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Drought in South Asia affect food and water security and pose challenges for millions of people. For
policy-making, planning, and management of water resources at sub-basin or administrative levels,
high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a
high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near
real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic
extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was
applied to correct bias in precipitation and air temperature, which performed well compared to the other
bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were
used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration
Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought
severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies
and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can
effectively capture observed drought conditions as shown by the satellite-based drought estimates.
High resolution near real-time dataset can provide valuable information for decision-making at district and
sub-basin levels.
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Background & Summary
Drought is one of the most complex natural disasters, which is often difficult to identify, (including the
start, end, intensity, and extent), predict, and mitigate. In South Asia, increasing population and frequent
droughts have been significant factors in furthering the water crisis and food scarcity. The drought of
2002 was among the most severe events, affecting around 300 million people in India1. The South Asian
region faced multiple severe and long-lasting droughts, which posed tremendous impacts on growing
economies of the region. India, Pakistan, and Sri Lanka have reported frequent droughts (once in every
three years) in the last decades. In India, about 330 million people were affected due to the 2014–15
drought which had a return period of 542 years2 and led to a severe water shortage. Pakistan also
experienced many droughts, and the 1999–2000 (continuing up to 2002) drought affected about
3.3 million people and resulted in a negative growth of 2.6% in the agriculture sector3. Due to severe
droughts, the Pakistan government announced emergency conditions4. In Bangladesh, 19 droughts
occurred between 1960 and 1991. On an average, a severe drought occurs in Bangladesh once in every
2.5 years5 and affects 53% of the population and 40% of crop production. Currently (in 2017),
South India and Sri Lanka are facing a severe drought that has already affected more than 0.2 million
people.

A high-resolution near real-time drought monitoring system is required for South Asia to assist policy
makers and water managers and to minimize the detrimental impacts of water and food scarcity. Drought
information at district to village level is needed for decision making and adaptation6,7 (GWP Assessment
Report, 2014). In South Asia, only India has a near real-time drought monitoring system, however,
at a coarser spatial resolution (0.25°). The Indian experimental drought monitor system8 provides near
real-time (1-day lag) drought information. The India Meteorological Department (IMD) (www.imdpune.
gov.in) also provides drought information in India, however, at monthly scale and much coarser spatial
resolution. The Pakistan Meteorological Department (PMD) (http://www.pmd.gov.pk/) provides
monthly drought information using rain gauge station data and satellite-based vegetation index. The
satellite-based near real-time drought monitoring and early warning system (DMEWS, http://wtlab.iis.
u-tokyo.ac.jp/DMEWS/) for Asian Pacific countries9 provide drought warning at the state level.
Drought monitoring systems at global scales10 have also been valuable for decision making at national
levels.

While existing drought monitoring systems8–10 provide information at the regional and global scales,
those are unable to help in decision making at the local scale (sub-basin or district levels) due to their
coarse spatial resolution. A high-resolution near real-time precipitation and air temperature (maximum
and minimum) dataset is required for drought monitoring at the district and sub-basin levels in South
Asia. Here we use Climate Hazards Group of Infra-Red Precipitation with Stations (CHIRPS11) and
maximum and minimum air temperatures from Global Ensemble Forecast System (GEFS) reforecast
version 2 (ref. 12) from 1981 onwards to develop a bias-corrected precipitation and temperature product
that can be used for drought monitoring in the South Asia. We used the bias corrected datasets to
estimate Standardized Precipitation Index13 (SPI) and Standardized Precipitation Evapotranspiration
Index14 (SPEI) at 0.05° spatial resolution. The drought information at high resolution can be useful for
policy makers, stakeholders, and water managers to in decision-making and as well as in climate change
adaptation.

Methods
Precipitation and temperature datasets
We obtained daily gridded precipitation data from Asian Precipitation Highly Resolved Observational
Data Integration Towards Evaluation of Water Resources (APHRODITE)15, which are available at 0.25°
spatial resolution over the Asian Monsoon region (V1101R1) for the period of 1981–2007. The
APHRODITE data (V1101R1) were developed using station based observations, which represent spatial
variability and other rainfall characteristics well. For instance, APHRODITE data (here onwards:
APHRO-Precipitation) represent orographic rainfall in the foothill of the Himalaya and the Western
Ghats. The data are well quality controlled and checked for inconsistencies and errors15. Recently,
Xie et al.16 used APHRO-Precipitation to investigate droughts in Pakistan while Duncan et al.17 used the
dataset to analyse temporal trends in the Indian summer monsoon.

