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Recent advances of single-cell RNA sequencing (scRNA-seq) technologies have led to extensive study of cellular heterogeneity and
cell-to-cell variation. However, the high frequency of dropout events and noise in scRNA-seq data confounds the accuracy of the
downstream analysis, i.e. clustering analysis, whose accuracy depends heavily on the selected feature genes. Here, by deriving
an entropy decomposition formula, we propose a feature selection method, i.e. an intrinsic entropy (IE) model, to identify the
informative genes for accurately clustering analysis. Specifically, by eliminating the ‘noisy’ fluctuation or extrinsic entropy (EE),
we extract the IE of each gene from the total entropy (TE), i.e. TE = IE + EE. We show that the IE of each gene actually reflects the
regulatory fluctuation of this gene in a cellular process, and thushigh-IE genesprovide rich information on cell type or state analysis.
To validate the performance of the high-IE genes, we conduct computational analysis on both simulated datasets and real single-cell
datasets by comparing with other representative methods. The results show that our IE model is not only broadly applicable and
robust for different clustering and classification methods, but also sensitive for novel cell types. Our results also demonstrate that
the intrinsic entropy/fluctuation of a gene serves as information rather than noise in contrast to its total entropy/fluctuation.
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Introduction
Single-cell technologies have emerged as a powerful tool to

enable the identification and characterization of pure cell types
(Kolodziejczyk et al., 2015; Papalexi and Satĳa, 2018). An expo-
nential increase of the single-cell RNA sequencing (scRNA-seq)
datasets presents a computational challenge. Recently,many ef-
ficient computationalmethods have been proposed for accurate
classification of scRNA-seq, such as Seurat (Stuart et al., 2019)
and SC3 (Kiselev et al., 2017). However, the high frequency
of dropout events and noise in scRNA-seq data still confounds
clustering analysis. In addition, the ‘curse of dimensionality’ in
scRNA-seq data makes it difficult to obtain accurate clusters.
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Feature selection can identify the most informative genes and
then reduce the noise of scRNA-seq data, thus enhancing com-
putational efficiency of dimension reduction and clustering. Re-
cently, diversemethods have been proposed for the selection of
informative genes. HVG (Brennecke et al., 2013) can identify the
biologically variable genes through a generalized linear model;
however, many low-expression genes would often be selected
due to the high levels of dropout. GiniClust2 (Tsoucas and Yuan,
2018) could identify the highly variable genes by Gini coefficient
and further was specially applied to detect rare cell types. In
the S–E model (Liu et al., 2020), the differential entropy was
computed to capture the informative genesbased on hypothesis
testing. However, the S–E model obtained the degree of ran-
domness of genes based on the expression data. The dropout
and high noise of scRNA-seq data hinder the obtainment of real
fluctuation of genes in a biological process.
Here, we developed a novel feature selection model that can

accurately estimate the inherent fluctuation of each gene using
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the intrinsic entropy (IE) model. Generally, the fluctuation of
a random variable in a complex system can be caused by the
intrinsic fluctuation generated by its inherent dynamics and the
extrinsic randomness influenced by its environment or all other
variables. In this work, we decompose the total entropy (TE) or
‘raw’ fluctuation of each variable/gene into its IE and extrinsic
entropy (EE) based on information theory. Focusing on a specific
variable/gene, we show that IE and EE of this gene actually
characterize the inherent fluctuation and ‘noisy’ fluctuation of
this gene, respectively. In particular, IE can capture the degree of
the regulatory fluctuation on each gene in a cellular process, and
thus can be used to identify the informative genes for accurate
clustering and classification of cells from scRNA-seq data. We
demonstrate that the high-IE genes are highly informative and
can significantly improve the performance of clustering in both
simulated datasets and real datasets. The computational anal-
ysis further shows that the IE model could not only accurately
classify the dropout cells but also identify novel cell types. The
IE model is implemented in an open-source R package IEntropy
(https://github.com/LinLi-0909/IEntropy).

Results
Overview of the IE model
In our IE model, the TE of a gene x can be decomposed into

its IE and EE. Notably, we observed that high-EE genes (i.e.
with high EE values) actually fail to distinguish different cell
types (Figure 1A; Supplementary Figure S1). In contrast, high-
IE genes (i.e. with high IE values) are able to reliably identify
different cell types, compared with the genes with high TE or
EE. Thus, to capture the real fluctuation generated by the in-
herent dynamics of each gene, we developed the IE model,
with which we can obtain the informative genes by select-
ing high-IE genes. Any clustering or classification method can
be used for further downstream analysis with those high-IE
genes.

