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Abstract

Since first identified in 1879, plasma, the fourth state of matter, has been developed and uti-

lised in many fields. Nonthermal atmospheric plasma, also known as cold plasma, can be

applied to liquids, where plasma reactive species such as reactive Oxygen and Nitrogen

species and their effects can be retained and mediated through plasma-activated liquids

(PAL). In the medical field, PAL is considered promising for wound treatment, sterilisation

and cancer therapy due to its rich and relatively long-lived reactive species components.

This study sought to identify any potential antagonistic effect between antioxidative intracel-

lularly accumulated platinum nanoparticles (PtNPs) and PAL. We found that PAL can signifi-

cantly reduce the viability of glioblastoma U-251MG cells. This did not involve measurable

ROS influx but instead lead to lipid damage on the plasma membrane of cells exposed to

PAL. Although the intracellular antioxidative PtNPs showed no protective effect against

PAL, this study contributes to further understanding of principle cell killing routes of PAL and

discovery of potential PAL-related therapy and methods to inhibit side effects.

Introduction

Cancer is a deadly disease that is the second biggest cause of mortality in Western nations [1].

Despite continued advancements in cancer therapy, new research areas are needed to improve

clinical effectiveness. Combination treatments that attack tumour cells through multiple

mechanisms, either concurrently or sequentially, rather than attempting to specifically target a
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single deregulated pathway have become popular in therapeutic development for oncology.

Reactive oxygen and nitrogen species (ROS/RNS), and their associated redox signalling path-

ways affect a multitude of intracellular signalling pathways and are subjects of intriguing

research [2].

Direct cold plasma produces long- and short-lived reactive species in the gas phase, such as

nitric oxide, ozone, hydroxyl radicals, singlet oxygen, and superoxide anion [3]; however,

plasma-activated liquid (PAL), as an indirect plasma system, is primarily composed of long-

lived species such as hydrogen peroxide, nitrite, and nitrate. Although direct plasma treatment

to cells and tissues is promising and approved in European dermatology centres [4], there is a

growing demand to use plasma-derived ROS/RNS as putative injections in a more flexible

manner which can be achieved by treating liquids or solutions with plasma devices [5]. The

plasma-derived ROS/RNS are transferred from the plasma gas phase to the liquid phase in this

process.

Li et al. (2017), investigated the use of dielectric barrier discharge (DBD) plasma in direct

cancer cell treatment and a microwave-based plasma system in indirect cancer cell treatment.

They made nitric oxide plasma-activated water (NO-PAW) as an indirect treatment. Results

showed that NO-PAW created with a microwave plasma system had an 18% apoptotic effect

on HeLa cells, while 4 minutes of DBD therapy had a 7% apoptotic effect [6]. The species

found in PAW and plasma activated medium (PAM) have been reported to destroy cells via

apoptosis while also boosting mammalian cell growth [7]. According to studies, the ROS spe-

cies found in the PAW/PAM can cause the lipid bilayer membrane to peroxide, resulting in

apoptosis [8].

Furthermore, according to Tanaka et al. (2011) PAM causes apoptosis in glioblastoma can-

cer cells via a caspase 3/7 route. Moreover, PAM treatment of cancer cells led to the downregu-

lation of a survival signalling molecule (AKTkinase) [9]. When tumours are present in the

body’s internal organs, exposing malignant tissues to plasma torches/microjets for direct

plasma treatment is difficult, if not impossible [10]. According to Saadati et al. (2018) indirect

plasma treatment might be utilised extensively inside the body with far fewer adverse effects

than direct treatment [11]. Subramanian et al. (2020) examined the effects of PAW on the via-

bility of human breast cancer cells (MDA-MB-231) and healthy murine muscle-derived fibro-

blast cells using the MTT assay. According to the findings, the cell viability of MDA-MB-231

human breast cancer cells was reduced by over 75%. 6 and 12 minutes activation times of

PAW diminished the cell viability of MDA-MB-231 cancer cells without affecting the vitality

of healthy primary fibroblasts (murine muscle-derived fibroblast (MMF)), demonstrating

selectivity [12].

Additionally, Boehm et al. (2017) generated PAW using a high-voltage DBD cold atmo-

spheric plasma (CAP) technology and results showed high cytotoxic potential and superior

storage stability. H2O2 concentrations can be linked to decreased cell viability and growth and

used as an indicator of a plasma-activated water’s potential efficacy. Results illustrated that

PAW has a potency that exceeds H2O2-related toxicity compared to the standard H2O2 kill

curves, indicating that other plasma-generated species are also important [13].

We wished to explore the specific mechanism of toxicity of PAL in Glioblastoma. Previ-

ously, we found that low dosages of PtNPs had non-to-low toxicity in the U-251 MG and HEK

293 cell lines while also having significant protective benefits against DBD CAP-induced cyto-

toxicity as an effective intracellular ROS scavenger [14]. We hypothesised that accumulation of

PtNP in cells would allow us to differentiate between the role of extracellular and intracellular

ROS in mediating cell damage and cytotoxicity. Therefore, in the current study, we investigate

the roles of PtNPs when cancerous U-251 MG cells are exposed to indirect plasma treatment,

using a previously reported spark discharge PAL generating device (Fig 1) [15].
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Materials and methods

Human cancer cell lines (U251-MG) were used in the study. These are cell lines obtained from

reputable commercial cell banks. Animal tissue (fetal calf serum) was used in the study. This

was obtained from a reputable commercial company. The research project was approved by

TU Dublin Research Ethics and Integrity Committee.

