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Abstract

It is often unrealistic to assume normally distributed latent traits in the measurement of health outcomes. If normality is
violated, the item response theory (IRT) models that are used to calibrate questionnaires may yield parameter estimates
that are biased. Recently, IRT models were developed for dealing with specific deviations from normality, such as zero-
inflation (“excess zeros”) and skewness. However, these models have not yet been evaluated under conditions repre-
sentative of item bank development for health outcomes, characterized by a large number of polytomous items. A
simulation study was performed to compare the bias in parameter estimates of the graded response model (GRM),
polytomous extensions of the zero-inflated mixture IRT (ZIM-GRM), and Davidian Curve IRT (DC-GRM). In the case of
zero-inflation, the GRM showed high bias overestimating discrimination parameters and yielding estimates of threshold
parameters that were too high and too close to one another, while ZIM-GRM showed no bias. In the case of skewness,
the GRM and DC-GRM showed little bias with the GRM showing slightly better results. Consequences for the devel-
opment of health outcome measures are discussed.
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Introduction

Health outcomes research and clinical practice often require measurement of directly unobservable variables, such
as pain and depression. A common strategy is measuring these variables by means of questionnaires. For instance,
the Patient-Reported Outcomes Measurement Information System (PROMIS) Depression Item Bank is a collec-
tion of questions, or “items,” which was developed to measure depression.! One of the items of the item bank asks
patients to report how often they felt like nothing could cheer them up in the past seven days. Patients can choose
among five response options: never, rarely, sometimes, often, and always.

In order to assign a score to an individual based on his or her observed item responses, a metric for the
measurement instrument is needed; statistical models can be used to create such metrics. For instance, the graded
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response model (GRM)? is often used for items with multiple response options. The GRM is a member from a
family of statistical models known as item response theory (IRT).® Historically one of the central tools of
ability measurement and educational testing, IRT models have recently gained popularity in health outcomes
research.*® For instance, the metric of all PROMIS instruments, including the PROMIS Depression Item Bank,
were created using the GRM.’

Under the GRM, the observed score X; on item j with ordinal response options k =0, 1,..., K is expressed
using K cumulative response probabilities, given by

0% (0—bjc)

P(X; > k|0) = (D

1+ eaj((?—b/-k)

which gives the probability that the response will be category k or higher. Given that P(X; > 0|0) =1 and
P(X; > K]|0) = 0, the probability that the observed response will be the kth response option can be obtained by
subtracting cumulative probabilities

P(Xj = k|0) = P(X; > k|0) — P(X; > k +1]0) @)

In these equations, 0 represents the latent score of a respondent on the metric of the instrument, a; determines
the rate of increase of the logistic curves, and by is the location on the metric of the instrument where respondents
have a probability of 0.50 of choosing category k or higher. Parameters a; and b;. are conventionally called
“slope” (or “discrimination”) and “threshold” (or “difficulty”) parameters, respectively.'® Since the latent score
0 is unobservable, the metric of the instrument is not defined by the model, but must be identified using model
constraints. In most cases, the GRM is estimated using marginal maximum likelihood (MML),'"!> where the
scale is fixed using a latent density function g(#) in which the mean and variance are constrained. Conventionally,
g(0) is assumed to be the standard normal density (a mean of zero and a standard deviation of one).

Following the initial applications of IRT in health outcomes research, challenges of this new venue were
identified.'® One of these challenges is related to the nature of the variables of interest and the assumption of
standard normality of the latent score distribution (shown in Figure 1, left-hand panel). In health outcomes
research, constructs are often operationalized in such a way that there is a lower end of the scale which merely
expresses the absence of the underlying construct (e.g., “no depression”) and a higher end which expresses severity
using a substantially finer gradation (e.g., “mild,” “moderate,” or “severe” depression). Such constructs are called
“quasi-traits,”"® and one of their characteristics is that the underlying latent variable may be non-normally
distributed in the population used for calibrating the instrument.

The non-normality of quasi-traits may be the consequence of various processes.'*'® First, the population may
be composed of two or more subpopulations. For instance, the general population may be composed of individ-
uals with and without depression. Then one could assume a normal distribution for each subpopulation, allowing
for differences in severity between populations, like in a multiple-group model.'” However, in the case of quasi-
traits, with all respondents from the healthy group selecting the lowest response options, it is not realistic to
assume normality within each group. In fact, a latent score cannot be assigned to respondents from this popu-
lation, since a complete zero pattern does not contain information about the specific latent score. One way to deal
with this is to assume an additional response process leading to the surplus of zero-patterns. More specifically,
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Figure |. Normal, zero-inflated, and skewed latent trait distribution examples.
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a normal distribution for the latent variable has been suggested for the regular response process and a constant
distribution for the latent variable under the other response process. For example, when measuring depression
severity, a normal distribution is assumed for the subpopulation suffering from depression, and the healthy
subpopulation would be assumed to have a very low latent trait score with no variance (Figure 1, middle
panel). This scenario has been referred to as “zero-inflation,” since there is an excess of complete zero patterns
under the IRT model.””'® An alternative scenario leading to non-normality would be one where the latent trait
distribution in the population is skewed (Figure 1, right-hand panel). This situation may arise when the majority
of the population has low to medium latent trait scores but a small fraction with much higher scores is also
present.'® This process will be referred to as “skewness.”

Previous research suggests that the violation of the normality assumption is detrimental to item parameter
and score estimates. For instance, a study examining the robustness of MML estimation of the Rasch model
revealed that deviations from normality caused bias in item parameter estimates, with bias increasing with more
severe skewness.'® Another study suggested that when the underlying distribution is positively skewed, assuming
a normal distribution would introduce negative bias in slope estimates and negative bias for lower category
threshold estimates, which means that the estimates would be too low.'” In addition, the bias in parameter
estimates has been shown to be more outspoken for extreme values of the parameter.”’ Recently, similar results
were reported,”' although one study reported smaller biases.>” It has also been suggested that parameter
estimates are biased in the presence of zero-inflation;'®?® for instance, the slope parameters would be over-
estimated. Biased parameter estimates may lead to biased latent score estimates, by which conclusions with
reference to a patient’s relative standing or a patient’s progress may be false.”* Also, biased parameter estimates
may lead to biased estimates of reliability, by which the measurement precision of a patient’s score estimate
may be under- or overestimated.'”