The IE model identifies informative genes for accurate clustering
To illustrate the performance of our IE model, we first com-

pared it with current state-of-the-art feature selection meth-
ods, i.e. S–E (Liu et al., 2020) and HVG (Brennecke et al.,
2013), on simulated datasets. The randomly selected genes
were also considered to compare with these three feature selec-
tion methods. Specifically, we generated 600 simulated scRNA-
seq datasets based on a gamma-Poisson distribution using
Splatter (Zappia et al., 2017). The adjusted rand index (ARI) was
used to evaluate the performance of these methods. As shown
in Figure 1B, clearly our method with high-IE genes was con-
sistently superior to other methods when selecting a different
number (200–3000) of genes. When fewer genes were selected,
HVG showed poor performance, while S–E performed well. How-
ever, S–E did not perform better than the IE model when more
genes were used. Furthermore, high-IE genes could be also
applied on batch correction of scRNA-seq data (Supplementary
Figure S2).

Then, to validate the performance of the IE model in real
datasets, we considered 14 published scRNA-seq datasets
(Supplementary Table S1) to benchmark our model. These
datasets were sequenced with droplet-based protocols and full-
length protocols (Supplementary Table S1). The accuracy of the
clustering can intuitively reflect the performance of feature se-
lection methods (Kiselev et al., 2018), and hence we performed
clustering analysis after selecting feature genes. The results
validated that high-IE genes (500–4000) selected by the IE
model consistently have better performance in clustering than
others (Figure 2A). Overall, these results show that the IE model
can reliably identify informative genes, i.e. high-IE genes, for
accurately clustering cells.

Robustness of the IE model in different clustering methods
Applicationsof feature selection can improve theperformance

of downstream analyses, such as dimension reduction and clus-
tering. Here, we first used the Mammary Gland dataset, which is
composed of diverse cell types, to demonstrate the performance
of the IE model. We classified and annotated these cells by
Seurat (Stuart et al., 2019). The Sankey diagram (Figure 2B)
revealed that cells were correctly identified (ARI= 0.97). In addi-
tion, to demonstrate the sensitivity of our model, we considered
the Chu-time dataset, which consists of human progenitors. The
IE model separated H1 and H9 embryonic stem cells clearly,
while HVG and S–E failed to distinguish these two similar cell
types (Figure 2C). These results suggest high sensitivity of the IE
model.
To test the performance of the IE model in different clus-

tering methods, we applied SIMLR (Wang et al., 2018), SC3
(Kiselev et al., 2017), and Seurat (Stuart et al., 2019), which
are popular clustering methods of scRNA-seq, on two datasets.
For the full-length-based dataset (Chu-time) and droplet-based
dataset (Heart and Aorta), the confusion matrices of classifica-
tion showed that the IE model (high-IE genes) performed well in
three clustering methods (Figure 2D and E).

Robustness of the IE model in different classification methods
Next, we considered six state-of-the-art machine learning