High-resolution near real-time daily and pentad (5 days total) precipitation data were obtained from
the CHIRPS product (here onwards: CHIRPS-Precipitation)11,18, which are available at 0.25° and 0.05°
spatial resolutions. CHIRPS-Precipitation is a combined product of monthly precipitation climatology
(CHPClim), Thermal Infrared (TIR) satellite observations, and in situ precipitation observations from
various national and regional meteorological departments11,18. The CHPClim is a long-term historical
average rainfall accumulation, which is temporally disaggregated into 72 pentads (6-pentad per month)
at a spatial resolution of 0.05° (ref. 19). The Thermal Infrared satellites, globally gridded Satellite (GriSat)
(1981–2008), and Climate Prediction Center dataset (2000-present) are used in CHIRPS-Precipitation.
The CHIRPS project generates a preliminary and a final product. The preliminary product is developed
using CHPClim and TIR satellite data with a two-day lag. In situ observations stations are then
blended with the preliminary data to produce the final product with a latency of about three
weeks. More details about CHIRPS-Precipitation is available in Funk et al.11. Recently, Tote et al.20

used CHIRPS-Precipitation for drought and flood monitoring in Mozambique. Shukla et al.21 used
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CHIRPS-Precipitation for drought forecasting in East Africa. We used the final product of
CHIRPS-Precipitation to develop pentad time-series from daily precipitation for the period 1981–2007,
which is an overlapping period of APHRO-Precipitation.

Since a consistent long-term daily temperatures (maximum and minimum) dataset is unavailable for
the South Asia, we obtained gridded daily maximum and minimum temperature data from the University
of Princeton (here onwards: Princeton-Temperature22, http://hydrology.princeton.edu/data/pgf/0.25deg/
daily/). Princeton-Temperature was obtained for the period 1970 to 2007 at 0.25°, which was developed
using global observed datasets from the National Centers for Environmental Prediction (NCEP) and
National Center for Atmospheric Research (NCAR) reanalysis data22. Princeton-Temperature was
compared with the observed India Meteorological Data (IMD) and it was found that both the datasets are
consistent with spatial and temporal variability and for correlations between precipitation and air
temperature23. Recently, Princeton-Temperature was used to evaluate the changes in hydro-climatic
variables over the Indian subcontinental basins23. Moreover, Princeton-Temperature and precipitation
datasets have been widely used to assess global and regional drought characteristics24–27.

Since Princeton-Temperature is not available in near real-time, maximum and minimum 2-m air
temperature data were obtained from the Global Ensemble Forecast System (GEFS) reforecast version 2
(here onwards: GEFS-Temperature)28 (https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.
html) for the period of 1985 to present at 0.50°. GEFS-Temperature is generated on a daily basis at
0000UTC (at 3-hour interval) which contains ten perturbed forecast members and one control forecast
member. GEFS-Temperature was regridded at 0.25° using the synergraphic mapping system (SYMAP)
algorithm. The SYMAP algorithm uses temperature lapse rate using a high-resolution elevation, which is
discussed in detail in Maurer et al.29. GEFS-Temperature has been used as a forcing in land surface
models to evaluate drought severity, monitoring, and forecast8,30–32. We used a high resolution (2.5 arc
minute, ≈5 km) maximum and minimum temperature climatology from the Worldclim version 2 (here
onwards: WCLIM-Temperature)33,34 (http://worldclim.org/version2) to provide spatial variability in the
regridded GEFS-Temperature at 0.05°. The WCLIM-Temperature monthly climatology is available for
the period of 1970–2000, which was interpolated using the thin-plate smoothing spline algorithm
implemented in the ANUSPLIN package33,34.

Bias correction of precipitation and temperature
Model analysis and satellite data may have random errors and bias compared to observations
due to inadequate sampling, algorithm imperfection, and lack of in-situ data35. We evaluated bias
in CHIRPS-Precipitation and GEFS-Temperature against APHRO-Precipitation and Princeton-
Temperature, respectively. There are several approaches available for bias correction8,36–39; we analysed
two bias correction methods (linear scaling method8,36 and distribution mapping method36,37) to adjust
the bias in CHIRPS-Precipitation and GEFS-Temperature (minimum and maximum) and selected the
most efficient method of bias correction that can reduce bias effectively in near real-time.