To deal with the bias stemming from non-normality, alternative IRT models have been developed. Recently,
the use of mixtures of normal distributions was suggested as an approximation to non-normal distributions.*®
A special case of the mixtures of normal distributions can be used when zero-inflation is expected and is called
zero-inflated mixture IRT (ZIM-IRT).'®?* Also, solutions have been suggested for estimating IRT models for
data resulting from skewed latent distributions, such as incorporating a skewed-normal density,?® and augmenting
the model with an extra step in which the density is estimated empirically. Two recent examples of the latter
approach are Ramsay Curve IRT (RC-IRT)'® and Davidian Curve IRT (DC-IRT).?’

Recently, the use of ZIM-IRT and RC-IRT, among others, was exemplified using the PROMIS Anger
item bank,”® which consists of 29 polytomous items. The authors reported that, in comparison to the GRM,
the slope estimates were higher for RC-IRT and lower for ZIM-IRT, whereas the threshold estimates had a
smaller range for RC-IRT and a larger range for ZIM-IRT. This study was illustrative of the considerable
impact of model choice on item parameters. However, because it used empirical data, which obviously lack an
unequivocal criterion (e.g., true values of item parameters), the relative performance of the competing approaches
could not be assessed. For a systematical and objective comparison of methods, Monte Carlo simulations are
more appropriate.

Several simulation studies have shown promising results for methods dealing with non-normality, but the
conditions under which these methods were evaluated were not in line with the settings commonly encountered
while developing item banks for health outcomes. For instance, ZIM-IRT was evaluated using simulated data sets
which consisted of 10 or 11 items with dichotomous response options,'®** whereas the PROMIS item banks, for
instance, typically contain many more items and more than two response options.” Likewise, the parameter
recovery performance of DC-IRT has not yet been evaluated in a simulation study where polytomous items are
considered. Therefore, the available series of simulation studies is incomplete, and additional studies are required
to examine the performance of these new methods in settings typical for health outcome measurement.

The aim of the current study was to investigate two models, each corresponding to one of the possible causes of
non-normality discussed previously, focusing on the settings typically encountered in the assessment of health
outcomes, where the measured constructs often consist of quasi-traits and the item pool commonly consists of
a large number of polytomous questions. The method for tackling non-normality caused by zero-inflation,
ZIM-IRT, is the most popular method in the literature. The method for dealing with skewness, DC-IRT, is
the simplest method available allowing for flexible estimation of various forms of the latent distribution, including
skewed distributions. Moreover, both methods are readily available in popular software packages, ZIM-IRT in
Mplus'' and DC-IRT in the R package mirt.'? Polytomous extensions of ZIM-IRT and DC-IRT were compared
to the GRM, in order to identify the conditions under which these models improve parameter estimation.
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Methods

Models for non-normal latent trait distributions

The first method that was examined was the ZIM-GRM, which is the extension of ZIM-IRT?® to deal with zero-
inflation in polytomous items. ZIM-IRT was inspired by the models developed for dealing with excess zeros in
count data with correlated observations®® and combines the idea of using latent classes to identify a group

with extreme responses with a method for weakening the normality assumption through a mixture distribution.??
ZIM-GRM replaces the standard normal density used in MML estimation with a mixture of distributions
f(0) = =nl(0 = —100) + (1 — m)g(0) 3)

The first term (where 7 is an indicator function) states that with probability 7, the latent trait is assigned a score
of —100, and the second term (where g represents a normal density) states that with probability 1 — =, the latent
trait is normally distributed. Parameter 7 is the proportion of respondents in the population who belong to the
zero-inflation state. As such, f{0) represents a mixture distribution of a normal and a degenerate component.*’
Alternatively, the model may also be explained through a latent class model.'® It contains two latent classes, the
first class being represented by a normal latent trait distribution and the zero-inflation class by a degenerate
distribution for 6 = —100.

The second method was the DC-GRM, the extension of DC-IRT?’ for polytomous items. DC-GRM modifies
the standard normal density used in estimation of the GRM, g(6), with a Davidian curve (a semi-nonparametric
method for approximating densities®') which is given by

h(0) = R} (0)g(0) (4)

where g represents a normal density, ¢ is the number of smoothing parameters, and the term R,(0) = Z: m; 0" is
used for relaxing normality, where m = (mg, m;, ..., m,) is the vector of smoothing parameters and m, # 0. Since
R, is a polynomial of degree ¢, higher values of r makes the density more flexible. During model estimation, /2(0) is
constrained to have a zero mean and unit variance to maintain the GRM’s usual scale.””*' Under these con-
straints, =0 and =1 give the standard normal density. During the analysis, the best fitting 7 is chosen among a
set of candidates. Lower values of the Hannan—Quinn information criterion (HQC),* which is a function of the
model’s likelihood, number of parameters, and sample size, have been suggested for model selection.?” In the
current study, DC-GRMs were estimated using 1 = 2, 3,4, 5. The model with the smallest HQC was selected for
obtaining item parameter estimates.

Finally, to illustrate the impact of ignoring non-normality and to provide a benchmark for the new methods,
the standard version of the GRM was examined as well.

Simulation design

In the simulation study, the following four factors were varied: number of respondents, number of items, ratio of
zero-respondents, and skewness of the latent score distribution. The levels of these factors were based on a review
of the literature, as described below.

Regarding the number of respondents, simulation studies have suggested to use a sample of at least 500
observations for estimating the GRM with sufficient precision,* but is common in health outcome research to
use larger samples for calibration,'** and therefore, levels of 500 and 1000 respondents were used.

Regarding the number of items, calibration studies in the health outcomes field have been published
with number of items ranging from 10 to 124 items;*® to cover a large part of this range, levels of 5, 25,
and 50 were used.

The levels of rate of respondents in the zero-inflation group were fixed at 0%, 10%, and 25% to include the
absence of zero-inflation, a ratio representative of published studies,'®*® and a ratio closer to extreme cases in
the literature, respectively.'®?