classifiers: xGBoost (Chen and Guestrin, 2016), DeepInsight
(Sharma et al., 2019), RandomForest (Breiman, 2001), Rusboost
(Seiffert et al., 2008), Adaboost (Freund and Schapire, 1997),
and SVM (Fan et al., 2005). The Tabula Muris dataset consisting
of cells from 20 organs was used to evaluate the IE model and
two other methods (S–E and HVG). As shown in Figure 3A, the
IE model performed better than other feature selection methods
in all the datasets, with only a few exceptions. Furthermore, the
kappa coefficient was calculated to quantify the accuracy of the
six classification methods based on different feature selection
methods by performing 10-fold cross validation (Figure 3B).
The Sankey results (Figure 3C) show the performance of these
three feature selection methods on Brain Non-myeloid data by
using xGBoost. The accuracies were 0.9881 for IE, 0.9306 for
S–E, and 0.9364 for HVG. Clearly, the IE model (high-IE genes)
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Figure 1 Overview of the IE model. (A) TE of each gene can be decomposed into IE and EE in the IE model. High-IE genes are more informative
and thus can be used for downstream analysis of scRNA-seq data. (B) Performance of various feature selection methods evaluated by ARI in
simulated datasets. The IE model shows better performance than other methods in terms of ARI.
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Figure 2 The IE model accurately identifies informative genes. (A) Performance of three feature selection methods in real datasets measured
byARI. (B) TheSankeydiagramshows the clustering result (ARI=0.97) of the TabulaMuris (MammaryGland) dataset basedon genes selected
by the IE model (high-IE genes). (C) t-SNE plots show the dimensional reduction results based on the genes selected by the IE model, S–E,
and HVG. (D) Heatmap plots for the confusion matrix of the results by different clustering methods on the Chu-time dataset. The clustering
analysis was performed based on genes selected by the IE model. (E) Heatmap plots for the confusion matrix of the results by different
clustering methods on the Tabula Muris (Heart and Aorta) dataset. The clustering analysis was performed based on genes selected by the IE
model.
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Figure 3 The performance of the IE model on cell type classification of the Tabula Muris dataset. (A) Classification accuracy was measured
on 20 single-cell datasets by using six classification methods. The center line indicates the median classification accuracy. The lower and
upper hinges represent the 25th and 75th percentiles, respectively. Each dot represents the accuracy for one dataset. (B) Kappa coefficient
evaluation for 6 methods on 20 single-cell datasets from Tabula Muris. The center line indicates the median kappa coefficient. The lower and
upper hinges represent the 25th and 75th percentiles, respectively. Each dot represents the mean kappa coefficient of one dataset by using
10-fold cross-validation. (C) Sankey plots show the xGBoost classification results of the Large-Intestine dataset based on genes selected by
IE, S–E, and HVG.
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Table 1 Summary of Tabula Muris dataset and the clustering results (ARI and the number of cell types) based on genes selected by the IE
model.

Organ Number of cells Dropped cells Number of annotated cell types ARI Number of annotated cell types (IE) All cell types (IE)

Aorta 1113 706 4 0.5653 5 6
Bladder 1639 261 2 0.9797 2 3
Brain myeloid 4763 285 4 0.0228 5 7
Brian non-myeloid 5800 751 11 0.8089 6 11
Diaphragm 952 82 5 0.9851 5 6
Fat 5863 896 7 0.94 5 8
Heart 6002 1637 8 0.7791 5 9
Kidney 866 347 5 0.0103 6 6
Large intestine 4150 212 5 0.548 6 6
Limb muscle 1152 62 6 0.9545 5 7
Liver 982 268 6 0.4945 6 6
Lung 1924 208 13 0.7597 5 13
Mammary gland 2664 259 4 0.8723 5 5
Marrow 5356 319 22 0.6309 11 23
Pancreas 1962 398 9 0.6006 7 10
Skin 2465 155 5 0.4596 4 6
Spleen 1719 22 3 0.8992 3 4
Thymus 1581 232 3 0.0626 4 4
Tongue 1433 17 2 0.5534 3 3
Trachea 1392 42 4 0.9192 6 4

significantly improved the accuracy of these classificationmeth-
ods (Figure 3A and B).

Case study on single-cell datasets with dropout cells
We applied the IEmodel to the Tabula Muris dataset to cluster

all the annotated cells and previously unassigned cells by Seurat
(Stuart et al., 2019). For annotated cells, we demonstrated that
the IEmodel can acquire high accuracy in classification (Table 1).
For dropped cells, we validated that IE-guided clustering analy-
sis can accurately classify these cells (Table 1).
In addition, we demonstrated the application of the IE model

in analyzing the Large-Intestine dataset (Tabula Muris Consor-
tium et al., 2018), which includes 4150 annotated cells belong-
ing to 5 cell types and 212 unassigned cells. Supplementary
Figure S3 shows the selected high-IE genes for downstream
clustering analysis. The marker or feature genes selected by
Seurat hadhighPIE (a statistic tomeasure the total IE ofmarkers)
valuesonfive cell types (Supplementary Figure S3B). In contrast,
we identified six refined cell subtypes, each with its specific
high-IE marker genes, by applying our IE model to the annotated
cells of the Large-Intestine dataset (Supplementary Figure S3D).
To investigate potential functions of these subtypes, we found
considerable phenotypic diversity by comparing pathway activ-
ities. For example, epithelial cell was clustered into Cluster 2
and Cluster 3. Cluster 2 showed a strong correlation with the
metabolic process, while the biosynthetic processwas activated
in Cluster 3. These results illustrated that high-IE genes as fea-
ture genes play an important role in clustering and classifying
subpopulations of cells. To investigate whether these high-IE
genesare effective in evaluating cell types,we studied the Large-
Intestine dataset with dropped cells, which were unassigned
in previous research. The clustering results suggested that the
cluster number was seven. In other words, there may be another

cell type by considering these dropped cells. We also found that
some parts of the dropped cells were clustered well in Cluster 1
and Cluster 2 (Supplementary Figure S3F). Together with these
results, we conclude that the IE model is able to identify new
cell types with high accuracy and biological significance.