Reactive Species Specificity (RSS) plasma system

An RSS Plasma system has been developed and previously characterised [16] and used in the

“spark” configuration. Briefly, the high voltage electrode was a stainless-steel needle positioned

perpendicular to the solution’s surface, and the distance between the high voltage needle tip

Fig 1. A schematic illustration of the PAL generation device prototype used in this study.

https://doi.org/10.1371/journal.pone.0274524.g001
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and the liquid’s surface was set to 5 mm. The plastic petri dish was put on a stainless-steel plate

that was connected to the ground, and the discharge was operated in atmospheric air to get the

spark setup. As a power supply, the PVM500 plasma driver (Information Unlimited Inc.,

USA) was employed, which has a maximum output of 20 kV and a variable frequency of 20–

70 kHz. To generate plasma, a voltage of 7 kV was applied with a set frequency of 25 kHZ, and

the system’s applied power was 19 watt [16, 17].

Plasma activated water treatment

A plastic petri dish (55 mm inner diameter) was filled with 10 mL of sterile deionised water to

produce PAW, resulting in a water layer of around 4.2 mm depth, while the diameter of the

electrode tip was around 1 mm (Fig 1). All PAW used in this study was created using a 10-min-

ute generation time. The temperature of treated PAW has been determined to be around 60˚C

using a thermal camera (S1 Fig). The PAW samples were cooled to room temperature, ana-

lysed, and stored at 4˚C in 15 mL tubes for 24-hour analysis. For cell treatment, PAW was

used freshly or stored as indicated, and then diluted in fresh culture medium to specific % (v/

v) concentrations, and then added to cells with various treatment conditions as indicated in

each result section.

Measurement of reactive oxygen species concentrations

Hydrogen peroxide concentrations in plasma activated water (PAW) were quantified using

titanium oxy-sulphate (TiOSO4, Sigma-Aldrich, Arklow, Ireland) and spectrophotometric

measurement. The calibration curve of known hydrogen peroxide concentrations (0, 82, 163,

326, 653, 979, and 1632 μM) was prepared by diluting 30% hydrogen peroxide standard solu-

tion (Perhydrol1 for analysis EMSURE1 ISO) and used to convert absorbance into hydrogen

peroxide concentrations. Briefly, 10 μl of TiOSO4 solution and 100 μl of PAW or calibration

curve samples were added to a 96-well microtiter plate. After 10 min incubation at room tem-

perature, absorbance was read on a spectrophotometric plate reader at 405 nm [15].

Total oxidising species concentrations in PAW were quantified using oxidation of potas-

sium iodide to iodine and spectrophotometric measurement as per method described in

Boehm et al. (2016) with slight modification. The calibration curve of known hydrogen perox-

ide concentrations was prepared as described above and used to convert absorbance into total

oxidising species concentrations. 50 μl of PAW or calibration curve samples, 50 μl of water

and 100 μl of potassium iodide (1 M) were added to a 96-well microtiter plate. After 30 min

incubation at room temperature, absorbance was read on a spectrophotometric plate reader at

390 nm [18].

Measurement of reactive nitrogen species concentrations

Nitrite ion (NO2
−) concentrations were measured by Griess reagent (Sigma-Aldrich, Arklow,

Ireland). A range of known concentrations of sodium nitrite solution (0, 20, 40, 60, 80, and

100 μM) was used to prepare a NO2
− calibration curve and to convert absorbance into NO2

−

concentrations. 50 μl of Griess reagent and 50 μl of PAW or calibration curve samples were

added to a 96-well microtiter plate. After 30 min incubation in the dark, absorbance was read

at 548 nm [19].

Nitrate ion (NO3
−) concentrations were determined by 2,6-dimethyl phenol (DMP) using

the Spectroquant1 nitrate assay kit (Merck Chemicals, Darmstadt, Germany) using the manu-

facturer’s instructions with minor modification. Samples were pre-treated with sulfamic acid

to eliminate nitrite interference. A set of standard concentrations of sodium nitrate solution

(0, 0.1, 0.25, 0.5, 1, 2.5, and 5 mM) was used to prepare NO3
− calibration curve and to convert
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absorbance into NO3
− concentrations. Briefly, 200 μl of reagent A, 25 μl of PAW or calibration

curve samples and 25 μl reagent B was added in order into a 1.5 ml microtube and then mixed

vigorously. After 20 min incubation at room temperature, 100 μl of the total mixture was

added to a 96-well microtiter plate and the absorbance was read at 340 nm [20].

Cell culture

The human brain glioblastoma cancer cell line (U-251 MG) was provided by Dr Michael Carty

(Trinity College Dublin). Cells were grown in Dulbecco’s Modified Eagle’s Medium-high Glu-

cose (Merck) supplemented with 10% fetal bovine serum (Merck) and 1% penicillin (Thermo

Fisher Scientific) and kept at 37˚C in a humidified incubator containing 5% (v/v) CO2 (Sar-

stedt). The culture medium was changed every 2–3 days and cells were subcultured after reach-

ing around 80% confluence. Using a 0.25% Trypsin-EDTA solution, cells were routinely sub-

cultured in new flasks (Merck). Platinum, nanoparticle dispersion, 3 nm, was purchased from

Merck.

PtNPs and PAW treatment with Alamar blue assay

The Alamar blue assay was used to determine cell viability (Thermo Fisher Scientific). In

96-well plates (Sarstedt), U-251 MG cells were plated at a density of 1x104 cells/well (100 μl cul-

ture media per well) and incubated overnight at 37˚C. The medium was removed, and a fresh

culture medium containing 0–100 μg/ml PtNPs (Merck) was added and incubated for 1–24

hours as indicated in each section. Afterwards, the medium was removed again, and a fresh

culture medium containing increasing concentrations (0� 30%) of PAW was replaced. Fol-

lowing a 2 to 48 h incubation with media containing PAW at 37˚C, the cells were rinsed once

with phosphate buffered saline (Merck) and replaced with fresh media to continue incubation

or do an Alamar Blue cell viability assay (10% Alamar blue in fresh media, incubate at 37˚C for

3 hours till reading fluorescence) at the end of the period as indicated in each section. Addi-

tionally, cells pre-incubated with PtNPs (0.032 and 4 μg/ml) for 24 h were treated with ROS

generator 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) and H2O2 for 4 hours. For

reading Alamar blue assay, fluorescence was measured (excitation, 530 nm; emission, 595 nm)

by a Victor 3 V 1420 microplate reader (Perkin Elmer).