Since no calibration studies were found that reported on the estimated skewness of the latent trait, skewness
levels were based on the range encountered in previous simulation studies'>?%?%; levels of skewness of 0, 0.50, and
0.75 were used.
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Because in the simulation study two separate scenarios for causing non-normality were examined, its design
had a hierachical nature. The factors number of respondents and number of items were nested within factor rate
of zero-inflation and within factor skewness, producing a 2 x 3 x 3 design for each scenario; within each design
cell, 100 replications were produced yielding a total of 1800 + 1800 = 3600 simulated data sets.

Data generation

Although it is common in simulation studies to use parameter values typically encountered in the field of inter-
est,>>3¢ it was chosen not to use calibration results from the health outcomes field, as many studies” 3738 show
signs of non-normality themselves which likely resulted in biased parameter estimates. By contrast, it was chosen
to use parameter values from a classic simulation study using the GRM,*? in which the values for item parameters
of a “good” test were specified. Discrimination parameters were drawn from a uniform distribution between 0.75
and 1.33, and threshold parameters were drawn as follows: b, uniform between —2.0 and —1.0, b, uniform
between —1.0 and 0.0, b3 uniform between 0.0 and 1.0, and b4 uniform between 1.0 and 2.0. For each data set,
a new draw was taken from these distributions, by which the true item parameter values varied over replications.

For each data set, two subsets were created. The first was a “calibration set” for studying the impact of non-
normality on the item parameter estimates of the various methods. The second was a “validation set” which was used
to illustrate the impact of potential deviations in the estimation of item parameter on estimates of the latent trait score.
For the calibration sets, the latent trait scores were created as follows. Under the skewness scenario, the method
introduced by Fleishman® was used to provide the skewed latent trait distribution with a mean of zero and standard
deviation of one. Under the zero-inflation scenario, the non-zero-inflated part of the latent trait distribution followed a
standard normal distribution. The zero-inflation part consisted of latent trait scores of —100, and the rate of zero-
inflation was varied by varying the fraction of respondents drawn from the zero-inflated part. For all validation sets,
51 true latent score values between —2.5 and 2.5 with increments of 0.1 were used.

In the creation of each data set, using the sampled values of item parameters and latent trait scores, equations
(1) and (2) were used to calculate the five response category probabilities of each item for each simulated respon-
dent. Next, item responses were obtained by randomly drawing from the resulting multinomial distributions.
If not all five item categories were observed for all items in the calibration set, item parameters were re-sampled
and item responses were created anew.

Simulation outcomes

Of each data file, the calibration set was used to examine item parameter estimates, and the validation set was used
to examine latent trait scores. Although other methods are available for estimating latent traits,* it was chosen to
use maximum likelihood (ML) in order to keep the estimation in agreement with the modeling approach.

The primary outcome of the simulation study was the bias of both item and person parameter estimates, which
was calculated as the mean difference between the true values and estimates

1 N
bias = — Z Xp — Xp ()
N n=1

where x, and X, are the true parameter value, and the estimate of the parameter, respectively, and N is the total
number of values used for aggregation. N differs for item and person parameters: for latent trait values (e.g.,
0 = —1.5), Nis equal to the number of replications (100), whereas for each of the five item parameters (e.g., the a-
parameter), N is equal to J x 100 as the outcomes are aggregated across all items within a data set. Note that since
true item parameter values vary within data sets and over replications, like X,, x,, is expected to vary. Bias will be
larger than zero when the parameters are systematically overestimated, equal to zero if estimates are on average
equal to the true value and smaller than zero if parameters are underestimated.
As secondary outcome measure, the root mean squared error (RMSE) was used, which was calculated as

1 N
RMSE = NZ (Xp — x0)° (6)

n=1

and which is a function of both bias and sampling variance;*! it was chosen to report on this outcome only when it
provided information over and above the bias measure.
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Data analysis

For analyzing the impact of non-normality on item parameters, both tabulations and graphical displays of the
average bias and RMSE in each cell of the design were used. For analyzing the impact on latent trait estimates,
graphical displays depicting the outcomes as a function of true latent values were used.

For the simulation and data analysis, R (version 3.5.1)* was used. The R packages mirt (version 1.29)'* and
SimDesign (version 1.13)** were used for generating data, estimating GRM and DC-GRM, and managing
simulations. DC-GRM estimation was implemented as part of the mirt package during the study (see
Appendix A for details of the implementation). The ZIM-GRM was estimated using the MplusAutomation
package (version 0.7.3)* for running Mplus version 7.4 from R.'"" The original Mplus script published by Wall
et al.?® for dichotomous item responses was adapted for the current settings.

Results

Throughout the analyses, the outcomes for sample sizes of 500 and 1000 were highly similar. Therefore, in this
section, we mainly focus on results for the condition with 500 respondents and only discuss the condition with
1000 respondents when results clearly deviate. Tables 1 to 4 and 6 to 9 in Appendix B provide detailed results for
both levels of sample size. Also, as the secondary outcome measure RMSE provided no additional information
compared to the bias it was decided to leave it out of the report.

Zero-inflated latent trait distributions

A first inspection of the ZIM-GRM results showed that the estimate of the rate of zero-inflation (7 in equation (3))
was very close to the true rate: in all conditions with 25 and 50 items, for every data set, the estimates were within
0.2 and 0.1 percentages points of the true values, respectively. In the five-item condition, estimates were always
within two percentage points of the true value.