The IE model identifies distinct subtypes in myeloid cells
Tumor-associated macrophages (TAMs) are important com-

ponents of the tumor microenvironment, which regulate key
steps in tumor development and are significantly correlatedwith
prognosis (Lewis and Pollard, 2006). However, single-cell tran-
scriptome has shown that TAMs in gliomas (Müller et al., 2017)
and metastatic renal cell carcinoma (Kim et al., 2016) express
markers of different activation states (M1/M2) simultaneously,
suggesting that macrophage polarization is not a bipolar state
but a continuous, dynamic process. Here, we demonstrated and
re-analyzed a previously published myeloid cell dataset from
human lung cancer by the IE model (Lambrechts et al., 2018).
Fifteen distinct clusters were identified (Figure 4A; Supplemen-
tary Figure S4) and five clusters (M_C1_PLTP, M_C3_CCL20,
M_C4_CXCL10, M_C5_NBEAL1, and M_C12_CD207) were abun-
dant in tumor (Figure 4B). The signatures of the subtype
M_C1_PLTP were significantly enriched in regulated exocyto-
sis, activation of immune response, and leukocyte migration
(Supplementary Figure S5). The chemokin gene, CCL20, which
recruits regulatory T cells and largely contributes to the pro-
gression of a variety of cancers (Chen et al., 2020), was ex-
pressed in the subtype M_C3_CCL20 (Figure 4C). The cluster
M_C4_CXCL10, characterized by several chemokin genes, i.e.
CXCL10, CCL8, CCL2, and CXCL11 (Figure 4C), represented M1-
like exudativemacrophages (Tighe et al., 2011).Moreover, path-
way activity analysis showed a significant enrichment in virus
response and interferon γ response (Supplementary Figure S5).
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Figure 4 IE-guided cluster analysis identifies distinct subtypes in myeloid cells. (A) UMAP plots show the reclustered results of lung cancer-
associated myeloid cells, colored by clusters. (B) UMAP plots of myeloid cells. Each cell is colored by its origin (tumor or nonmalignant lung).
(C) The heatmap shows the relative expression levels of the top 10 marker genes (rows) in each cluster (columns). (D and E) Kaplan–Meier
survival analysis curves of TCGA LUAD (D) and LUSC (E) patients grouped by the top 15 markers of M_C3_CCL20. (F) The t-SNE plot shows the
expression level of the CCL20 gene. (G) The subtype M_C3_CCL20 (M3) signature expression levels in tumor and normal samples of LUAD
and LUSC patients.
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The genes of M_C5_NBEAL1 were involved in translation initia-
tion and antigen processing (Supplementary Figure S5). CD207,
which is only expressed in Langerhans cells, was highly ex-
pressed in the cluster M_C12_CD207 (Supplementary Figures
S4 and S6). Notably, patients highly expressing the marker
genes of M_C3_CCL20 have remarkably worse overall survival
in both The Cancer Genome Atlas (TCGA) lung adenocarcinoma
(LUAD) cohort dataset and lung squamous cell carcinoma (LUSC)
cohort dataset (Figure 4D and E). The expression levels of both
CCL20 gene and the signatures of M_C3_CCL20 were higher
in tumor (Figure 4F and G). Thus, the biological function of
M_C3_CCL20 deserves further investigation.

Discussion
scRNA-seq enables us to analyze the transcriptome on

individual cells. By scRNA-seq technology, many genes can
be detected at a single-cell resolution; however, only a small
number of informative genes can reflect biological variability in
a specific cellular process. It is usually a challenge to identify
those informative genes due to noisy data and the dropout
problem. Feature selection can reduce the technical noise of
data and enhance the computional effectiveness in terms of
accuracy and cost, i.e. for clustering or pseudo-time trajectory
inference. Here, we construct the IE model to solve the feature
selection problem by extracting the EE from the TE of each gene
based on scRNA-seq data. In other words, we show that the TE
of a gene can be theoretically decomposed into the IE and the EE
of this gene, respectively. The IE model can accurately capture
the informative genes or high-IE genes, thus enhancing the
computational efficiency of scRNA-seq analysis. These results
also imply that the IE or intrinsic fluctuation/variability of a gene
serves as information rather than noise at gene expression level
for cell clustering/classification or gene regulation, in contrast
to its total entropy/fluctuation. At the cellular level, we notice
the recent work on the role of cell-to-cell variability in cellular
information transmission (Wada et al., 2020), which shows that
cell-to-cell variability serves as information but not noise by
defining intracellular variability and extracellular variability.
In this work, we first present the high sensitivity and good