CHIRPS-Precipitation was bias-corrected using the linear scaling and distribution mapping methods.
In the linear scaling, bias correction of CHIRPS-Precipitation was performed in two steps as described in
Shah and Mishra8; first, we applied the correction to extreme events (above 90 percent threshold value)
and then, bias correction was applied to total annual precipitation. We, therefore, estimated two scaling
factors for each of 12 calendar months: i) for extreme values (above 90 percent threshold value) and ii) for
annual totals of precipitation for each grid cell. The monthly scaling factors for extreme events were
determined by taking the ratio of the sum of the extreme precipitation data of APHRO-Precipitation and
CHIRPS-Precipitation for the corresponding month. Then, pentad CHIRPS-Precipitation were corrected
by multiplying the particular month’s scaling factors for each grid assuming that scaling factors remain
constant for all six pentads within a month. After adjusting the extreme events of all months,
we estimated monthly scaling factors for annual totals by taking the ratio of total precipitation of
APHRO-Precipitation and CHIRPS-Precipitation for the corresponding month and corrected the pentad
CHIRPS-Precipitation by multiplying the scaling factors.

In the distribution mapping method36,40,41, bias correction was performed by matching the cumulative
distribution functions (CDFs) of datasets where a particular distribution (Gamma or Normal) was used
to estimate the parameters. We used the Gamma distribution42 to fit pentad precipitation while empirical
and normal distributions were used for temperature data.

To correct the precipitation data, we fitted the Gamma distribution to pentad precipitation to estimate
the parameters for each month for APHRO-Precipitation and CHIRPS-Precipitation for each grid cell
(0.25°). These monthly parameters for distributions were used for bias correction (to match the CDFS).
We estimated the number of rainy pentads (>1 mm) in a given month for APHRO-Precipitation and
CHIRPS-Precipitation for the training period. If CHIRPS-Precipitation has the number of wet pentads
more than APHRO-Precipitation, we estimate the threshold value Rth using the equation (1). Using the
threshold value and monthly parameters, we corrected pentad CHIRPS-Precipitation for the training
period, and the method was evaluated for an independent data for the testing period. If the number of
rainy pentads was more in the CHIRPS-Precipitation than APHRO-Precipitation for the training period,
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we used equation (2) to correct pentad CHIRPS-Precipitation otherwise used equation (3).

Rth ¼ cdf APHRO
- 1 cdf CHIRPS 1ð Þ� � ð1Þ

data corri ¼ cdf APHRO
- 1 cdf CHIRPS data rawið Þ� �

data rawi > Rth

0 data rawi�Rth

�
ð2Þ

data corri ¼ cdf APHRO
- 1 cdf CHIRPS data rawið Þ� �

data rawi > 0 ð3Þ
The bias correction of pentad CHIRPS-Precipitation involves two steps. Initially, we corrected pentad
precipitation at 0.25° using the linear scaling and distribution mapping. Then final correction of pentad
CHIRPS-Precipitation was performed at 0.05° using the most efficient bias-correction method among the
two. We corrected CHIRPS-Precipitation against APHRO-Precipitation at 0.25° for the training
(1981–2004) period, and the effectiveness of bias correction was evaluated for the testing (2005–2007)
period. We disaggregated the APHRO-Precipitation from 0.25° to 0.05° spatial resolution29 to calculate
the monthly scaling factors and parameters at 0.05°. We also evaluated the approach based on
disaggregation of monthly scale factors and results were similar. These monthly parameters were used to
correct CHIRPS-Precipitation at 0.05° using the same approach. The bias-corrected precipitation at 0.05°
was aggregated to 0.25° and compared with the corrected CHIRPS-Precipitation at 0.25°, which was
corrected with the APHRO-Precipitation at its native 0.25°. We found that both the bias corrected
products resulted in a similar bias against the observed precipitation.

We also analysed the bias correction in 0.25° GEFS-Temperature (minimum and maximum
temperature) against the observed Princeton-Temperature for training (1985–2004) and testing
(2005–2007) periods using linear scaling method and distribution mapping (Q-Q mapping) method.
In linear scaling method, we estimated monthly scale factors from both the temperature datasets for each
month for each grid cell for the training period 1985–2004. The monthly scale factors were estimated by
subtracting the mean monthly maximum or minimum GEFS-Temperature to Princeton-Temperature
for the corresponding month. These monthly scale factors were subtracted from the raw pentad
GEFS-Temperature for each month to obtain the corrected pentad GEFS-Temperature for each grid cell.