Figure 2 shows the average bias in the estimation of the a, b, and by parameter as a function of
number of items and rate of zero-inflation for both the GRM and ZIM-GRM. In the absence of zero-inflation

a parameter b, parameter b, parameter
0% 10% || 25% 0% [ 10% [ 25% | 0% || 10% [ 25%

15 // 15
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0.5- 00jg o—b| 44|, a—a 00 —t—a A A, A

et RN INE

-0.5 -0.5
5 25 505 25 505 25 50 5 25 505 25 505 25 50 5 25 505 25 505 25 50
Number of items Number of items Number of items

® GRM 4 ZIM-GRM

Figure 2. Bias in item parameter estimates of the GRM and ZIM-GRM per level of number of items and of zero-inflation (0%, 10%,
and 25%) for a sample size of 500. GRM: graded response model; ZIM-GRM: zero-inflated mixture graded response model.
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(see the left-hand panel of each of the three plots), both the GRM and the ZIM-GRM had an average bias
close to zero for all levels of number of items. In the zero-inflation conditions, whereas the ZIM-GRM mostly
showed unbiased parameter estimates, the GRM showed substantial bias, with bias increasing with increasing
zero-inflation and increasing number of items. In the case of 10% zero-inflation, the average bias in a param-
eter estimates was 0.54, 0.80, and 0.98, respectively, for numbers of items of 5, 25, and 50; in the case of
25% zero-inflation, these values were more than twice as high. Parameter »; showed a similar pattern: in the
10% zero-inflation condition, the average bias was 0.75, 0.92, and 1.01, respectively, for numbers of items of 5,
25, and 50; in the 25% zero-inflation condition, these respective values were at least 60% higher. The b4
parameter showed an opposite but less extreme pattern: it was somewhat overestimated with less bias for
lower numbers of items, and with differences between the rate of zero-inflation conditions that were much
smaller. Turning to the GRM estimates of parameters b, and b3 (see Table 1 in Appendix B), average bias
showed a similar pattern as for by, but bias was smaller with b3 showing considerably less bias than b,. In short,
in case of zero-inflation, the GRM overestimated the a parameter, and it yielded » parameters with both a
biased center (estimates were too high) and a biased spread (the estimates of the respective thresholds were
too close to one another).

Figure 3 shows the average bias in the estimation of the latent score as a function of true latent score,
number of items, and rate of zero-inflation for both the GRM and ZIM-GRM (also see Tables 3 and 4 in
Appendix B, for average bias values of aggregated values of the true latent trait). In the absence of zero-
inflation (see the data points depicted by a square), both the GRM and ZIM-GRM showed no bias except for
true latent scores smaller than —2 (small positive bias) and larger than 2 (small negative bias) in case of a
number of items of five. This is an artifact originating from the use of ML for estimating the latent scores:
for these regions, extreme response patterns (0 0 0 0 0, and 4 4 4 4 4, respectively) were frequently encountered,
and ML’s inability to scale these resulted in missing values, which were excluded from the analysis. As a result,
the average estimate for the remaining response patterns of high (low) true latent scores were artificially low
(high). In the two zero-inflation conditions, whereas the ZIM-GRM showed unbiased latent score estimates, the
GRM showed substantial bias, with bias increasing with increasing zero-inflation and increasing number of
items. For example, in the case of five items and 10% zero-inflation, a true value of —2.5 was overestimated by

GRM

5 items ‘ ‘ 25 items ‘ 50 items

Bias

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
True Theta
ZIM-GRM
5 items ‘ ‘ 25 items 50 items

True Theta

Zero Inflation © 0% + 10% x 25%

Figure 3. Bias in latent trait estimates for the GRM and ZIM-GRM per level of number of items and zero-inflation for a sample size of
500. GRM: graded response model; ZIM-GRM: zero-inflated mixture graded response model.
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more than one unit. The plots show that both the spread and center of the latent scale were affected
by the GRM: For more extreme true latent scores, estimates were more biased toward zero, but the size of
shrinkage was larger on the left-hand side of the scale than on its right-hand side, yielding a positively valued
overall average bias.

Skewed latent trait distributions

As DC-IRT was not yet available in publicly available software, it was implemented as part of the mirt package
during the study. Appendix A shows a validation study in which the simulation results of the original procedure
by Woods and Lin®’ were successfully replicated.

In a first inspection of the estimated DC-GRMs, the number of selected smoothing parameters (¢ in equation
(4)) was examined (see Table 5 in Appendix B, which shows its average for each cell of the simulation design).
When skewness was absent, the average number of selected smoothing parameters was very close to the minimally
required number of two parameters for all conditions. When skewness was present, ¢ increased (indicating
responsiveness to non-normality) with increasing skewness and increasing number of items; this pattern applied
to both numbers of respondents, but with somewhat higher values in the condition with 1000 respondents.

Figure 4 presents the average bias in the estimates of a, by, and b4 as a function of number of items and level of
skewness for both the GRM and DC-GRM. In the absence of skewness (see the left-hand panel of each of the three
plots), the GRM and DC-GRM had very similar outcomes, with average bias within 0.02 of each other and no
values exceeding 0.04 in absolute value. In the two conditions with skewed latent traits (a skewness of 0.50, and
0.75, respectively), the GRM and DC-GRM mostly showed similar outcomes as well, both with average bias very
close to zero for the a parameter, and for the b parameters mostly values within 0.03 of each other, and most values
not exceeding 0.05, with the exception of the estimates of b4. For this parameter, whereas for five items, the average
bias of the DC-GRM was very close to zero, for 25 and 50 items, its average bias was somewhat higher (0.06 and
0.08, respectively) than that of the GRM (0.02 and 0.03, respectively); for both methods, however, this bias was
lower in the case of 1000 observations. In short, whereas the GRM was hardly affected in the two conditions with
skewed latent traits, the DC-GRM showed a small bias in conditions with the highest level of skewness and the
largest studied item set. To illustrate the effect of bias in item parameters on latent trait estimates, Figure 5
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Figure 4. Bias in item parameter estimates of the GRM and DC-GRM per level of number of items and of skewness (0, 0.50, and
0.75) for a sample size of 500. GRM: graded response model; DC-GRM: Davidian curve graded response model.
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shows the average bias in latent trait estimates as a function of true latent score, level of skewness, and number
of items for both the GRM and DC-GRM (also see Tables 8 and 9 in Appendix B, for the average bias of
aggregated values of the true latent trait). In the absence of skewness (see the data points depicted by a square),
both the GRM and DC-GRM showed no bias except for extreme true latent scores, an artifact due to using
ML for estimating latent scores, as described in the previous section. In the presence of skewness, the results of
the GRM and DC-GRM were mostly very similar, showing little bias, with the exception of the condition with
a skewness of 0.75 and 50 items, in which the DC-GRM showed somewhat more extreme bias than the GRM,
with the highest mean difference between the methods being 0.07 for trait scores above 1.5.