performance of high-IE genes for clustering analysis in both
simulated datasets and real datasets. Then, by applying dif-
ferent clustering methods and classification methods on the
high-IE genes, we also show their highly stable and accurate
performance.
The IE model can be broadly applied to many downstream

analyses of scRNA-seq data. Here, we showed that high-IE genes
successfully identified cell subpopulations with high accuracy
and biological significance on the Large-Intestine dataset. We
also found a novel macrophage subtype M_C3_CCL20 in lung
cancer by IE-guided analysis, and cells of M_C3_CCL20 were re-
lated with worse prognostic outcomes in lung cancer (LUAD and
LUSC). Overall, the IEmodel can not only capture the informative
genes or high-IE genes by eliminating their ‘noisy’ fluctuations
based on data, but also improve the accuracy and stability of
scRNA-seq analysis. As a future work, by exploiting the network

features or dynamical features of the informative genes or high-
IE genes, the IE model can be applied to the identification of
network biomarkers (Liu et al., 2016; Zhao et al., 2016; Dai
et al., 2019; Lu et al., 2019; Li et al., 2020; Zhang et al., 2021)
for disease diagnosis/prognosis and further for the detection of
dynamic network biomarkers (Chen et al., 2012; Li et al., 2017;
Liu et al., 2018; Yang et al., 2018; Jiang et al., 2020; Shi et al.,
2021) for disease prediction.

Materials and methods
IE model
The fluctuation of a random variable in a complex system is

considered to result from the intrinsic randomness generated by
its inherent dynamics and the extrinsic randomness influenced
by its environment (Hilfinger and Paulsson, 2011). The entropy
can capture the degree of fluctuation. Theoretically, the TE of a
gene x can be decomposed into IE and EE, i.e. Extot = Exint + Exext.
The IE of a gene results from its inherent dynamics. The EE of

this gene represents the ‘noisy’ fluctuation/effect caused by all
other genes, i.e. summation of random interacting effects from
all other genes to gene x, though the interaction of two genes
reflects the biological information.
Here, we assume that the log-transformed normalized expres-

sion data of genes follow the normal distribution.We applied the
entropy to estimate the degree of fluctuation of each gene from
the gene expression data. The TE of a random variable or gene x
can be defined as

Extot = −
∫ +∞

−∞
p (x) ln p (x)dx (1),

where p(x) is the probability distribution function of gene x.
Let the number of total genes bem+ 1. TE represents the total

fluctuation of gene x, including internal and external effects.
Actually, other m genes, i.e. Z = (z1, z2, · · · , zm), can have an
effect on gene x, and such an effect is defined as the EE of gene
x. Thus, theoretically we can easily show that the TE (Extot) of gene
x is decomposed as the IE ( Exint) and the EE ( Exext) of this gene,
i.e.

Extot = Exint + Exext (2).

To show Equation (2), specifically, mutual information (MI)
can be used to evaluate the association between two genes and
further derive this decomposition. In our model, we apply MI
to evaluate the effect of all other genes Z on gene x, which is
actually the EE of gene x and defined as

Exext = MI (x, Z) =
∫∫

p (x, Z) ln
p(x, Z)

p (x) p(Z)
dxdZ (3),

where p(x, Z) is the joint probability distribution function of x
and Z; pi(x) and pi(Z) are the probability distribution functions
of x and Z, respectively.
Thus, the inherent fluctuation of gene x can be obtained by

eliminating the EE from the TE of gene x. By substituting Equa-
tion (1) and Equation (3) into Equation (2), we can derive such
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fluctuation as the IE of gene x as

Exint = Extot − Exext

= −
∫

p (x) ln p (x)dx −
∫∫

p (x, Z) ln
p(x, Z

)
p (x) p(Z

)dxdZ

= −
∫∫

p (x, Z) ln p(x|Z)dxdZ

= −
∫∫

(x, Z) ln p (x, Z)dxdZ +
∫∫

p (x, Z) ln p (Z)dxdZ

= H (x, Z) − H (Z) (4).