In the distribution mapping method41, we estimated empirical CDFs for each month for each grid
from Princeton-Temperature and GEFS-Temperature for the training period. We corrected the GEFS-
Temperature using CDFs mapping (Q-Q mapping)41 except extreme temperature events (less than 5 and
more than 95% probability of exceedance). For extreme temperature events, normal distribution was
employed. Further details on the linear scaling and distribution mapping method of bias correction in
temperature data can be obtained from Shah and Mishra8 and Wood et al.41, respectively. Using the
linear scaling and distribution mapping, we corrected the GEFS-Temperature for training and testing
periods at the spatial resolution of 0.25° and selected the most efficient method for bias correction.

The adjusted maximum and minimum temperatures were regridded at the spatial resolution of 0.05°
from 0.25° for the period 1970-present using high-resolution digital elevation model (for lapse rate) and
the SYMAP algorithm as described in Maurer, et al.29. The regridded GEFS-Temperature data were again
corrected using the WCLIM-Temperature climatology (1970–2000), which is available at 5 km using
the linear scaling method. This correction was done to capture spatial variability of high-resolution
WCLIM-Temperature data. Further details on the datasets used in this study are presented in Table 1.

Drought indices
After the bias correction of CHIRPS-Precipitation and GEFS-Temperature at 0.05°, we estimated SPI and
SPEI for drought assessment and monitoring. SPI and SPEI are commonly used dimensionless drought
indices, which are estimated by fitting a probability distribution. SPI is used to measure precipitation
deficit or surplus while SPEI also considers the effect of air temperature over multiple time scales. We
used the Gamma distribution to estimate SPI. We used Hargreaves method43 to estimate potential
evapotranspiration (PET), which is required for SPEI estimation. We used R SPEI package44 to determine
SPEI using the log-logistic distribution. SPI and SPEI values indicate a wet condition for above zero and
dry condition for below zero values. Normal (SPI/SPEI between −0.5 and 0.5), abnormal (SPI/SPEI
between −0.5 and −0.8), moderate (SPI/SPEI between −0.8 and −1.2), severe (SPI/SPEI between −1.2

Data Sources Spatio-temporal resolution Availability

APHRO-Precipitation http://www.chikyu.ac.jp/precip/english/ 0.25°, Daily 1951–2007

CHIRPS-Precipitation http://chg.geog.ucsb.edu/ 0.05° and 0.25°, Daily and Pentad 1981-present

Princeton-Temperature http://hydrology.princeton.edu/data/pgf/0.25deg/daily/ 0.25°, Daily 1948–2007

GEFS-Temperature https://www.esrl.noaa.gov/psd/forecasts/reforecast2/ 0.5°, 3-hourly 1984-present

WCLIM-Temperature http://worldclim.org/version2 2.5 arc minutes (0.05°), Average monthly 1970–2000

Drought Severity Index http://www.ntsg.umt.edu/project/modis/dsi.php 0.05°, 8 days 2000–2011

NDVI data https://lpdaac.usgs.gov/dataset_discovery/modis/
modis_products_table/myd13a3

0.01°, Monthly 2000-present

Table 1. Details of the datasets used in the study.
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and −1.6), extreme (SPI/SPEI between −1.6 and −2.0), and exceptional (SPI/SPEI less than −2.0) category
droughts were considered in our analysis45.

We used Normalized Difference Vegetation Index (NDVI) anomalies and the Drought Severity Index
(DSI)46 to evaluate the drought estimates from CHIRPS-Precipitation and GEFS-Temperature in South
Asia. We obtained MOD13A3 (Monthly L3 Global 1 Km NDVI) NDVI from the United States
Geological Survey (USGS) MODIS Reprojection Tool Web Interface (MRTweb) (https://mrtweb.cr.usgs.
gov/) from January 2002 to June 2016. 1 km NDVI was aggregated to 0.05° using the majority resample
tool in ArcGIS. This monthly product is generated using 16-days 1-km NDVI product by employing a
weighted temporal average value (if data are cloud free) and the maximum value (in the case of
clouds)47,48. The MODIS vegetation indices are being used in Global Monitoring of vegetation health,
modeling hydrologic process, drought monitoring, and global and regional climate change impacts
assessment47. NDVI is widely used in drought assessment, drought and vegetation health monitoring49–51.
Recently, Asoka and Mishra52 used NDVI and hydro-climatic variables (soil moisture and sea surface
temperature) to predict vegetation anomalies for India.