Discussion

In the current study, two IRT models for polytomous items designed to deal with two different processes leading
to non-normally distributed latent traits were evaluated. The ZIM-GRM was used to deal with zero-inflation, and
the DC-GRM was used to deal with skewness. Both methods were compared with the standard GRM in a
simulation study with conditions representative of the settings, wherein IRT is commonly used to develop item
banks for health outcomes. The impact of the simulation conditions was assessed for both item parameter
estimates and latent trait estimates.

In the case of zero-inflated latent trait distributions, the GRM showed substantial bias, with larger bias for
distributions with a higher rate of zero-inflation, and for larger number of items, whereas the ZIM-GRM showed
very little bias. The GRM overestimated the a parameter to a high extent and resulted in b parameters that were
too high, with the exception of the highest threshold, which was somewhat underestimated; moreover, the
estimates of the respective thresholds were too close to one another. The latent trait estimates of the GRM
showed a similar pattern, largely overestimating low latent trait values, and somewhat underestimating high
values. Although the conditions and outcomes are not directly comparable, some of the current outcomes were
in line with those of the simulation study by Wall et al.>* for binary items. First, in the binary case, zero-inflation
was also associated with overestimating the discrimination parameter. Second, the pattern within polytomous
items (of showing an overestimation of the center and a decrease in the spread of the scale) was also present over
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Figure 5. Bias in latent trait estimates for the GRM and DC-GRM per level of number of items and skewness for a sample size of
500. GRM: graded response model; DC-GRM: Davidian curve graded response model.
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the collection of binary items in that thresholds were overestimated on average with more overestimation for low
thresholds than underestimation for high thresholds.

In the case of skewed latent trait distributions, whereas the GRM mostly showed no bias, the DC-GRM
showed a small bias with both high skewness and large item sets. In other words, the GRM outperformed its
extension, the DC-GRM, which was included in the study to deal with skewness. This is not in line with previous
research which suggested that ignoring skewness causes bias, although the size of bias varies across studies.'>'*%?
This discrepancy may have emerged from the method used for creating skewed distributions. Whereas we used the
method by Fleishman®® which resulted in distributions with zero kurtosis, the studies by Woods'> and Woods and
Lin,?’ for example, used mixtures of normals, which resulted in substantial kurtosis. Evidently, a distribution with
skewness only is more easily approximated by a normal distribution than one with both skewness and kurtosis.
The plausibility of this explanation is supported by the current outcomes being more similar to those of a study
using a more similar method for generating skewness®” than to those of a study using a different method for
generating skewness.'” The somewhat biased results of the DC-GRM may have resulted from the way it was
implemented here. Inspection of the number of smoothing parameters (see Table 5) shows that the highest values
were selected in the conditions with the highest deviations in parameter estimates, which suggests that the method
may have suffered from overfitting.*> The choice for using HQC for model selection was based on the recom-
mendations from the simulation study that examined DC-IRT for dichotomous items,?’ but possibly this index is
not optimal in the case of polytomous items; it is advised that future research compares the index with more
conservative indices like the Bayesian information criterion.

In their classic article on quasi-traits in clinical measurement, Reise and Waller*® suggested that high discrimination
parameter estimates originated from conceptually narrow constructs and consequently homogeneous item content
leading to highly correlated items. For unipolar and skewed constructs, they are correct that improper latent trait
shapes are selected and therefore that the resulting parameters may be on a suboptimal scale. However, concerning the
bias that arises when using the GRM in case of zero-inflation, it may be claimed that the outcome is both good and
bad. It is bad because in reality the items do not discriminate as much among respondents as the parameter estimates
suggest. By contrast, it is good because the GRM does not change the ordering of the respondents (see Figure 3, which
shows a linear transformation), and because it becomes very efficient at discriminating between the clinical and non-
clinical respondents. Thus, the mixing of samples results in a “population discrimination” item-level artifact rather
than the originally desired “person discrimination” goal of the IRT measurement model.

For future studies on zero-inflation, it may be instructive to discuss the impact of the degenerate part of ZIM-
IRT on simulation results. In the current and previous evaluations® of ZIM-IRT, the model specification was
perfectly in line with the data generating process, both using a mean of zero and a standard deviation of one for
the non-degenerate component, and a mean equal to an extreme negative value and a variance of zero in the
degenerate component. However, when a model is specified in any other way, the scale of estimated item and
person parameters will, by definition, be different than the data generating scale, resulting in artificially biased
outcomes. For example, when using DC-IRT for estimating the zero-inflated distribution, the estimation algo-
rithm tries to pick up its shape, including both mixtures in a single smooth curve while constraining the distri-
bution to have a mean of zero and a standard deviation of one, which will lead to failure because it is
mathematically impossible to include both the zero-inflated part and the proper scale for non-zero-inflated
part in a single distribution.! In such cases, since the scales are incompatible, a solution would be to use the
correlation between true and estimated parameters as outcome, instead of exploring bias or RMSE.

In the current study, we focused on methods available in software, which is possibly only a small selection
of the methods that have been proposed to deal with non-normality. In the case of skewness, several other
methods have been developed,’**”** and an examination of their performance in the current conditions may
seem interesting, but the negligible bias that was observed for GRM reduces its necessity. In the case of ZIM-
IRT, the studied approach can be easily extended to not only deal with zero-inflation but also with
maximum-inflation (an excess of patterns containing only the highest item category for each item).'®*?
More recently, similar approaches have been taken for questionnaires that include items eliciting count
responses that suffer from heaping (an excess of patterns with multiples of 5 in reporting days of having
experienced a specific symptom).**® These methods are characterized by modeling extreme response patterns
by specifying one or more classes with a degenerate distribution, which may be difficult to interpret for
practitioners, and therefore, it seems appropriate to look at other approaches to mixture modeling as
well.? It is also noted that other types of IRT models have been developed for explicitly dealing with extreme
response behavior,”’3? and finally, it is acknowledged that methods for dealing with other deviations from
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normality, such as unipolar traits,’> are available. It is recommended that future research examines the

usefulness of such methods in the calibration of item banks for measuring health outcomes.