H2DCFDA assay and flow cytometry

The generation of reactive oxygen species induced by CAP was detected using a cell permeable

oxidant sensitive fluorescent dye 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA)

(Thermo Fisher Scientific). U-251 MG cells were seeded in 35 x 10 mm Petri dishes (Sarstedt)

at a density of 1×105 cells/ml. After 24h, the growth medium was removed, and PtNPs

(0.032 μg/ml) in medium were added and then incubated overnight at 37˚C. Medium was

replaced with fresh medium containing 10% PAW and then incubated for 4 hours. Culture

medium was replaced with fresh serum-free medium containing 25 μM H2DCFDA and cells

were incubated for 30 min at 37˚C. Cells were washed with fresh medium once and then with

PBS twice and all floating and attached cells were collected by trypsinisation. All liquids,

including medium, washing PBS and trypsin-cell suspension, were transferred into one tube

and centrifuged at 1200 rpm for 5 min. Cells were resuspended in PBS and the Beckman Coul-

ter CytoFLEX Flow Cytometer was used to detect and measure fluorescence. Flow analysis was

carried out with a 488 nm laser for excitation and FITC-A standard filter for H2DCFDA

measurement.
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Lipid peroxidation and confocal imaging

The staining method of lipid peroxidation sensor C11-BODIPY was carried out as described

by [21]. In brief, C11-BODIPY (581/591) (Thermo Fisher) stock solution was prepared in etha-

nol to 2 mM, then diluted in fresh culture media to 5 μM as the working concentration. Cells

were seeded in 8-well Nunc™ Lab-Tek™ II Chamber Slide™ (Thermo Fisher) at 15,000 cells per

well, settled overnight, and then incubated with fresh media with or without 0.032 μg/ml

PtNPs for 24 hours. Subsequently, cells with PtNPs in the medium with/without Pyruvate

were incubated with C11-BODIPY medium working solution at 37˚C for 30 min and then

washed twice with PBS before incubation with medium containing PAW for four hours.

Before observing under a Zeiss LSM 800 Airy confocal laser scanning microscope (Univer-

sity College Dublin, Conway Imaging Core), cells were washed twice with PBS and incubated

with fresh medium containing working concentration (2 drops per ml) of NucBlue™ Live

ReadyProbes™ Reagent (Hoechst 33342, Thermo Fisher) for 15 min at 37˚C. Afterwards, cells

were washed again twice with PBS and fixed by incubation with 4% paraformaldehyde in PBS

(Merck) at 37˚C for another 15 min. Finally, cells were washed once more with PBS prior to

being mounted with 24 mm x 50 mm glass coverslips (Merck) and ProLong™ Glass Antifade

Mountant (Thermo Fisher) and subsequent observation. The corresponding filter settings

were as follows. NucBlue™, excitation 405 nm, emission 430–470 nm; C11-BODIPY (581/591),

excitation 1: 488 nm, emission 1: 500–560 nm; excitation 2: 560 nm, emission 2: 560–620 nm.

Statistical analysis

For each data point, three independent experiments were carried out in duplicate. Curve fit-

ting and statistical analysis were performed using Prism 8 (GraphPad Software). Data are pre-

sented as a percentage, and all error bars are based on the standard error of the mean (S.E.M).

Data points were verified using one-way ANOVA and Tukey’s multiple comparison post-test

to determine the significance, as indicated in figures (�P<0.05, ��P<0.01, ���P<0.001,
����P<0.0001).

Results

The antioxidant effect of PtNPs against direct CAP exposure

The antagonistic effects between the direct DBD CAP treatment and PtNPs have been

reported in a previous study and repeated here [14]. It demonstrated a 50% reduction in cell

viability after 24 hours when U-251 MG cells were subjected to 50 seconds of CAP therapy,

compared to controls. On the contrary, when cells were pre-incubated with PtNPs, they were

protected from CAP-induced cytotoxicity, and lower concentrations of PtNPs alone did not

cause any toxicity to cells in the absence of CAP treatment (Fig 2A). H2DCFDA, a commonly

used ROS indicator, was then used to study the intracellular ROS level after treatments. As

seen in Fig 2B, ROS levels in cells increased considerably after direct CAP treatment compared

with negative control. However, the mean fluorescence levels of oxidised H2DCFDA in CAP-

treated cells were significantly decreased when they were pre-incubated with PtNPs, thus dem-

onstrating the antioxidative effect of low doses of PtNPs. Based on these results, we selected

two concentrations of PtNPs (0.032 and 4 μg/ml) further to study their potential interactions

with indirect CAP treatment. In this study, spark discharge PAW generating device was used

for indirect CAP treatment, which has been measured to generate, after running for 10 min,

nitrate (~3.73 mM) and hydrogen peroxide (~0.88 mM) along with other yet explored oxidis-

ing species (~1.18 mM total oxidative species) with the set condition (S1 Table), whereas

nitrite was not detectable. After 10 minutes of exposure to plasma for spark discharge (SD)
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PAW, the pH value changed from neutral to acidic, to a level of approximately 3, and remained

steady after one week of storage. This spark discharge PAW also has been demonstrated with

significant antimicrobial activity that is notably resistant to high temperatures [16].

The role of Pyruvate on cell viability

Pyruvate is known as an antioxidant [18] and is common as an component in cell culture media.

