
Seasonal Climate Effects Anemotaxis in Newly Emerged
Adult Anopheles gambiae Giles in Mali, West Africa
Nicholas C. Manoukis1*, Ibrahima Baber2, Moussa Diallo2, Nafomon Sogoba2, José M. C. Ribeiro3
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Abstract

The direction and magnitude of movement by the malaria vector Anopheles gambiae Giles has been of great interest to
medical entomologists for over 70 years. This direction of movement is likely to be affected by many factors, from
environmental conditions and stage of life history of the mosquito to the existence of attractants in the vicinity. We report
here the direction of movement of newly emerged An. gambiae in nature, around the village of Donéguébougou, Mali. We
assessed the direction of movement for individual mosquitoes by placing them in a novel enclosure with exit traps oriented
in the direction of the cardinal and intermediate points of the compass. We consistently found predominantly Southward
directions of movement during 2009 and 2010, with an additional Eastward component during the dry season and a
Westward one during the wet season. Our data indicate that wind has an important effect on the direction of movement,
but that this effect varied by season: Average directions of movement were downwind during the dry season and upwind
during the wet season. A switch in anemotactic response suggests that the direction of movement of An. gambiae relative
to the wind immediately after emergence under varying conditions of humidity should be further investigated under
controlled conditions.
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Introduction

Anopheles gambiae sl is the major vector of malaria in the African

continent, where over 90% of the deaths from malaria occur [1].

For an individual female of this species to go from egg to actually

transmitting the disease she must successfully engage in a long

series of behaviors, starting with feeding and surviving in the

aquatic habitat, through emerging and moving around the

physical space surrounding the breeding site. Only after these

steps will she seek a blood meal from a potentially infected human,

digest this to produce a clutch of eggs and then find a breeding site

to lay the eggs. If she has also acquired the malaria parasite this

must develop in her mid gut and infect her salivary glands before

she will be able to transmit malaria to another human during the

next blood meal, usually a period of 12 days at 250C.

Many links in the behavioral ‘‘chain’’ of An. gambiae from egg to

blood feeding to transmitting the Plasmodium have been heavily

researched, particularly those directly around host seeking.

Excellent studies have been conduced on the role of carbon

dioxide [2], lactic acid [3], 1-octen-3-ol [4], human sweat [5],

dietary habits [6] and temperature and humidity [7] (among other

factors) in host seeking, but these elements or other relevant

parameters are almost never studied in relation to male

mosquitoes (which do not blood feed but clearly play a role in

maintaining vector populations) or to stages of the life history other

than blood feeding. In this study we are interested in the choices

facing an individual An. gambiae in the field immediately after

emerging from the larval habitat. During those early moments as

an adult, a mosquito is thought to seek shelter [8] to allow their

exoskeleton to harden; blood feeding for females will not be a

factor for several days, and so there are no infectious mosquitoes,

but movement at this time will create the distribution of adult

females that then may transmit malaria. Is the direction of

movement of the new adults completely random? Do they attempt

to approach a nearby village so they are near to mating sites [9]

and sources of blood?

There is a known association between breeding sites and high

mosquito density [10]; the link between mosquito density and

parasite prevalence is often more complex [11,12]. It is thought

that emerging Anopheles probably move only a short distance from

the breeding site based on observations in the laboratory of resting

behavior after emergence [8] but the anthropophilic habits of An.

gambiae are well known and may lead the newly emerged to move

towards nearby human habitations for resting sites.

In order to test the direction of movement of recently emerged

An. gambiae we constructed a large enclosure with exit traps in eight

directions, oriented to the cardinal and intermediate points of the

compass. The basic assumption of this experiment is that adults

emerging at the center of the enclosure will be more likely to be

caught in exit traps oriented in the direction they are trying to

move, an idea supported by tests in the laboratory (see Materials

and Methods).
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Our results did not show a pattern of movement towards the

village, but we did find consistent movement directions which are

correlated with the direction of the wind and the season. During

the wet season, under humid and warmer conditions, movement

direction tended to be upwind. However, during the dry season,

under dry and cooler conditions, movement directions were

predominantly downwind. These results indicate that anemotaxis

in An. gambiae should be closely examined under controlled

conditions of varying humidity, temperature and wind speed.