Data Record
High-resolution pentad precipitation, maximum and minimum temperature, SPI and SPEI datasets
(Data Citation 1) are available from Figshare for the South Asia domain, which includes India, Pakistan,
Nepal, Bhutan, Bangladesh, and Sri-Lanka. High-resolution datasets are also aggregated at district and
sub-basin levels and freely available online through an open repository from 1981 to 2016, which will be
extended to near real-time. Details on data format and columns can be obtained from a readme file
provided at the above link.

Technical Validation
We compared mean annual precipitation in CHIRPS-Precipitation against APHRO-Precipitation at 0.25°
for the training period (1981–2004). We find that spatial variability of the APHRO-Precipitation is well
represented in the CHIRPS-Precipitation (Fig. 1a,b). For instance, in both the datasets, regions with high
(Western Ghats, North-East India, Bangladesh, Sri-Lanka, and South Bhutan) and low (Western India
and parts of Pakistan) mean annual precipitation are well represented. During the training period,
CHIRPS-Precipitation showed both dry and wet bias for mean annual and the monsoon season
precipitation (Fig. 1c,d). CHIRPS-Precipitation shows underestimation in the Western Ghats and
foothills of Himalayas while overestimation in North-East India, South India, and Sri Lanka. Relatively
lower bias can be seen in CHIRPS-precipitation in Pakistan and the semi-arid regions of the western
India (Fig. 1c,d). Moreover, in comparison to gauge based APHRO-Precipitation, CHIRPS-Precipitation
overestimated rainfall during the monsoon season (Fig. 1e,f). We divided the entire South Asia into five
regions and estimated bias in CHIRPS Precipitation for the training period (Supplementary Fig. S7). We
notice random bias in CHIRPS-Precipitation, which can be associated with satellites, terrain, and spatial
and temporal resolution53.

Corrected CHIRPS-Precipitation showed a considerably less bias for the both training and testing
periods (Supplementary Fig. 1) at annual and seasonal scales (Supplementary Figs 5 and 8). The
distribution mapping method showed better results in comparison to the linear scaling approach
(Supplementary Table 1). The distribution mapping method has more advantages36 compared to the
linear scaling as it performs efficiently in near real-time applications. Therefore, we selected the
distribution mapping over the linear scaling method for bias correction. We estimated bias at annual
(Supplementary Fig. 4) and seasonal time scales (Supplementary Fig. 2) and at the spatial resolutions of
0.25° and 0.05°. For the training period, Nash-Sutcliffe Efficiency (NSE) increased from 0.90 to 0.96 after
the bias correction for monthly precipitation. Moreover, after the bias correction, median root-mean-
square-error (RMSE) was reduced from 20 to 10 mm/month for monthly precipitation. The effectiveness
of the bias correction approach was evaluated for 0.05° CHIRPS-Precipitation and substantial
improvements were found (Supplementary Fig. 6).

Similar to CHIRPS-Precipitation, we estimated bias in GEFS-Temperature (maximum and minimum)
against Princeton-Temperature at 0.25° using the linear scaling and distribution mapping methods
(Supplementary Figs 9–14). GEFS-Temperature shows a high negative (cold) bias in the North-East
India, Nepal, Bhutan, West Pakistan, and in the Southern Peninsula of India while positive (warm) bias in
the central India and Bangladesh (Supplementary Figs 9 and 12). The bias in GEFS-Temperature may be
due to GFS model input parameters as well as high terrain variability in the region especially in the
Himalayas and Western Ghat. Moreover, GEFS uses the Climate Forecast System Reanalysis (CFSR)
dataset as initial conditions54, which has a bias in precipitation and temperature over the Indian
domain55. After the bias correction from both the methods, we compared bias in GEFS-Temperature
(Supplementary Figs 9 and 12), and significantly less bias can be observed from both the methods in the
GEFS-Temperature for the training and testing periods (Supplementary Figs 9 and 12; Supplementary
Tables 2 and 3). However, some parts of North India show a negative bias in minimum and maximum
temperatures, which can be attributed to sparse gauge network in the region8,56.Similar to precipitation,
we estimated NSE and RMSE for both the methods for temperature (Supplementary Tables 2 and 3) and
the distribution mapping performed better than the linear scaling.
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We regridded the bias-corrected (using the distribution mapping) 0.25° GEFS-Temperature to 0.05°
using a high-resolution digital elevation map (to provide lapse rate) and SYMAP algorithm as described
in Maurer et al.29. After regridding the GEFS-Temperature, the dataset was further corrected using the
monthly climatology of WCLIM-Temperature to capture finer scale spatial variability (Fig. 2 and
Supplementary Fig. 15). We compared the spatial variability of unadjusted maximum and minimum
temperatures data against the WCLIM-Temperature for the period 1970–2000 and found that unadjusted
data showed less spatial variation in the Himalaya region, central India, and the Thar Desert in
comparison to WCLIM-Temperature. Adjusted GEFS-Temperature after correction captures fine-scale
spatial variability present in WCLIM-Temperature (Fig. 2c and Supplementary Fig. 15c). We compared
domain averaged maximum and minimum temperatures of adjusted and unadjusted GEFS-Temperature
and found a good agreement for the period 1985 to 2007 (Fig. 2d and Supplementary Fig. 15d). The final
bias-corrected CHIRPS-Precipitation and GEFS-Temperature were used for the drought monitoring and
assessment as well as for analysis of climate anomalies at 0.25° and 0.05°.

