacts with Hrd1 directly [56–58]. Since Rep8

and Hrd1 both associate with the p97 N-domain their interaction

with p97 is probably mutually exclusive. However, due to the

hexameric structure of p97, the ATPase may in principle associate

simultaneously with up to six different N-domain binding partners,

and ternary Rep8-p97-Hrd1 complexes could therefore be relevant.

For some p97 cofactors, interaction critically depends on p97’s prior

association with other cofactors [59]. In the future it would be

interesting to see if Rep8 and VIMP co-associate with p97.

Figure 5. Rep8 binds Hrd1 and participates in ERAD. (A) HeLa cells expressing in vivo biotinylated Hrd1 were precipitated using streptavidin
Sepharose beads, or as a control, IgG Sepharose beads, and analyzed by SDS-PAGE and blotting using the indicated probes. Rep8 was bound to the
immobilized Hrd1. (B) Human MelJuSo cells were transfected with control siRNA or two different siRNAs specific for Rep8. After 5 days, the expression
of the indicated proteins was analyzed by SDS-PAGE and blotting. Actin served as a loading control. (C) Pulse-chase experiments performed on cells
expressing YFP-tagged CD3d. The cells were transfected with Rep8 siRNA#2 (filled square) or control siRNA (filled circle). At the indicated times
during the chase period the substrate was retrieved by precipitation using antibodies specific for GFP. The precipitated material was resolved by SDS-
PAGE and visualized by phosphoimaging (top panel). Knock-down of Rep8 expression caused a decrease in the degradation rate (lower panel). (D)
The amount of membrane-bound p97 in MelJuSo cells transfected with control siRNA or siRNA specific for Rep8 was determined by differential
centrifugation and quantitative blotting. The error bars show the standard deviation. The difference was significant at the p,0.01 level (**) (t-test,
n = 4).
doi:10.1371/journal.pone.0025061.g005
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On the subcellular level, Rep8, like VIMP [29], localizes to the ER-

membrane. The Rep8 C-terminal UBX domain faces the cytoplasm

and thus connects p97 to this organelle. Accordingly, when Rep8 is

lacking less p97 is associated with the ER membrane. Conversely

overexpression of Rep8 would presumably shift p97 to be more tightly

connected with the ER membrane. However, unfortunately we were

unable to overexpress Rep8 to a significant level.

We found that upon knock-down of Rep8 expression,

proteolysis of two model ERAD substrates was slightly retarded.

We note that p97 plays other important roles at the ER-

membrane, including transcription factor maturation [18] and

membrane fusion [45], and we cannot rule out that the observed

effect on ERAD is indirect and perhaps due to a perturbed p97

cofactor binding in response to the reduced amount of Rep8.

Alterations in p97 cofactor binding may cause pleiotropic

phenotypes and has been linked to disease [60].

As mentioned, Hrd1 may itself bind p97 directly, and it is

therefore surprising that other p97 binding partners are needed to

fulfill the same function. However, besides Hrd1 and Rep8, other

transmembrane ERAD components such as VIMP [29], Erasin

[30], and Derlin-1 [58] also bind p97 directly. This redundancy

may explain why cells lacking Rep8 only display the moderate

ERAD phenotype described here. Given the mild effect of Rep8

on the ERAD model substrates used here, another possibility is

that Rep8 is involved in degradation of clients specific for

reproductive tissue.

Supporting Information

Figure S1 Rep8 is a phylogenetically conserved protein
in higher eukaryotes. Clustal W (v1.82) alignment of human

(Hs) Rep8 with its bovine (Bt), mouse (Mm) and zebrafish (Br)

orthologues. Identical and similar residues have been marked. The

domain organization is indicated by the colored bars. Rep8 contains

a signal sequence (red), a transmembrane domain (black), a region

which is homologous to VIMP (blue), and a UBX domain (green).

(TIF)

Figure S2 Degradation of TCRa. Pulse-chase experiments

performed on cells expressing HA-tagged TCRa. The cells were

transfected with Rep8 siRNA#2 or control siRNA. At the

indicated times during the chase period the substrate was retrieved

by precipitation using antibodies specific for HA. The precipitated

material was resolved by SDS-PAGE and visualized by phosphoi-

maging. Slower migrating species (filled arrow) corresponding to

glycosylated forms of the protein were visible. Knockdown of

Rep8 expression caused a decrease in the degradation.

(TIF)

Figure S3 Rep8 does not affect degradation of a
cytoplasmic proteasome substrate. Pulse-chase experiments

were performed on MelJuSo cells expressing ubiquitin-G76V-YFP

transfected with Rep8 siRNA#2 or control siRNA. At the

indicated times during the chase period, ubiquitin-G76V-YFP

was precipitated using antibodies specific for GFP. The precipi-

tated material was resolved by SDS-PAGE and visualized by

phosphoimaging. The asterisks (*) marks an unknown contami-

nant.

(TIF)

Table S1 Sequences of primers used for qRT-PCR.

(PDF)
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