Results

We observed significant differences in the survival of adult An.

gambiae post emergence during the dry and wet seasons. During the

dry season almost all adults were dead by noon (about 18 h after

the pupae were placed in the cages), and we never observed any

living adults in the cages by 24 h after the start of any replicate.

During the wet season, however, we caught adults in exit traps for

up to 72 h after the start of the replicate.

During the wet season we checked exit traps every twelve hours

(see Methods) but found that almost all mosquitoes found in exit

traps were collected during the morning check rather than in the

afternoon; and more were found in the second morning after the

start of the replicate than the first. The mean number (SD) we

collected in exit traps per enclosure on the first morning after the

start of each replicate during the wet season was 43(30); the

afternoon of the same day, 9(5); the following morning, 119(42).

We only found a mean (SD) of 10(15) the third morning after the

replicate started. Thus we have only considered the captures

obtained in the morning after the start of the replicates for the dry

season and for the two mornings after the start for the wet season

in all subsequent analyses.

For the dry season, we found a mean(SD) of 71(29) adults per

enclosure the morning following the start of the replicates. As

mentioned previously, no living adults were ever found subsequent

to that check during the dry season.

Average wind speed, measured from 6pm to 6am on nights

when we ran the experiment, was more variable between years for

the dry season than for the wet season. Relative humidity was

much lower during the dry season than during the wet, as were

average temperatures (Table 1).

We noted a very large difference in the number of adult

mosquitoes caught in the corner traps of the cages compared to

those along the sides of the enclosures. This difference was

unexpected but very large: for the entire experiment we caught a

total of 9267 adults in corner exit traps, compared with 350 in the

other half of the exit traps which were along the sides of the

enclosures. For all subsequent analyses we considered only the

results from the corner cages.

We did not detect a significant difference in the number of

males and females per exit trap (Wilcoxon signed rank test

N~344, V~16861:5, p~0:1582). The data from our control

cage show that just over 95% of the adults which emerged had

done so by 22:30 on the first night of the experiment.

Movement Direction in Field Trials
We calculated ‘‘dispersal vectors’’, representing the direction

and magnitude of the bias in movement directions (see Materials

and Methods) for each enclosure and each night of the

experiment, a total of 86 dispersal vectors. Of these, 17 and 24

were for the dry and wet seasons of 2009, respectively, and for

2010 the numbers were 21 and 24 for the dry and wet seasons.

The direction and magnitude of each of all these dispersal vectors

is given in Figure 1, which also shows the circular means and

variances for each year and season.

In addition to the measured movement directions relative to the

points of the compass given in the top row of Figure 1, we have

also re-projected the the directions relative to the circular mean

direction of the wind on the night the replicate was conducted

(bottom row).

71 of the 86 dispersal vectors were of greater magnitude than

95% of the expected magnitudes from simulations of random

directions of movement (see Materials and Methods). After

removing those below that threshold, the number of dispersal

vectors per season were 16 for dry 2009, 19 for wet 2009, 20 for

dry 2010 and 16 for wet 2010. We used these 71 angles for all the

inferential analysis that follows below.

We found that there was a significant departure from circular

uniformity as estimated with the Hodges-Ajne ‘‘omnibus’’ test [13]

within all the four seasons the experiment was conducted (pv0:01
in all cases).

We found no statistically significant difference in the directions

of movement between years for a given season (Watson-Williams

tests: dry season 2009 vs dry season 2010 F1,34~0:46, p~0:50;

wet season 2009 vs. wet season 2010 F1,33~0:03, p~0:87). The

same analysis showed no statistically significant difference in

movement directions between years for a given side of the village

(North or South): Marche vs Fulani (North) F1,36~0:13, pw0:10;

Cemetary vs. Grove (South) F1,33~0:12, pw0:10.