We sought to see if Pyruvate could affect PAW-induced cytotoxicity; therefore, we used two dif-

ferent culture mediums, with and without Pyruvate. As shown in Fig 3, dose-response curves

were created utilising a variety of PAW percentages paired with two different non-toxic concen-

trations of PtNPs: 0.032 μg/ml and 4 μg /ml. Cytotoxicity was determined using an Alamar Blue

cell viability assay. U-251 MG cells were pre-incubated with PtNPs for 24 h (Fig 3A and 3C) and

48 h (Fig 3B and 3D), and then the medium was replaced with a fresh medium containing freshly

prepared PAW, and cells were incubated for 48 h. When cells grew in a medium with Pyruvate,

there was no effect on the cell viability up to 20% PAW treatment in all conditions, and there was

only a slight decrease at the highest PAW concentration (Fig 3C and 3D). On the contrary, as Fig

3A and 3B demonstrate, increasing percentages of PAW (20% and 30%) without pyruvate

medium caused higher toxicity, killing almost all cells in the presence or absence PtNPs. Approxi-

mately 50% loss of cell viability was observed when U-251 MG cells were exposed to 10% and

15% PAW treatment (Fig 3A and 3B), although there is a slight increment in the cell viability with

48 h 0.032 μg/ml PtNPs incubation (Fig 3B). Cell viability was high with 5% and lower doses of

PAW treatment in the presence or absence of PtNPs (Fig 3A and 3B).

Simultaneous treatment of PAW and PtNPs to cells

To determine the simultaneous effect of PAW and PtNPs, we carried out two different meth-

ods. In the first method, U-251 MG cells were preloaded with the mixture of PtNPs (0.032 μg/

Fig 2. Antioxidant effect of PtNPs against direct CAP treatment. The experimental data was from our previous study [14]. (A) U-251 MG cells were

incubated with increasing concentrations (0� 100 μg/ml) of PtNPs for 24h before CAP treatment and Alamar blue analysis was carried out 24h after CAP

treatment (B) Negative Control represents untreated cells, black CAP treatment and the others 0.032 μg/ml PtNPs with and without CAP treatment and data

was acquired by flow cytometry.

https://doi.org/10.1371/journal.pone.0274524.g002
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ml and 4 μg/ml) and a range of PAW concentrations (0� 30%) and then incubated for 24 h

and 48 h at 37˚C. As a second method, we used higher percentages of PAW; 25, 30, 40, mixed

each dose with 0.032 and 4 μg/ml PtNPs and incubated the mixture at 37˚C overnight and fol-

lowing that, cells were loaded with the mixture for 24 h and 48 h at 37˚C. As seen in Fig 4A

and 4B, groups with higher doses of PAW (�10%) with or without PtNPs had more significant

toxicity. However, there is slightly higher cell viability with PtNPs mixture when compared to

PAW only for groups with lower doses (�5% PAW). Cell viability increased while the PAW

doses decreased, and the viability reached 60% starting from 5% of PAW doses. A similar pat-

tern was observed after treatment for 24 h and 48 h incubation in a medium without Pyruvate

(Fig 4A and 4B). Interestingly, although cells were treated with higher percentages of PAW up

to 40% and 0.032 μg/ml and 4 μg/ml PtNPs mixture, only 20% of toxicity for 24 h incubation

and 10% for 48 h incubation was observed in medium without Pyruvate (Fig 4C and 4D).

Fig 3. Dose responses for PAW treatment. In medium without Pyruvate, U-251 MG cells were incubated with 0.032 and 4 μg/ml PtNPs for 24 h (A) or 48h

(B) and then treated with increasing concentrations (0� 30%) of PAW and incubated for 48 h; In medium with Pyruvate, U-251 MG cells were incubated with

0.032 and 4 μg/ml PtNPs for 24 h (C) or 48h (D) and then treated with increasing concentrations (0� 30%) of PAW and incubated for 48 h. Alamar blue cell

viability assay was carried out 48 h after PAW treatment.

https://doi.org/10.1371/journal.pone.0274524.g003
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The difference between freshly prepared and 24 h stored PAW at 4˚C on

cell viability

Interestingly, PAW incubated at 37˚C for 24 h showed minor cytotoxicity compared to freshly

prepared ones with or without PtNPs. So, we wished to observe if there is any difference

between freshly prepared and 24 h stored PAW at 4˚C on cell viability to elucidate reasons for

the dramatically changed cytotoxicity of PAW following storage. We, therefore, treated U-251

MG cells with 0.032 μg/ml and 4 μg /ml PtNPs overnight and then replaced the medium with-

out Pyruvate with fresh medium including 2.5, 5 and 10% PAW and incubated the cells for 48

h. Cytotoxicity was significantly higher when cells were treated with freshly prepared PAW at

doses of 10% at around 80% (Fig 5A) compared to 24 h stored PAW, which caused approxi-

mately 50% loss of cell viability (Fig 5B). There was no significant difference when cells were

treated with freshly prepared or stored PAW for the relatively lower doses, and cell viability

was around 80% for both conditions.

Fig 4. Dose responses for simultaneous PAW treatment. U-251 MG cells were treated with 0.032 and 4 μg/ml PtNPs and increasing concentrations

(0� 30%) of PAW simultaneously and incubated for 24h (A) or 48 h (B). 0.032 and 4 μg/ml PtNPs and 25, 30, 40% of PAW were mixed at incubated at 37˚C

for 24 h, U-251 MG cells were treated the mixture and incubated for 24 h (C) or 48 h (D).

https://doi.org/10.1371/journal.pone.0274524.g004
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Time points assay for PAW

To examine the efficacy of PAW, we picked three different time points to add PAW to U-251

MG. Based on previous results and slight protection against PAW, we chose 0.032 μg/ml

PtNPs to treat cells overnight. After 24 h incubation with PtNPs, cells were treated with PAW

at 2.5, 5 and 10% doses for 2 h, 4 h and 24 h. As seen in Fig 6A, cell viability was 100% for the

low doses of PAW; however, viability decreased almost 30% when cells were treated with only

PAW at 10% dose, but 0.032 μg/ml PtNPs protected cells from 2 h of PAW treatment. Com-

pared with 2 h PAW treatment, significant loss of cell viability was observed for 4 h (Fig 6B)

and 24 h (Fig 6C) PAW treatment at a dose of 10% in the presence or absence of PtNPs.