We estimated SPI and areal extent (%) of drought using APHRO-Precipitation and bias corrected
CHIRPS-Precipitation at 0.25° and 0.05° for the period of 1982–2007 over the South Asia (Fig. 3). The
areal extent of drought was estimated for SPI threshold less than −1.2 (severe to exceptional droughts).
We find that more than 25% of South Asia was under drought in 1982, 1987, 1992, 2002, and 2004

Figure 1. Annual and seasonal bias in CHIRPS precipitation in South Asia. (a,b) Mean annual precipitation

(in mm) over the South Asia for the training period (1981–2004) from APHRODITE and CHIRPS. Bias in

(c) mean annual precipitation and (d) during monsoon season (JJAS); (e) Mean monthly precipitation

averaged over the South Asia and, (f) the bias in mean monthly precipitation for the training period.
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(Fig. 3 and Supplementary Fig. 16). SPI estimated from APHRO-Precipitation and bias corrected
CHIRPS −Precipitation showed a similar temporal variation and areal extent of drought (Fig. 3a,d),
however, with random bias. This variation in CHIRPS-Precipitation may be associated with the bias and
other uncertainties due to the difference in the numbers of stations in monthly CHIRPS-v2.0 (ftp://ftp.
chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/stations-perMonth-byRegion/pngs/Southeast_
Asia.station.count.CHIRPS-v2.0.png).

We identified that the 1987 and 2002 were the two most severe drought years (areal extent more than
40%) during the entire period of 1981–2007. We compared drought severity and areal extents from
CHIRPS-Precipitation (at 0.25° and 0.05°) and APHRO-Precipitation (at 0.25°) using 4-month SPI at the
end of September, which represents accumulated precipitation during the monsoon season (Fig. 3e–j).
Drought patterns obtained from CHIRPS-Precipitation were similar to APHRO-Precipitation in 2002.
However, in 1987, 4-month SPI based on CHIRPS-Precipitation overestimated drought severity in the
semi-arid western India. A similar comparison was done for drought estimates from SPEI, which
accounts for the role of air temperature (Fig. 4). Results show that bias-corrected CHIRPS-Precipitation
successfully captured areal extent and severity of droughts in 1987 and 2002 in the majority of regions in
the South Asia.

To evaluate the role of air temperature on drought in South Asia, we compared 4-month SPI and SPEI
at the end of the monsoon season of 2002 (Fig. 5a,b). We found that areal extents of droughts from
4-month SPI and SPEI estimated using the corrected CHIRPS-Precipitation and GEFS-Temperature
(at 0.05°) were largely similar. However, differences in the severity can be noticed in the semi-arid
western India and parts of Pakistan (Fig. 5a,b). We evaluated high-resolution SPI and SPEI estimated
from the bias-corrected CHIRPS-Precipitation and GEFS-Temperature against satellite-based Drought
Severity Index (DSI) at 0.05° for the 2002 monsoon season. We find that drought extent from SPI and
SPEI obtained from the bias-corrected CHIRPS and GEFS data was well compared with that obtained
from DSI (Fig. 5a–c). Differences in drought extent from DSI can be attributed to the presence of cloud
cover and time-lag between precipitation and vegetation response. We estimated probability of detection
(POD)57,58, which is a ratio of the total number of drought events when both DSI and 4-month SPEI
showed the drought (DSIo −0.6 and SPEIo − 0.5) to the total number of drought events when only DSI
showed drought for the period of 2000–2011 (Fig. 5d). POD varies between 0 and 1, and lower values of
POD represent the less correlation between DSI and SPEI. Based on the areal extent of drought and POD,

Figure 2. Bias-correction of maximum temperature from Global Ensemble Forecast System (GEFS).