Finally we conducted a two-factor Harrison-Kanji test (a circular

analogue to a two-factor ANOVA [13]) to jointly estimate the effect

of season and side of village on dispersal vectors. This test showed that

both factors were statistically significant (Table 2). For side of village

the predominant direction of movement for Northern and Southern

sites was Southward: almost exactly South for the Northern sites and

roughly South West for those in on the Northern side of the village.

We observed almost no Northward movement at all.

Discussion

Our results shed some light on the world of An. gambiae

immediately after emergence from the larval habitat. The

Table 1. Weather on nights when experiments were conducted in Donéguébougou.

Date Season Wind Speed (m/s) Gust (m/s) Rel. Humidity (%) Temperature (0C)

Apr 2009 Dry 0.36 1.62 31.20 31.27

Aug–Sep 2010 Wet 0.13 1.04 91.77 23.82

Mar–Apr 2010 Dry 0.09 1.20 30.98 30.32

Aug 2010 Wet 0.11 1.13 96.61 23.60

Averages from 18:00 to 06:00 on experimental nights. Gust = Average of nightly maximum wind speed.
doi:10.1371/journal.pone.0026910.t001
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direction of movement of these new adult mosquitoes is far from

random: we observed consistent Southward movement, with an

Eastward component during the two dry seasons and a Westward

one during the two wet seasons of research in Donéguébougou.

The location of the village seemed to have no effect on the

direction of movement, despite its relative proximity: though the

two-factor test showed a significant effect of side of village on

dispersal direction, we did not observe the difference to

correspond to movement towards the village, i.e. the sites to the

South of the village showed Southward rather than Northward

movement. This indicates that the very first resting sites of An.

gambiae are probably not tied to human habitations.

The leading explanatory factor in our study was the direction of

the wind. During the dry season, the ‘‘Harmattan’’ winds are

consistent and usually strong in Mali, coming from the North-

West during night hours. The recently emerged adults showed a

clear pattern of movement in the same direction as the wind

during this season. During the wet season the pattern with respect

to the wind was less clear, as the wind direction was more variable.

However, the data suggest upwind movement. The difference

between the seasons may indicate a switch from appetitive (active

flight) to passive (drifting with the wind) [14] dispersal depending

on environmental conditions, though there are additional

explanations not excluded by our study but discussed below. We

also note that any discussion of anemotaxis or movement in

mosquitoes must be based on what is known about host-seeking

behavior, which may not apply to the stage of the life cycle we are

investigating.

Upwind movement is consistent with studies on mosquitoes and

other insect species [15,16] and with movement towards an

attractant source [2,17,18], particularly for host-seeking mosqui-

toes [19–21]. Factors driving possible appetitive movement this

early in the adult life cycle are unknown at present. However, if

there is some attractant for the newly emerged mosquitoes during

the dry season, it is probably not the village but rather something

more ubiquitous; perhaps higher levels of carbon dioxide in the

wind during the wet season could cause a seasonal difference,

though we would expect lower CO2 during the wet season due to

plant growth.

Downwind movement is less commonly described in mosqui-

toes, though it has been suggested as an important component in

host seeking: covering larger distance by moving downwind and

moving upwind only when within close range [22]. Explanations

for passive movement in host seeking mosquitoes are much less

developed, but such behavior may be a common feature of non-

feeding recently emerged adults under dry season environmental

conditions, and perhaps for the same reason suggested by Gillies

[22].

A simple difference in wind speed or gust strength between the

seasons could explain the variation in direction of movement

between seasons: newly emerged An. gambiae might be moving

downwind during the dry season due to stronger average speeds or

gusts compared to the wet season. However, our data indicate that

wind speed was not consistently higher during the dry season, and

the higher average gust strengths during those times don’t seem

sufficient to explain the highly consistent downwind movement of

adults. For mosquitoes wind speeds below 1 m/s are thought to

allow active movement [23], and though clearly this speed varies

by species, appetitive movement should be possible during most

times even in the dry season. In addition, strong winds are likely to

cause the adults not take off at all [24], though variation from a

higher to a lower wind speed may result in higher number of

flights [25].