Although the cell viability was high at the lowest dose of PAW treatment, 24 h PAW treated

cells showed less viability for the dose of 5% PAW compared to 4 h PAW treated ones (Fig 6B

and 6C), which is in agreement with results in Fig 3.

Fig 5. Difference between freshly prepared or stored PAW treatment on cells. U-251 MG cells were incubated with 0.032 and 4 μg/ml PtNPs for 24 h and

then treated with 2.5, 5 and 10% freshly prepared PAW (A) or 24 h stored PAW (B). Alamar blue cell viability assay was carried out 48 h after PAW treatment.

https://doi.org/10.1371/journal.pone.0274524.g005

Fig 6. Time points assay for PAW. U-251 MG cells were incubated with 0.032 μg/ml PtNPs for 24 h and then treated 2.5, 5 and 10% PAW and incubated for 2 h

(A), 4h (B) and 24h (C).

https://doi.org/10.1371/journal.pone.0274524.g006

PLOS ONE Membrane lipid peroxidation mediates glioblastoma cell death exposed to plasma activated liquids (PAL)

PLOS ONE | https://doi.org/10.1371/journal.pone.0274524 September 22, 2022 10 / 21

https://doi.org/10.1371/journal.pone.0274524.g005
https://doi.org/10.1371/journal.pone.0274524.g006
https://doi.org/10.1371/journal.pone.0274524


Time points assay for PtNPs

Based on the results in Figs 3–6, we investigated the effects of 0.032 μg/ml and 4 μg /ml PtNPs

at different time points. We treated U-251 MG with PtNPs for 1 h, 4 h, 8 h, 16 h and 24 h and

then a range of PAW with increasing concentrations up to 30% was applied to cells and incu-

bated for 48 h. Although cell viability was high for each PtNPs treatment time point for 5%

and lower doses of PAW, for 30%, almost all cells were dead (Fig 7). As seen in Fig 7C, there is

a slight decrease in cell viability at toxic doses of PAW (20% - 10%) compared to Fig 7A and

7B. When cells were treated with PtNPs for longer times, cell viability showed an increment

with slight protection of PtNPs at high doses of PAW (Fig 7D and 7E). However, it is not possi-

ble to say that PtNPs protection is significant.

Intracellular ROS level of PAW and PtNPs treated cells

In order to determine the effects of PtNPs on ROS generation by PAW (10%) U-251 MG cells

were preloaded with H2DCFDA. ROS levels in cells following PAW treatment remained at the

almost same level as the negative control (Fig 8A). Additionally, PAW-treated cells pre-incu-

bated with PtNPs (0.032 μg/ml) and cells pre-incubated with PtNPs only showed the same

mean fluorescence levels (Fig 8). In contrast, AAPH-dependent ROS production and H2O2

brought a significant increase in intracellular ROS. The mean fluorescence levels of 25 mM

ROS-generator and 2 mM of H2O2 were increased by a factor of 3 and 2 times, respectively,

compared to the negative control (Fig 8).

Cellular membrane lipid peroxidation of PAW and PtNPs treated cells

The potential damage pathway of PAW treatment insusceptible from PtNPs was then investi-

gated via confocal microscope and membrane peroxidation sensor C11-BODIPY (581/591).

C11-BODIPY (581/591) is a lipophilic dye that intercalates cellular lipid membranes and shifts

their emission peak from around 590 nm (Red) to around 510 nm (Green) after being oxi-

dised, thus is commonly used as a sensitive lipid peroxidation sensor.

As seen in Fig 9, with Pyruvate in the culture medium, no significant lipid peroxidation was

observed in the PAW untreated group, but a slight signal in PAW treated group (Top two

rows), which agrees with results demonstrated in Fig 9C and 9D. However, 4 hours of incuba-

tion with 10% PAW led to significant lipid peroxidation when the culture media without Pyru-

vate was used, despite potential protective antioxidant effect of PtNPs (Fig 9 bottom two

rows), which also agrees with our results in Figs 3–7 that PtNPs surprisingly showed no signifi-

cant protective effect against PAWs treatment.

Discussion

The uses of cold plasma for medical purposes have been explored much more recently, espe-

cially for cancer therapy. Several methods of plasma treatments have been considered highly

promising to eliminate cancer cells via generated reactive species and other effects, including

plasma jet and plasma-activated liquids [22]. Plasma jet, as the representative technique for tis-

sue treatment, has been demonstrated to suppress cancer cells effectively [23]. An in-depth

understanding of the cancer-killing effects has been established, and several pro-oncogene or

tumour suppressor-dependent regulations of antioxidant/or ROS signalling pathways were

discovered to be related, as introduced in detail [23]. On the other hand, plasma jet technology

also has been well developed, especially cold atmospheric pressure air plasma jet (CAAP-J),

which is considered one of the most promising plasma treatment methods for medical uses,

and an extensive review article is also included here for further information [24].
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Plasma-activated liquids (PALs) have been studied extensively as promising methods to

manipulate ROS for therapeutic purposes due to their unique physicochemical properties. The

dissolution of gas plasma species into liquid causes dynamic chemical reactions, resulting in a

Fig 7. Dose responses for PtNPs treatment. U-251 MG cells were incubated with 0.032 and 4 μg/ml PtNPs for 1h (A), 4h (B), 8h (C), 16h