When comparing the parameter estimates of the standard GRM under both zero-inflation and skewness, it was
striking that the values of the former were very similar to what is commonly encountered in calibration studies of
health outcome item banks. For example, like in most studies,"'®37% in case of zero-inflation, the standard GRM
produced very high estimates of discrimination parameters and threshold estimates that were mainly located at the
positive side of the latent trait scale. Given that in many calibration studies, excessive zeros were reported and that the
parameter estimates were so similar, it seems plausible that the true data generation process is similar to the one that
we used for creating zero-inflation. This would imply that using the standard GRM for calibrating health outcome
item banks leads to biased parameter estimates. Overestimation of discrimination parameters leads to standard errors
of latent trait estimates that are too optimistic,”* which in computerized adaptive testing could lead to assessments that
stop too early. Moreover, if one blindly interprets the latent trait estimates under the metric of the standard normal
distribution (e.g., using percentile ranks), then respondents may seem to score less extreme than they actually do.
Therefore, when calibrating item banks for the assessment of health outcomes, it seems like a good practice to consider
the possibility of subpopulations. Although calibration samples often consist of commingled populations,'” such as a
clinical and non-clinical population, it is often hard to determine for the individual respondent to what population she
belongs, which does not allow for a multi-group approach.”> However, when using the ZIM-GRM, instead of
(potentially incorrectly) assigning each individual to a subpopulation prior to fitting the GRM, the uncertainty is
built into the model directly, where individuals are assigned probabilistically rather than deterministically. The appro-
priateness of the ZIM-GRM compared to the GRM for calibration data can be evaluated using model fit indices.?
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Notes

1. Assuming two normally distributed populations with respective means u;, and u,, standard deviations o, and o5, and
mixture weights 7 and 1 — 7, using the rules for total means and total variances, the mean p and standard deviation ¢ of the
mixture distribution can be obtained (cf. Wall et al.,”* equations (4) and (5))

p=mpy + (1 —m)p, ™
o’ = n(ii +a7) + (1 = 1) (43 + 03) — 4* ®)

These equations show that when p, ¢2, and 7 are fixed, pu, to, o1, and o, can take only a restricted set of values when
variances should be equal to or larger than zero. For example, if u=0, ¢ = /10, 7 = 0.1, U, =1, o = 1, it has to be so that
1 = =9 and a; = 1. Also note that given these rules, for the combination of =0, ¢ =1, and y; = —100, and o; =0, as
specified under the implementation of ZIM-IRT, no a3 > 0 exists (given that = > 10, 0017, which is practically always the
case if there are “excess” zeros).

2. For example, the (special issue) editor suggested to model to zero-inflation at the level of observations, while addressing the
excess patterns of all zeroes. This has the advantage that the latent trait distribution is not defined for excess-zero patterns
and only applies to the regular patterns. The latent trait distribution is not defined as a mixture, but the response model


https://orcid.org/0000-0003-3669-9266
https://orcid.org/0000-0003-3669-9266
https://orcid.org/0000-0002-9949-3348
https://orcid.org/0000-0002-9949-3348
https://orcid.org/0000-0002-2951-6647
https://orcid.org/0000-0002-2951-6647

Smits et al. 1041

represents a mixture distribution for perfect patterns. As a result, a latent score is not assigned to excess zero patterns. In the
zero-inflation group, the probability that a response pattern has all zeroes is equal to one. Under the regular
response process, the IRT model defines the probability of observing a pattern with all zeroes. Then, the distribution of
a response pattern x is given by

PX=0)=P(X;=0,X,=0,...,X;=0) = nl(X = 0) + (1 - n)Hle P(X; = 0[0) )
P(X; 3 X; #0) = szl P(X;|0) (10)
0;~ N(0, 1) (11)

where J is the number of items, /(X = 0) is an indicator function for the zero-inflation group, and 3/ X; # 0 means that the
pattern contains at least one item response unequal to zero. This model may be extended by adding respondent-level
predictors of zero-inflation. In health outcome assessment settings, like PROMIS, patient characteristics such as age,
gender, and clinical status are often available, and therefore, these covariates would be eligible predictors. For an example
of a similar approach in a smoking behavior validation study, the reader is referred to Fox et al.>®
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Appendix A

A.l. Validation of the DC-IRT implementation

We replicated part of the simulation study described in the article that introduced DC-IRT?’ to validate the
software implementation of DC-IRT that was developed as part of current study and which was published as part
of the R package mirt.'> DC-IRT was introduced as a two parameter logistic model (2PL), which can be expressed
as the GRM (see equation (2)) with k=2. Following the original paper, we sampled true latent trait values for
1000 respondents from a skewed density which was defined as a mixture of two normal densities
90N(—0.25,0.61) + .10N(2.19,1.04). Next, we sampled one slope and one threshold parameter for 25 items
using N(1.7,0.8) truncated at 0.5 for slope and N(0, 1.2) for threshold parameters. We performed 25 simulation
runs, repeating this procedure. In each run, we applied the DC-IRT as described in the Methods section. For
brevity, we focused on the bias in item parameter estimates of DC-IRT, compared to 2PL estimates.

We observed that the item parameter estimates were on average less biased for DC-IRT in comparison to
GRM, for both slope parameters (-0.06 compared to -0.19) and threshold parameters (0.02 compared to -0.08).
The bias in parameter estimates changed as a function of the true parameter value. The difference between DC-
IRT and 2PL was especially apparent for large slope values and extreme threshold values (left-hand panel of
Figure 6). The right-hand panel of Figure 6 presents the true density (dashed line, top) and the estimated Davidian
curve densities (solid lines, bottom).