Another possibility is that a simple difference in age of emerged

adults between seasons might explain the variation in anemotaxis.

During the dry season all adults emerged and were caught in the

same night- none survived to move the following evening. The wet

season mosquitoes often survived to the next evening, and we

indeed caught a larger number on the second morning compared

with the first during those experiments.

We also note that the pupae used during the dry season were M-

form from Niono, some 300 km away from our study site, while

those used during the wet season were local and predominantly S-

form (see Materials and Methods). Though the M-form makes up

almost all the local population in Donéguébougou during the dry

season, their numbers are very low. There may be a systematic

difference in anemotactic response of early adults between the

molecular forms, a possibility which could be further examined in

the laboratory.

If there is a switch in anemotaxis not related to the molecular

form but rather to the climate, the two major factors which could

drive the change are temperature and relative humidity, both

consistently lower during the dry season. Low relative humidity is

known to lead to lowered activity levels in An. gambiae as measured

by biting rate [26,27]. These same studies indicate biting activity

at temperatures around 200C, so we do not think that temperature

is limiting during the dry or wet seasons. Thus humidity is our

leading explanatory factor for the variation in anemotaxis between

seasons.

Few previous studies have considered anemotaxis when

investigating movement by An. gambiae in nature, and there is

only one release-recapture that we know of which also considered

the age of the adults: the study of Gillies [28] in East Africa. His

results did show both upwind and downwind movement during

the NE and SE monsoon periods, but the wind directions were

only the prevailing ones and humidity and temperature records

Figure 1. Individual dispersal vectors, seasonal and annual means and variances and wind roses. Plots in the left column are for the dry
season and on the right for the wet season. The top row are dispersal vectors for each night and enclosure experiments were conducted (black lines
with open circles) with the circular mean and variance of movement directions for 2009 in blue and 2010 in red. Vectors in this row are plotted
relative to magnetic East at 0 radians (all angles measured counterclockwise). The middle row of plots are wind roses for nights when the experiment
was conducted as measured from 18:00 to 06:00, again with East pointing to the right. The percent calm conditions is shown by the size of the center
circle. Each branch represents the wind coming from that direction, with its thickness proportional to the speed of the wind (see scale at center). The
length of each branch is proportional to the frequency of wind coming from that direction. The bottom row of the figure shows individual dispersal
vectors plus means and variances relative the the mean wind direction on the night the experiment was conducted (upwind direction is 0 radians).
doi:10.1371/journal.pone.0026910.g001

Table 2. Effect of side and season on dispersal vectors.

d.f. x2 p

Side of village 2 8.00 0.02

Season 2 30.65 v0:001

Interaction 1 3.48 0.96

Residual 66

Harrison-Kanji two-factor test of the effect of side (North or South) and Season
(Dry or Wet) on dispersal vectors.
doi:10.1371/journal.pone.0026910.t002
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are not reported. The same study also showed relatively lower

distances of movement for 1 and 2 day old adults, around 0.4 km

for the majority of recaptures.

We emphasize that our experiment concerned only the initial

direction of movement, not the distance that any given adult An.

gambiae may move following emergence. It may be that the

distances covered are very small, and that the majority of new

adults can be found in the morning directly around the breeding

site in the hours after emergence [8]. While this strategy of very

short-range movement might work during the wet season it would

fail around any permanent water source during the dry season

which is immediately adjacent and upwind from the shelter of a

house or vegetation. It may be that short distance appetitive

movement occurs during the wet season to nearby vegetation

apart from humans, but passive movement during the dry season

allows transport further and gives a better chance of survival.

Our results indicate that the direction of movement of An.

gambiae relative to the wind immediately after emergence may vary

depending on temperature and/or humidity. These should be

further investigated under controlled conditions for newly emerged

adults and also for older mosquitoes.