(D), and 24h (E) then treated with increasing concentrations (0� 30%) of PAW. Alamar blue cell viability assay was carried out 48 h after

PAW treatment.

https://doi.org/10.1371/journal.pone.0274524.g007
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sequence of aqueous reactive species, some of which are short-lived transient reactive species

that are difficult to identify [25]. While the total biological effects of PALs may be caused by a

variety of short and long-lived species, it is well known in the field of plasma medicine that

H2O2, NO2
− and NO3

− are detected as stable, long-lived species in PALs that play an essential

role in biological effects [26]. Furthermore, PALs have been noted with particular toxicity

Fig 8. Intracellular reactive oxygen species production in U-251 MG. U-251 MG cells were incubated with 0.032 μg/ml PtNPs for 24 h and then treated with 10%

PAW. (A) Histograms representing negative control, 0.032 μg/ml PtNPs, 0.032 μg/ml PtNPs combined with 10% PAW, 10% PAW only, H202 and ROS generator as

positive controls. (B) Multi-comparison of ROS production in U-251 MG cells. (C) Mean fluorescence level of oxidised H2DCFDA in cells.

https://doi.org/10.1371/journal.pone.0274524.g008
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leading to cancer cell death. For instance, Yan et al, demonstrated that pancreatic cancer cells

and glioblastoma cells were specifically vulnerable to plasma-activated medium and plasma-

activated Phosphate-buffered saline respectively [27].

PtNPs can be naturally taken up and accumulated into cells. Moglianetti et al. (2016) inves-

tigated PtNPs internalization and subcellular localisation. HeLa and Caco-2 cells were sub-

jected to Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) studies to

determine the cellular uptake of PtNPs 24 hours after incubation, at 50 μg/mL concentrations.

According to experimental findings, both 5 nm and 20 nm PtNPs accumulated internally in

substantial amounts, with the smaller NPs showing the greatest uptake. Additionally, 5 nm

PtNPs demonstrated four times higher uptake than 20 nm PtNPs in both cell lines in terms of

Pt quantity [28]. Teow et al. (2010) treated HeLa, MCF7 and IMR90 cells with 100 μg/mL of

13.5 and 91.3 nm PtNPs and observed the scattered light from NPs showing bright spots under

CytoViva optical microscopy [29]. Pelka et al. (2009) detected the uptake of 100 nm PtNPs or

Fig 9. Lipid peroxidation assay. C11-BODIPY (581/591) staining shows increased lipid peroxidation induced by four hr treatment of 10% PAW in media

without Pyruvate. Confocal imaging of C11-BODIPY loaded cells, 1st to 5th panels: Inverted, highlight oxidised form of C11-BODIPY using ImageJ; Green,

oxidised form of C11-BODIPY; Red, reduced form of C11-BODIPY; Bule, NucBlue staining showing nucleus; Merged images (blue, green and red channels);

Scale bar (from top to bottom, 30 μm, 30 μm, 50 μm, 50 μm).

https://doi.org/10.1371/journal.pone.0274524.g009
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smaller sizes at a concentration of 1000 ng/cm2 in the HT29 cells incubated for 24 h by scan-

ning electron microscopy (SEM) combined with the technique of focused ion beam (FIB) mill-

ing [30]. Elder et al. (2007) observed intracellular accumulation of 20 and 35 nm of PtNPs at

concentrations of 25 and 250 μg/mL in HUVEC cells using TEM [31].

This study investigated the PtNPs (3 nm) as a potent intracellular scavenger of ROS, com-

bined with PAW therapy on the U-251 MG cancer cell line. As previously established, low dos-

ages of PtNPs showed non-to-low toxicity against U-251 MG cell lines with intracellular

accumulation while demonstrating considerable protective benefits against cytotoxic effects

induced by treatments of the direct DBD CAP system (Fig 2), which agree with other studies

for antioxidative PtNPs [14, 32–36]. Therefore, we employed 0.032 μg/ml and 4 μg/ml of

PtNPs based on previous data showing that concentrations of PtNPs at or below 4 μg/ml did

not lead to significant cytotoxicity for the U-251 MG cell line.

We first identified the effects of the common antioxidant component, Pyruvate, in a cell

culture medium. The cell viability rapidly deteriorated when the concentration of PAW was

increased to 10% and higher doses when Pyruvate was omitted from the culture medium (Fig

3A and 3B). However, cell viability remained high even at high doses of PAW in the presence

of Pyruvate (Fig 3C and 3D), which demonstrated that the cytotoxicity effect caused by fresh

PAW could be suppressed by antioxidative Pyruvate and thus, the cytotoxicity of PAW can be

confirmed to be highly related with ROS. Furthermore, surprisingly, no significant antioxida-

tive effect of PtNPs was observed, except a slight increment in the cell viability with those

groups pre-incubated with 0.032 μg/ml PtNPs for 48 h against PAW treatment (Fig 3B).

Furthermore, it has been demonstrated that other culture medium components may also

scavenge ROS. For instance, it has been demonstrated that the generation of •NO only was

observed in plasma-treated water but not in DMEM with or without FBS, which can be due to

D-Glucose and other compounds still to be identified [37]. The presence of FBS, the composi-

tion of which may vary between batches and be hard to identify at the current stage, may also

contribute to ROS scavenging [37]. Therefore, we have determined the levels of reactive spe-

cies (nitrate and total oxidative species) in all representative cell treatment conditions (S3 Fig)

to assist further discussion below. As seen in S3 Fig, we diluted PAW to various solutions to

30% before measurement. Interestingly, dilution in cell culture media with or without pyruvate

did not change the nitrate level compared to 30% PAW in water and showed a linear decline

compared to 100% PAW. PtNPs did not affect nitrate levels, which matches our previous

results (S3 Fig). On the other hand, the total oxidative species level decreased significantly in

culture medium without pyruvate, compared to 30% PAW in water. Furthermore, the pyru-

vate completely scavenged peroxides in the culture medium and the same trend was observed

with the ROS generator too, which agreed to Fig 3. The presence of PtNPs did not affect total

oxidative species level either (S3 Fig).