(a) Mean annual maximum temperature (°C) at 0.05° spatial resolution (regridded from corrected GEFS 0.25°)

for the period 1985–2007, (b) mean annual maximum temperature from the Worldclim data, (c) corrected

mean annual maximum temperature at 0.05° spatial resolution against the Worldclim data for the period

1985–2007, and (d) mean monthly maximum temperature averaged over the South Asia from raw and

corrected maximum temperature.
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we find a good agreement between DSI and SPEI demonstrating that the bias-corrected high-resolution
data can successfully capture areal extent and severity of droughts in South Asia.

We estimated lag-correlation between 4-month SPI at the end of the monsoon season and 3-month
averaged NDVI anomalies (Supplementary Fig. 17). We find that the drought during the monsoon season
of 2002 was mainly centered in the western India and Pakistan, which resulted in vegetation stress in the
following seasons (Fig. 6a–d). Similarly, the impacts of the monsoon season drought of 2015 can be
noticed on vegetation during September to January period (Fig. 6e–h). These results highlight the utility
of high-resolution drought monitoring in agriculture dominated South Asia.

Figure 3. Drought estimates from APHRODITE and bias-corrected CHIRPS data using SPI.

Meteorological drought estimated using 4-month SPI from APHRO-Precipitation (0.25°), bias-corrected

CHIRPS-Precipitation (0.25°), and bias-corrected CHIRPS-Precipitation (0.05°) data. South Asia averaged

(a) 4-month SPI at the end of September; (b) areal extent of drought in % (4-month SPI value less than −1.2);

(c) 12- month SPI at the end of December; (d) areal extent of drought in % (12-month SPI value less

than −1.2); (e–g) 4-month SPI at the end of September for the year 2002; and (h–j) 4-month SPI at the end of

September for the year 1987.
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Figure 4. Drought estimates from APHRODITE and bias-corrected CHIRPS data using SPEI Drought

estimated using SPEI (4-month) at the end of September of the year 2002 and 1987 using. (a,d) 0.25°

APHRO-Precipitation, (b,e) 0.25° CHIRPS-Precipitation and (c,f) 0.05° CHIRPS-Precipitation.

Figure 5. Evaluation of droughts from CHRIPS data against satellite driven DSI. Comparison of drought

indices (SPI and SPEI) estimated from the high-resolution data with DSI. (a) 4- month SPI (b) 4- month SPEI,

and (c) DSI at the end of September of the year 2002. (d) Probability of detection (4-month SPEI o − 0.5) with

reference to DSI (o − 0.6) for the period 2000–2011.

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170145 | DOI: 10.1038/sdata.2017.145 9



After a careful evaluation of bias-corrected datasets, we developed district and sub-basin level maps of
drought severity and areal extent to assist in decision making (Fig. 7). 2015 was the 10th driest year in
India and the top driest year in the Indo-Gangetic Plain during the record of 1906–2015 (ref. 2). Using
the bias-corrected high-resolution data, we estimated the 4-month SPI and SPEI at the end of September
2015 to identify the areal extent of the monsoon season drought over the South Asia (Fig. 7a,b). 4-month
SPI and SPEI show that a large area of India, Pakistan, and Nepal experienced severe and extreme
drought in 2015. We also estimated areal extent (%) of drought at district and sub-basin levels over the
South Asia (Fig. 7c–f), which can be used for decision and policy making.

To further demonstrate the utility of the high-resolution dataset, we estimated 12-month SPI/SPEI and
areal extent of droughts (based on SPI or SPEI o − 1.2) for four districts (Fig. 8). These four districts are;
District 1 (Bulandshahr, U.P., India), District 2 (Faisalabad, Punjab, Pakistan), District 3 (Rapti, Nepal),
and District 4 (Ratnapura, Sri-Lanka). For instance, based on 12-month SPI and SPEI, Bulandshahr and
Rapti districts show about 40–50 % area under the drought at the end of December 2015. On the other
hand, Faisalabad and Ratnapura districts show no drought condition at the end of December 2015.
District and sub-basin level administrators and water managers can use such information for near real-
time monitoring and decision making. The high-resolution bias corrected data can also be used for
monitoring and assessment of hydroclimatic extremes such as extreme precipitation, heat and cold waves
(Supplementary Fig. 18). We evaluated November- December precipitation pentad anomaly to get the
information about the 2015 Chennai flood. Extreme precipitation pentads were recorded in CHIRPS data
during the November-December 2015. We also evaluated May-2015 and January-2016 GEFS-
Temperature pentad to access the information of heat and cold waves respectively. These results further
demonstrate the use of the dataset in one of the most populated regions of the world.