Materials and Methods

Study Site
We conducted our field experiments in the village of

Donéguébougou, Mali. Donéguébougou is a village of 1345

inhabitants situated about 25 km north of Bamako, in the West

Sudan Savana ecoregion, characterized by low grasslands and

rolling hills. The area receives between 500 and 1000 mm of

rainfall annually in a highly seasonal pattern, with almost all the

precipitation occurring between May and October. There is an

alternating dry season from November to April (see Figure 2). Our

field experiment design included two dry season and two wet

season experimental blocks, conducted in March–April (dry

season) and August–September (wet season) of both years. We

ran replicates for 6 and 8 nights during the dry and wet seasons of

2009 respectively, and 7 and 8 nights during the dry and wet

seasons of 2010. We received permission from villagers and

landowners to conduct experiments. Further details about the

environment and human activities are given in [29].

Malaria transmission in this area is seasonal, coincident with

rains and higher vector densities from June to November [30].

The major malaria vectors are in the An. gambiae species complex.

The molecular and chromosomal form composition of An. gambiae

in this area is known to shift with changes in climatic conditions

between wet and dry seasons. The M molecular form (Mopti

chromosomal form) is more prevalent, together with Anopheles

arabiensis during the dry season, but they are gradually replaced by

the S molecular form (first Savana then Bamako chromosomal

forms) as precipitation increases [31,32].

We selected four sites around the village to use for our

experiment, which we named ‘‘Fulani’’ (12048’28:300’’N
7058’55:985’’W) and ‘‘Marche’’ (12048’29:765’’N 7059’09:560’’W)

to the north and ‘‘Cemetary’’ (12048’18:540’’N 7059’15:411’’W)

and ‘‘Grove’’ (12048’11:656’’N 7059’10:750’’W) to the south. We

selected these to be about 100 m from the edge of the village at the

start of the experiment in March 2009.

Emergence Enclosures
We developed a specialized enclosure for measuring the

direction of movement of newly-emerged mosquitoes (pictured

in Figure 2). These consisted of 57 cm cube enclosures made of

PVC piping, with exit traps pointing in eight directions: in the

center of each side and on each corner. Pupae were placed in these

enclosures and moved into the exit traps as adults, usually

overnight. Exit traps (opening diameter = 16 cm) were made from

HVAC register boxes (GAF Materials Corp. Wayne NJ) with

plastic funnels glued to the opening to prevent re-entry of

mosquitoes from the trap back into the main enclosure chamber.

The entire enclosure was covered with a custom-made screen

which included zippers for closing the space around the exit traps.

The exit traps were covered with screen fitted with elastic closures

to prevent the escape of adults.

We designed these enclosures so that if mosquitoes were trying

to go in a given direction they would be more likely to become

caught in the exit trap pointing in that direction. Our observations

of mosquitoes in the laboratory indicated that they would keep

colliding with the netting or sides of the enclosure in a particular

direction and move slightly along that surface, which makes it

likely that they would be caught in the nearest exit trap. We

validated this apparatus in an insectary using a carbon carbon

dioxide close to one exit trap of the enclosure as an attractant and

found significantly more adults in the exit trap near the source

than in the others. We constructed and utilized a total of three

such enclosures for the experiment presented here.

Figure 2. ‘‘Marche’’ site, North-West edge of Donéguébougou.
Upper panel, dry season (April 2009); lower panel, wet season (August
2009). Note that the experimental enclosure pictured in the upper
panel is not completely ready for the replicate: we always verified that
the exit traps were at the same height before the start of the replicate.
doi:10.1371/journal.pone.0026910.g002
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Field Experimental Procedure
In order to obtain sufficient numbers of pupae for conducting

multiple enclosure trials per night we collected blood-fed, semi-

gravid and gravid An. gambiae from our field site in Donéguébou-

gou by mouth aspiration during the wet season and allowed them

to lay eggs in the MRTC insectary in Bamako. We raised the

larvae until the pupal stage in the insectary. During the dry season

the number of adult mosquitoes in the village was very low, so we

collected from the irrigated region of Niono then followed the

same rearing procedure in the laboratory. We note that during the

wet season in Donéguébougou the An. gambiae population consists

of mostly S molecular form individuals (Savana and Bamako

chromosomal forms) while during the dry season the M molecular

form predominates (Mopti chromosomal form) [31,32]. An. gambiae

from the irrigated area of Niono are very nearly 100% of the M

molecular form [33].