These findings are in line with the findings of the original study,?’ confirming the validity of our software
implementation. The authors reported an average bias of —0.16 for slope parameters estimated with 2PL, which
was reduced to —0.07 when DC-IRT was used. Similarly, average bias in threshold estimates was —0.08 for 2PL
and was 0.03 when DC-IRT was used. Although we did not compare the density estimation performance numer-
ically, a visual comparison of Figure 6 and Figure 1 of the original paper is convincing with regard to the
agreement of density estimation performances of two implementations.
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Figure 6. Results of the partial replication of Woods and Lin?’ as a validation of the current DC-GRM software implementation.
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Appendix B

Table 1. Bias of GRM parameter estimates averaged over the zero-inflated conditions.

Parameter
Respondents Items Zero-inflation a b, b, bs by
500 5 0% 0.0l —0.03 —0.01 0.00 0.02
10% 0.54 0.75 0.39 0.07 —-0.23
25% 1.29 1.33 0.75 0.23 —0.29
25 0% 0.00 —0.03 —0.01 0.00 0.02
10% 0.80 0.92 0.48 0.07 —0.35
25% 2.00 1.51 0.86 0.21 —0.44
50 0% 0.00 -0.02 —0.01 0.00 0.0l
10% 0.98 1.01 0.53 0.05 —0.43
25% 2.32 1.62 0.93 0.25 —0.43
1000 5 0% 0.0l —0.01 0.00 0.00 0.01
10% 0.53 0.75 0.39 0.08 —0.23
25% 1.27 1.33 0.77 0.23 —0.28
25 0% 0.0l —0.01 —0.01 0.00 0.00
10% 0.79 0.92 0.48 0.05 -0.37
25% 1.98 I.51 0.86 0.21 —0.44
50 0% 0.00 —0.01 —0.01 —0.01 0.00
10% 0.97 1.01 0.53 0.05 —0.42
25% 231 1.61 0.93 0.24 —0.45
Table 2. Bias of ZIM-GRM parameter estimates averaged over the zero-inflated conditions.
Parameter
Respondents Items Zero-inflation a b, b, bs by
500 5 0% 0.00 —0.05 —0.02 0.00 0.03
10% 0.0l —0.05 —0.03 0.00 0.02
25% 0.0l —0.04 —0.03 0.00 0.02
25 0% 0.00 —0.02 —0.01 0.01 0.02
10% 0.0l —0.02 0.00 0.0l 0.02
25% 0.02 —0.02 —0.01 —0.01 0.00
50 0% 0.0l —0.01 0.00 0.0l 0.0l
10% 0.0l —0.01 0.00 0.00 0.0l
25% 0.0l —0.02 —0.01 0.01 0.03
1000 5 0% 0.00 —0.02 0.00 0.00 0.02
10% 0.0l 0.00 0.00 0.00 0.0l
25% 0.00 —0.01 0.00 0.01 0.02
25 0% 0.0l —0.01 0.00 0.00 0.0l
10% 0.00 —0.01 —0.01 —0.01 0.00
25% 0.0l —0.02 —0.01 —0.01 0.00
50 0% 0.0l 0.00 0.00 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.0l
25% 0.00 0.00 0.00 0.0l 0.02
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Table 3. Bias of GRM estimates of latent trait scores averaged in the zero-inflation conditions.

True latent trait values

Respondents Items Zero-inflation —-25<0<—-15 —-15<0<-05 -05<0<05 05<0<I5 I15<0<25
500 5 0% 0.08 0.03 —0.02 0.06 -0.12
10% 0.99 0.55 0.23 -0.08 —0.48
25% 1.66 1.06 0.51 —0.05 —0.66
25 0% -0.07 0.00 —0.01 0.00 0.0l
10% 1.12 0.72 0.27 —0.17 —0.59
25% 1.87 1.22 0.54 —0.15 -0.79
50 0% —0.01 0.0l 0.00 0.00 0.00
10% 1.27 0.79 0.28 -0.22 -0.70
1000 5 25% 2.00 1.30 0.59 -0.13 -0.38l
0% 0.06 0.00 0.0l -0.02 —0.09
10% 1.00 0.56 0.23 —0.06 —0.49
25% 1.67 1.07 0.50 —0.06 —0.62
25 0% —0.04 —0.01 0.02 —0.01 0.02
10% 1.13 0.70 0.27 -0.17 —0.57
25% 1.85 1.22 0.53 —0.15 -0.78
50 0% -0.02 0.00 0.00 —0.01 0.00
10% 1.26 0.78 0.29 -0.21 —0.68
25% 1.98 1.30 0.58 —0.13 -0.82

Table 4. Bias of ZIM-GRM estimates of latent trait scores averaged in the zero-inflation conditions.

True latent trait values

Respondents Items Zero-inflation —-25<0<—-15 —-15<0<-05 -05<0<05 05<0<I5 1.5<0<25
500 5 0% 0.05 0.02 —0.02 0.06 —0.10
10% 0.08 —0.05 -0.02 0.02 —-0.09
25% 0.09 -0.02 0.02 0.00 -0.12
25 0% —0.06 0.0l 0.00 0.00 0.02
10% —0.05 0.00 0.00 0.00 0.01
25% —0.01 0.02 0.00 —0.01 —0.01
50 0% 0.00 0.02 0.00 0.00 0.01
10% 0.00 0.00 —0.01 —0.01 —0.01
25% 0.0l —0.01 0.0l 0.00 0.0l
1000 5 0% 0.05 —0.01 0.00 —0.01 —0.08
10% 0.13 —0.04 -0.02 0.04 -0.12
25% 0.12 0.0l 0.0l —0.02 —0.06
25 0% —0.03 —0.01 0.03 —0.01 0.03
10% -0.03 -0.03 0.00 0.00 0.03
25% —0.05 0.0l —0.01 —0.01 0.04
50 0% -0.02 0.00 0.00 —0.01 0.0l
10% 0.00 -0.02 0.00 0.0l 0.02

25% —0.01 0.00 0.01 0.02 0.03
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Table 5. Average number of smoothing parameters used by the DC-GRM in the simulation

conditions.
Respondents Items Skewness Mean SD
500 5 0.00 2.07 0.29
0.50 243 0.54
0.75 2.72 0.49
25 0.00 2.04 0.20
0.50 3.13 0.54
0.75 4.50 0.87
50 0.00 2.11 0.37
0.50 3.35 0.72
0.75 4.64 0.77
1000 5 0.00 2.04 0.20
0.50 2.59 0.62
0.75 3.19 0.77
25 0.00 2.05 0.22
0.50 3.47 0.85
0.75 4.94 0.34
50 0.00 2.08 0.31
0.50 3.68 091
0.75 5.00 0.00

Note: While fitting DC-GRM, t values from 2 to 5 were considered, and HQC was used for selecting the

best value. SD: standard deviation.