Then, we can estimate Exint of each gene x by probability distribu-
tion estimation methods based on Equation (4).
Here, we emphasize that the IE of gene x is essentially con-

ditional entropy (CE), and the EE of gene x is MI. Actually, we
use Shannon entropy to measure the total fluctuation of each
gene, called TE in this work. As shown in Equation (2), the TE
or Extot of each gene x can be decomposed into MI (Exext) and CE
(Exint), i.e. TE(x) = MI(x, Z) + CE(x|Z), where Z = (z1, z2, · · · , zm)
is all other genes or all remaining genes with respect to this
gene x in a dataset. MI(x, Z) is used to evaluate the associa-
tion between this gene x and all remaining genes, i.e. focusing
on this gene x, MI(x, Z) is actually the effect of all remaining
genes on this specific gene x, and thus can be viewed as the
external effect of all remaining genes on this specific gene x.
On the other hand, CE(x|Z) is the CE of this specific gene x
given all remaining genes, and thus can be viewed as the in-
ternal effect of this gene x. Therefore, we refer to CE(x|Z) = Exint
and MI(x, Z) = Exext as IE and EE with respect to this gene x,
respectively.
As a special case for the multivariate normal distribu-

tion, Equation (4) can be simply expressed as

Exint = 1
2
(ln 2π + 1)+ 1

2
ln

∣∣�x, Z
∣∣

|�Z|
due to H(x, Z) = (m+1)

2 (ln 2π + 1) + 1
2 ln|�x, Z| and H(Z) =

m
2 (ln 2π + 1)+ 1

2 ln|�Z|, where (x, Z) ∼ N(μx, Z, �x, Z ) and
Z ∼ N(μZ, �Z ). μ and � are the mean value and covariance
matrix of a normal distribution, respectively. This approximation
provides an efficient way to estimate the IE of each gene.
As shown in Supplementary Figure S1, we observed that the

EE (or MI) between gene x and all other genes has a noisy effect.
Actually, EE is the summation of random interactions (random
variables) from all other genes to gene x, and thus can be viewed
as the random fluctuation of the environment on this gene. In
particular, we can show that EE actually approximately follows
a Gaussian distribution if the number of genes is sufficiently
large based on the central limit theorem. Thus, by eliminating
this ‘noisy’ fluctuation or EE from TE, we can obtain the inherent
fluctuation or IE of gene x, which reflects the inherent dynamics
of gene x in a cellular process and thus provides rich information
on scRNA-seq analysis.
Theoretically, all other genes, which may have interactions

with gene x, should be considered in our IE model, but only a

small number of genes have direct interactions with gene x in a
real biological system. To reduce the complexity of computation
to estimate the EE of each gene, we used principal component
analysis (PCA) to reduce the dimension of the data, and the top
PCs were used to approximately obtain the EE and further IE of
each gene.

Performance comparison in simulated datasets and real
datasets
To demonstrate the performance of the IE model, we con-

sidered some popular feature selection methods, such as HVG
(Brennecke et al., 2013) and the S–E model (Liu et al., 2020),
to compare to our model. The HVG method identifies infor-
mative genes through distinguishing true biological variability
from highly technical noise. The S–E model is an entropy-based
feature selection method that can detect variable genes by hy-
pothesis test. In addition, we further applied simulated datasets
and real datasets to validate the performance of the IE model.
The Splatter (Zappia et al., 2017) package was applied to

generate scRNA-seq count data to evaluate the performance
of the feature selection methods. These datasets generated by
Splatter follow a negative binomial. We simulated 600 datasets
to test the performance of feature selection in clustering analy-
sis. Each simulated dataset consisted of 500 cells of five groups
with 20000 genes. The cell ratio of the five groups was set to
25:75:100:100:200. SIMLR (Wang et al., 2018) was applied to
clustering analysis of the simulated datasets.
We also applied 14 public scRNA-seq datasets to assess

the performance of the different feature selection methods
in unsupervised clustering analysis (Supplementary Table S1).
Datasets were sequenced with different protocols, containing
Smart-seq2, 10x Genomics, CEL-seq2, and SMARTer protocol.
We evaluated the performance of the three different feature
selection methods in the context of clustering when selecting
different numbers (500–4000) of genes. The Seurat (Stuart
et al., 2019) package was used to perform clustering anal-
ysis. For droplet-based scRNA-seq datasets, the first 20 PCs
were used for unsupervised clustering. For smart-seq2 scRNA-
seq datasets, the first 10 PCs were used for unsupervised
clustering.