On the morning of a replicate we would count pupae starting at

around 08:00 h and sort them into batches of 100 individuals.

Around 15:00 h we would mix the pupae (from different rearing

trays) and segregate them into larger containers (with about

400 mL of water), one per enclosure and a fourth as a control

group. The control group was around 100 pupae (minimum = 75,

max = 120, mean = 96, SD = 10) in about 150 mL of water held in

a growth chamber (BioQuip Products, Rancho Dominguez CA)

next to our portable weather station at the field site. We checked

this control growth chamber every 30 min–1 hour until at least

23:00 h to check for the time of emergence of our pupae.

Weather conditions were recorded using a Kestrel 4500

portable weather station with weather vane attachment (Nielsen-

Kellerman, Boothwyn PA) mounted on a tripod at our field station

(12048’25:180’’N 7059’06:020’’W). The device was set to record

climatic conditions from 18:00 h to 06:00 h on the nights when we

conducted the experiment. We did not record climatic conditions

within the enclosures directly.

By about 17:30 h we had set up experimental enclosures in

three of the four available sites, locations randomized between

nights. The number of pupae varied between experimental nights,

from a minimum of 200 to a maximum of 470 per cage

(mean = 345, SD = 83). All enclosures were oriented with either a

corner or a side trap pointing North on a per night basis (order

randomized). The locations to which particular enclosures were

deployed were also randomized.

The morning following the start of the replicate we checked

each of the exit traps in each of the enclosures starting around

06:00 h. We used a mouth aspirator to remove any adult

mosquitoes in each exit trap. When possible we counted the

number of males and females in each exit trap in the field, though

if numbers were high or weather conditions were unfavorable we

would put the adults into collecting cups and take them back to the

laboratory in Bamako for counting.

Measuring Movement Direction Based on Enclosure Data
The data resulting from the enclosure experiment were counts

of male and female adult An. gambiae found in each corner exit trap

the morning or mornings after the start of each replicate. In order

to analyze these we had to calculate the direction and magnitude

of any differences between traps in the number of adults, which we

were able to summarize as a single pair of numbers for each

replicate (night/enclosure) by calculating a ‘‘dispersal vector’’

which had the direction (Dv) and magnitude (Mv) of the differences

in counts of adults in each exit trap. We did this by considering

each mosquito caught in a given trap to add a unit length to a

vector pointing in that direction, and then used component

addition to calculate the dispersal vector for the whole enclosure/

night. When the corner cages were oriented in the cardinal

directions we calculated the x and y components as follows:

x~Ne{Nw

y~Nn{Ns

Where Nx is the number of adults caught in the trap pointing in the

magnetic direction x. When the enclosures were oriented in the

intermediate directions, we calculated the components as follows:

x~NnehzNseh{Nswh{Nnwh

y~Nneh{Nseh{NswhzNnwh

Where h~
ffiffiffiffiffiffiffi
0:5
p

. Finally, we calculated the dispersal vectors as:

Dv~atan(xzy)

Dm~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p

Statistical Analysis
We produced basic descriptive statistics for the field cage data

using the CircStats package in R [34], and further inferential tests

using CircStat under Matlab [13]. One problem presented by our

data when using inferential statistics is that methods for handling

circular data analyze angles but not magnitudes of vectors on the

circle. We had to determine which magnitudes were significant for

inclusion in any analysis of angles and their relationship to

explanatory variables such as the wind or the location of the

village. In order to determine significant vector magnitudes for use

in the inferential analyses only, we generated 1000 simulations of N
mosquitoes moving into random corner exit traps (random

directions) for each enclosure/night of the real experiment, where

N is the total number of mosquitoes that were caught in exit traps in

that enclosure/night. We then used the dispersion vector magnitude

from the simulation to determine if the observed vector magnitude

each night exceeded the value of 95% of the random simulations.

Note that this measure of ‘‘significant’’ vector magnitudes would

exclude results with no significant directionality and likely also those

with more than one major direction of movement.
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