Then we wanted to seek if there is any synergistic or antagonistic effect of PtNPs and PAW

when they are added to the cells simultaneously. As Fig 4A and 4B present, we detected signifi-

cant cytotoxicity when high percentages of PAW were used, which agrees with the results in

Fig 3. Meanwhile, no significant protective effect of PtNPs was observed for simultaneous

treatment. Although we noted that PtNPs seem to slightly increase cell viability at most low

PAW concentrations, it was not significant and became more inconsistent at higher PAW con-

centrations. The 10% PAW point in Fig 4A and 4B showed a contrary tendency that PtNPs

slightly decreased cell viability, which was observed in Fig 3A, Fig 5A and 5B at higher PAW

concentrations. However, the weak trend was not consistent in repeated experiments (S4 Fig).

Interestingly, when PAW was incubated overnight at 37˚C with or without PtNPs, it lost the

cytotoxic effect even at the highest doses of 25, 30 and 40% (Fig 4C and 4D), which may dem-

onstrate the instability of generated ROS or other cell-killing factors in PAW. To confirm the
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reason for changes in cytotoxicity of PAW after storage, PAW was prepared freshly or stored

at 4˚C for further comparison (Fig 5). PtNPs were not found to increase cell viability; however,

there is significant cytotoxicity when cells were treated with especially freshly prepared 10%

PAW combined with/without PtNPs. Similarly, Shen et al. (2016) investigated how different

storage temperatures (25˚C, 4˚C, -20˚C, and -80˚C) affected the bactericidal activity of PAW

against S. aureus and the physicochemical parameters of PAW after 30 days. Their data

revealed that the bacterial activity of PAW held at 25˚C, 4˚C, and -20˚C reduced over time and

was influenced by three germicidal factors: oxidation-reduction potential (ORP), H2O2, and

NO3
−. Furthermore, PAW held at -80˚C retained bactericidal action, with NO2

− contributing

to this ability in conjunction with H2O2 [38].

Lastly, to further confirm that PtNPs, although as a potential antioxidant, cannot suppress

the cytotoxicity effects of PAW, we tested the cell viability at different times after PAW treat-

ments (2 h, 4 h, 24 h) and three different doses of PAW (2.5, 5 and 10%) in the absence or pres-

ence of 0.032 μg/ml and 4 μg/ml PtNPs. Mohades et al. (2015) measured the vitality of the

SCaBER cancer cell immediately after plasma-activated medium (PAM) administration (0 h),

as well as 12 h, 24 h, and 48 h afterwards. According to the results, PAM did not influence cell

survival immediately after application; on the other hand, the data after 12 hours, 24 hours,

and 48 hours after PAM treatment revealed that when cells were exposed to PAM for longer

durations, the cell viability was reduced up to 90% [39]. In agreement with this study, we

found that 2 hours following PAW administration had no effect on cell viability with/without

PtNPs (Fig 6A). However, viability was reduced after 4 h and 24 h of exposure to PAW in the

presence or absence of PtNPs (Fig 6B and 6C). Still, we only observed slight protection effect

of 0.032 μg/ml PtNPs pre-incubation against 2 h of 10% PAW treatment with around 20%

increase of cell viability (Fig 6A), but not in other groups.

Our results demonstrated that PtNPs confer minimal to no protective effect against PAW,

which may be related to the cell-killing mechanism of PAW treatment used in this study and

was surprising compared with our previous results when investigating the protective effect of

PtNPs against direct plasma treatment, and other studies regarding the antioxidative effect of

PtNPs [14, 32–36]. Several in vitro and in vivo experiments revealed that pure PtNPs or PtNPs

coated with cell compatible materials have low harmful effects [40]. PtNPs are usually thought

to be less hazardous than silver NPs and to have outstanding antioxidant properties, lowering

the generation of ROS [41]. Therefore, we hypothesise that it could potentially be that the ROS

damage caused by the relative mild PAW treatment used in this study, unlike direct plasma

treatment between two electrodes, is mainly limited to the cell surface and therefore not

affected by intracellularly accumulated PtNPs, until there is a leakage of the cell membrane

and influx of ROS. Meanwhile, the co-incubation of PtNPs and PAW in the medium also do

not present reduced cytotoxicity, which agrees with our previous study that sufficient accumu-

lation inside cells and high concentrations of PtNPs are critical for its antioxidative efficacy.

In several previous studies, hydrogen peroxide has been reported as the principal cytotoxic

reactive species in PAL, while the reduction of cell growth and viability had linear correlations

to the reduction of hydrogen peroxide concentrations in different PALs [16, 18, 20]. In con-

trast, the addition of nitrite and nitrate (up to 1.2 mM) showed no cytotoxic effects on U-251

MG cells in another study [13]. However, various damaging pathways of PAL are yet fully

explored. To confirm this hypothesis of this particular PAW cytotoxic pathway insusceptible

to antioxidative PtNPs, we investigated intracellular levels of ROS and lipid membrane peroxi-

dation caused by PAW in the presence of PtNPs, using flow cytometry and confocal

microscopy.