Table 6. Bias of GRM parameter estimates averaged in the skewed data conditions.

Parameter

Respondents Items Skewness a b, b, bs by
500 5 0.00 0.0l —0.03 —0.01 0.00 0.02
0.50 0.0l —0.04 0.00 0.0l 0.0l
0.75 0.00 —0.03 0.0l 0.02 0.01
25 0.00 0.00 —0.03 —0.01 0.00 0.02
0.50 0.00 —0.02 0.0l 0.02 0.03
0.75 0.00 -0.03 0.00 0.0l 0.02
50 0.00 0.00 —0.02 —0.01 0.00 0.0l
0.50 0.00 —0.02 0.00 0.00 0.0l
0.75 0.00 —0.01 0.0l 0.02 0.03
1000 5 0.00 0.0l —0.01 0.00 0.00 0.0l
0.50 0.00 —0.01 0.0l 0.02 0.02
0.75 —0.01 -0.03 0.0l 0.03 0.02
25 0.00 0.0l —0.01 —0.01 0.00 0.00
0.50 0.00 —0.01 0.00 0.00 0.00
0.75 0.01 —0.01 0.00 0.00 0.00
50 0.00 0.00 —0.01 —0.01 —0.01 0.00
0.50 0.00 —0.01 0.00 0.0l 0.0l
0.75 0.00 —0.01 0.00 0.0l 0.0l
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Table 7. Bias of DC-GRM parameter estimates averaged in the skewed data conditions.

Parameter

Respondents Items Skewness a b, b, bs by
500 5 0.00 0.0l —0.03 —0.01 0.00 0.02
0.50 0.02 —0.03 0.00 0.00 0.00
0.75 0.0l —0.01 0.00 0.00 0.00
25 0.00 0.00 —0.03 —0.01 0.00 0.02
0.50 0.00 —-0.02 0.0l 0.02 0.04
0.75 —0.01 —0.04 0.00 0.03 0.06
50 0.00 0.00 —0.01 0.00 0.0l 0.0l
0.50 —0.01 —0.02 —0.01 0.0l 0.02
0.75 —0.02 —0.03 0.0l 0.05 0.08
1000 5 0.00 0.0l 0.00 0.00 0.00 0.01
0.50 0.0l 0.00 0.0l 0.01 0.0l
0.75 0.0l —0.01 0.0l 0.0l 0.0l
25 0.00 0.0l —0.01 —0.01 0.00 0.00
0.50 0.00 —0.01 0.00 0.0l 0.0l
0.75 —0.01 —0.02 0.00 0.0l 0.03
50 0.00 0.00 —0.01 —0.01 0.00 0.00
0.50 —0.01 —0.01 0.00 0.0l 0.02
0.75 -0.02 -0.02 0.0l 0.03 0.05

Table 8. Bias of GRM estimates of latent trait scores averaged in the skewness conditions.

True latent trait values

Respondents Items  Skew —-25<0<—I.5 —1.5<0<-05 -05<60<05 05<0<1.5 1.5<0<25
500 5 0.00 0.08 0.03 —0.02 0.06 —0.12
0.50 0.10 0.00 0.02 —0.01 —0.09
0.75 0.09 0.03 0.01 0.02 —0.09
25 0.00 —0.07 0.00 —0.01 0.00 0.0l
0.50 —0.03 0.00 0.02 0.02 0.04
0.75 —0.06 0.00 0.02 0.0l 0.06
50 0.00 —0.01 0.0l 0.00 0.00 0.00
0.50 —0.01 —0.01 0.00 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.0l
1000 5 0.00 0.06 0.00 0.01 —0.02 —0.09
0.50 0.10 —0.01 0.0l 0.0l —0.07
0.75 0.08 —0.02 0.02 0.02 0.00
25 0.00 —0.04 —0.01 0.02 —0.01 0.02
0.50 —0.03 0.00 0.00 0.00 0.05
0.75 —0.04 0.0l —0.02 0.0l 0.0l
50 0.00 —0.02 0.00 0.00 —0.01 0.00
0.50 —0.02 —0.01 —0.01 0.01 0.0l

0.75 —0.01 0.01 0.01 0.01 0.02
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Table 9. Bias of DC-GRM estimates of latent trait scores averaged in the skewness conditions.

True latent trait values

Respondents Items Skew —-25<0< 15 —1.5<0<-05 -05<0<05 05<0<15 1.5<0<25
500 5 0.00 0.07 0.03 —0.02 0.05 —0.12
0.50 0.12 0.00 0.0l -0.03 —0.11
0.75 0.11 0.04 0.00 0.00 —0.11
25 0.00 —0.06 0.0l —0.01 0.00 0.0l
0.50 —0.04 0.00 0.02 0.02 0.05
0.75 -0.07 —0.01 0.03 0.04 0.10
50 0.00 0.00 0.01 0.00 0.00 0.0l
0.50 -0.02 —0.02 0.00 0.0l 0.02
0.75 -0.03 0.00 0.02 0.04 0.08
1000 5 0.00 0.06 0.00 0.0l -0.02 —0.09
0.50 0.11 —0.01 0.0l 0.00 —0.08
0.75 0.10 —0.01 0.0l 0.00 -0.02
25 0.00 —0.03 —0.01 0.02 —0.01 0.02
0.50 —0.03 0.00 0.00 0.0l 0.06
0.75 —0.05 0.0l -0.01 0.03 0.05
50 0.00 —0.02 0.00 0.00 —0.01 0.00
0.50 —-0.02 —0.01 0.00 0.02 0.02

0.75 —0.02 0.01 0.03 0.04 0.07
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