Usage Notes
Drought events have increased in South Asia during the recent decades. A high-resolution near real-time
drought monitoring in South Asia can be used for decision-making and to redefine policies in the areas of
water management and agriculture. We bias-corrected precipitation and temperature datasets from
CHIRPS and GEFS at 0.25° and 0.05° using the distribution mapping. The primary requirement of real-
time drought monitoring is to have long-term data extended till near real-time. The high-resolution
dataset can be used for drought monitoring and assessment at the district and sub-basin level in near real-
time. Moreover, the dataset can also be used to monitor and assess hydroclimatic anomalies in one of the
most populated and agriculture intensive regions of the world. The bias corrected pentad precipitation
from CHIRPS and maximum and minimum temperatures from GEFS are available at 0.05° from the
1981-till present. Using the high-resolution bias corrected data, drought indices (SPI/SPEI) were
estimated and evaluated against satellite-based drought products. The validation provides the confidence
that the dataset can capture areal extent and severity of drought at district and sub-basin levels in
South Asia.

Figure 6. Linkage between drought and vegetation dynamics over the south Asia. Drought estimated

using SPI and NDVI anomaly. (a,e) 4-month SPI at the end of September of the year 2002 and 2015.

(b,f) September- October- November mean NDVI anomaly, (c,g) October -November-December mean NDVI

anomaly, and (d,h) November- December- January mean NDVI anomaly for the year 2002 and 2015.
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While we have evaluated the high resolution dataset using satellite driven vegetation and
drought indices, there are certain assumptions and limitations. For instance, we assumed that
APHRO-Precipitation represents orographic and spatial variability after disaggregation from 0.25° to
0.05. Moreover, APHRO-Precipitation may have bias compared to other observed (e.g., IMD) data59 in
some regions due to the less number of gauge stations, which might have affected the bias-correction of
the CHIRPS data. Despite these limitations, the performance of bias-corrected CHIRPS data was
satisfactory at both 0.25 and 0.05 resolutions. Similarly, for air temperature, we assumed that GEFS-
Temperature captures the effect of elevation (lapse rate) and spatial variability after disaggregation to the
higher resolution. GEFS-Temperature was bias corrected using the Princeton and WCLIM-Temperature,
which might also have bias due to sparse gauge stations in some regions of the South Asia. Overall, areal
extent of droughts was monitored well using the bias-corrected CHIRPS-Precipitation and GEFS-
Temperature. However, like any other gridded dataset, there may be limitations and uncertainties related
to bias correction and interpolation methods. Random errors may be generated or modified during the
bias correction and interpolation of the precipitation and temperature datasets29,36,60–63. The dataset can
be improved further based on the increased availability of observational stations in future.

High resolution (0.05°) datasets are aggregated at district and sub-basin levels and uploaded in Ascii
(text) format from 1981 to present for every district and sub-basin in the South Asia. The data include
precipitation, maximum and minimum temperatures for each pentad from 1981 to 2016. We also provide
SPI/SPEI values for each district/sub-basin for each pentad considering 1–48 months duration to provide
information on short to long-term droughts. The datasets can be easily used for drought analysis in any

Figure 7. Intensity and areal extent of drought at sub-basin and district levels. District and sub-basin level

drought monitoring using the SPI and SPEI over the South Asia. (a,b) 4- month SPI and SPEI; (c,d) district (%)

area and (e,f) area (%) of sub-basins under drought at the end of September of the year 2015.
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district and sub-basin in South Asia. Users can download data, and select country (India, Pakistan,
Bangladesh, Bhutan, Nepal, and Sri Lanka), state, district, and sub-basin. The analysis can be performed
for retrospective and near real-time monitoring and assessment of hydroclimatic extremes (drought,
flood, and heat waves). The dataset will be updated on a regular basis to make it near-real time. For
gridded data (0.05 degree), interested users can directly contact to the corresponding author. More
instructions on data format and details can be obtained from a readme file provided in the data link.
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