Evaluating the performance of the IE model by different
clustering methods
To demonstrate the robustness of the IEmodel, we considered

some widely used single-cell clustering methods such as SC3
(Kiselev et al., 2017), SIMLR (Wang et al., 2018), and Seurat
(Stuart et al., 2019) to evaluate its performance. A smart-seq2
scRNA-seq dataset (Chu-time) and a droplet-based scRNA-seq
dataset (Heart and Aorta) were considered for comparison. We
selected the top 1000 genes by the IE model in each dataset,
and SC3, SIMLR, and Seurat were used for clustering analysis.
The true cell labels were defined in the original publication. ARI
was used to evaluate the clustering results.
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Evaluating the performance of the IE model by different
classification methods
Dataset preparation. To evaluate the performance of different

feature selectionmethods in the context of various classification
methods, we utilized one public single-cell dataset from Tab-
ula Muris. We chose FACS datasets with 20 organs for subse-
quent processing. The Tabula Muris mouse data (Tabula Muris
Consortium et al., 2018) were downloaded from https://tabula-
muris.ds.czbiohub.org/.
Performance evaluation. To illustrate the performance of the IE

model in real datasets (Table 1), we performed cross-validation
experiments using six classification methods: xGBoost (Chen
and Guestrin, 2016), DeepInsight (Sharma et al., 2019), Ran-
dom Forest (Breiman, 2001), RUSboost (Seiffert et al., 2008),
Adaboost (Freund and Schapire, 1997), and SVM (Fan et al.,
2005).

(i) For each organ dataset, we only used the annotated cells
provided by the authors and then identified the top 2000 genes
with different feature selectionmethods, respectively, for down-
stream classification. (ii) We then drew a training sample Z from
one organ dataset D, uniformly at random without replacement
of each cell type. By default, the size of Zwas set to 3/4 that ofD.
(iii) We further trained different classifiers using the training
dataset with the top 2000 genes selected by different methods.
(iv) The remaining cells (1/4 by default) were used to calculate
the accuracy score and Cohen’s kappa coefficient. And 10-fold
cross-validationwasperformed to calculate Cohen’s kappa coef-
ficient using the K-fold cross validation routine of R and Matlab.

Case study on dropped cells
We applied the IE model to Large-Intestine data from Tabula

Muris with 4150 annotated cells and 212 dropped cells. We
used the original Seurat R package to identify the cluster marker
(feature) genes. To check the performance ofmarker genes in the
IE model, we introduced the statistic PIE to measure the total IE
of markers as

PIE =
∑k

i Emint∑k
i Etint

,

where m represents the number of marker genes among cells
and t denotes the number of top IE genes. We set the default
value of k to 10. The clustering results were visualized in 2D
projection of UMAP with default parameters.

Analysis of myeloid-like cells
To verify the ability of the IE model to identify novel subtypes,

we performed IE-guided clustering analysis on myeloid cells of
human lung cancer (Lambrechts et al., 2018). First, we excluded
genes expressed in <10 cells and filtered out cells express-
ing <600 genes. Consequently, 14750 genes and 8172 cells
were applied for futher analysis. Then, we used the IE model
or method on the normalized data to select the informative
genes. The top 2000 high-IE genes were applied for downstream
analysis using Seurat (resolution = 0.8). Finally, we obtained
15 myeloid cell subtypes and UMAP was used for visualization.

Furthermore,weused allmarkers of each cluster (log-foldchange
>0.25) to perform Gene Ontology functional enrichment analy-
sis using Metascape (Zhou et al., 2019) with default parameters
(min overlap = 3, P-value cutoff = 0.01, min enrichment = 1.5)
and g:Profiler (Raudvere et al., 2019). We performed survival
analysis and expression boxplot using GEPIA2 (Tang et al.,
2019) with the top 15 differential genes, which had the minimal
P-value and log-foldchange >0.5.

Data availability
All the datasets used in this study were obtained from their

public accessions, and detailed information can be found in
Supplementary Table S1 and the References. All the scripts in
this study are available in the GitHub repository: https://github.
com/LinLi-0909/IEntropy.

Supplementary material
Supplementary material is available at Journal of Molecular

Cell Biology online.
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