H2DCFDA has been used as an intracellular ROS indicator, and as predicted, no significant

increased signal of intracellular ROS was observed when cells were treated with 10% PAW for
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4 hours (Fig 8). However, as positive controls, high concentrations of hydrogen peroxide solu-

tion and ROS generator more aggressively induced significant increases of fluorescent signal

showing intracellular oxidation (Fig 8), which likely was due to the influx of hydrogen perox-

ide via the damaged porous membrane. Despite no detectable increase of intracellular ROS

level, incubation with 10% of PAW 2 mM hydrogen peroxide for 4 hours showed a decrease of

40–50% of cell viability, whereas 2-hour treatment of 10% PAW only caused minor cytotoxic-

ity. Thus, the potential reason for reduced cell viability by 10% PAW 4 hours of treatment,

which was relatively mild compared to positive control ROS solutions, was investigated using

confocal imaging and lipid peroxidation sensor C11-BODIPY. As seen in Fig 9, the presence

of pyruvate inhibited notable lipid peroxidation, which agrees with the results in Fig 3C and

3D. Pyruvate, as an effective antioxidant and common component in cell culture medium, can

effectively eliminate cytotoxic effects of PAW, in which ROS play a central role. The potential

antagonistic effects of pyruvate and other potential antioxidants, artificially or naturally exist-

ing in in vitro reagents and in vivo internal environment, thus should be noted in studies that

focus on the roles of PAL and other ROS-generating plasma devices. The observation of signif-

icant lipid peroxidation in groups treated with PAW in the absence of pyruvate (Fig 9) then

further proved our hypothesis that membrane lipid peroxidation induced by ROS in relative

mild PAW treatment is sufficient to lead to significant reductions in cell viability and final cell

death with no need of further membrane perforation or ROS influx. Over shorter time periods,

it is therefore likely that the influx of ROS into cells exposed to PAW is buffered by an intracel-

lular antioxidant mechanism, whereas accumulating damage to external membranes can con-

tinue to take place. Therefore, PtNPs, accumulated inside cells as an antioxidant, do not

protect cells from the initial damage caused by PAW. Interestingly, after 4 h, oxidised lipid

staining in cells displayed a punctate pattern, indicating that membrane internalisation, turn-

over and recycling had been activated as the cell attempted to repair the damaged plasma

membrane.

In summary, whereas the potential inhibition and cytotoxic effects of nitrite, nitrate [42]

other radicals and their byproducts, such as peroxynitrite/peroxynitrous acids, that can gener-

ate in PAL cannot be denied [16, 43], hydrogen peroxide and other ROS have been demon-

strated to play the principal role in the cytotoxic effects caused by spark discharge PAW.

Furthermore, the membrane lipid peroxidation caused by ROS in relatively mild PAW treat-

ment is sufficient to cause a significant reduction in cell viability and final cell death, without

further membrane damage and the influx of ROS via the porous membrane, thus cannot be

prevented by PtNPs or other similar intracellular antioxidants. Lastly, we also tested the cyto-

toxicity of H2O2 and ROS generator in the presence of PtNPs. Miriam et al. (2020) established

an assay using a variety of H2O2 concentrations to measure oxidative stress in the porcine

small intestinal epithelial cell line IPEC-J2 using CM-H2DCFDA assay. Results showed that

2.5 and 3 mM of H2O2 significantly increased intracellular ROS levels however 1 to 2 mM

H2O2 did not cause an increase in intracellular ROS levels in the cell [44]. In another study,

Engelmann et al. (2005) anayzed GSH concentrations and ROS formation using H2O2 as a

positive control at a concentration of 0.02, 0.2 and 2 mM for 90 min in primary human fibro-

blasts (HPF). At concentrations of 0.2 mM or higher, the results showed that H2O2 enhanced

intracellular ROS and decreased GSH. With higher H2O2 concentrations, the rate of ROS pro-

duction in HPF rose consistently [45]. Based on these studies and contribution to high oxida-

tive stress in cancer cell lines without immediate cell death effects around 50% (S2 Fig), we

chose 2mM H2O2 as a positive control to observe intracellular ROS levels to be able to compare

with other groups (Fig 8). Despite the intracellular ROS observed in positive controls with

high H2O2 and ROS generator concentrations, we observed no protective effect of PtNPs

sequestered inside cells against relatively lower H2O2 and ROS generator concentrations, like
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PAW, which agrees with previous results (S2 Fig). Moreover, it suggests that ROS solutions

can induce cell death via both membrane damage and intracellular damage caused by ROS

influx. This study contributes to a better understanding of potential PAW-induced cell death

mechanisms and PtNPs antioxidative behaviour, which will be relevant to improving future

applications of PAW and PtNPs for medical use.

Supporting information

S1 Fig. Temperature measurement of treated PAW. In this study, 10 min of plasma treat-

ment was applied to 10 mL of water. The thermal measurement was taken at the end of the

treatment.

(TIF)

S2 Fig. Dose responses for ROS generator and H2O2. (A) U-251 MG cells were incubated

with 0.032 and 4 μg/ml PtNPs for 4 h and then treated with increasing concentrations (0� 50

mM) of ROS generator. (B) U-251 MG cells were incubated with 0.032 and 4 μg/ml PtNPs for

4 h and then treated with increasing concentrations (0� 8 mM) of H2O2. Alamar blue cell via-

bility assay was carried out 4 h after treatment.

(TIF)

S3 Fig. Reactive species (Nitrate and total oxidative species) measurement of PAW before

and after various dilution conditions. DMEM-DMEM with 10% FBS used for cell culture;

Pyr -Pyruvate; ROSg—ROS generator; In this experiment, 30% of PAW was selected as the

representative condition. The PAW was diluted in DMEM with or without pyruvate, DMEM

without pyruvate but with 4 μg/ml PtNPs and water. 25 mM of ROS generator in DMEM

with/without pyruvate and H2O was also tested as controls.

(TIF)

S4 Fig. Repeat experiments for dose responses for simultaneous PAW treatment. U-251

MG cells were treated with 0.032 and 4 μg/ml PtNPs and increasing concentrations (0� 30%)

of PAW simultaneously and incubated for 24h (A) or 48 h (B).

(TIF)

S1 Table. ROS and RNS characterisation of PAW generated after 10 min treatment.
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