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Objectives: This study used the long-short-term memory (LSTM) artificial intelligence method to model 

multiple time points of clinical laboratory data, along with demographics and comorbidities, to predict 

hospital-acquired acute kidney injury (AKI) onset in patients with COVID-19. 

Methods: Montefiore Health System data consisted of 1982 AKI and 2857 non-AKI (NAKI) hospitalized 

patients with COVID-19, and Stony Brook Hospital validation data consisted of 308 AKI and 721 NAKI hos- 

pitalized patients with COVID-19. Demographic, comorbidities, and longitudinal (3 days before AKI onset) 

laboratory tests were analyzed. LSTM was used to predict AKI with fivefold cross-validation (80%/20% for 

training/validation). 

Results: The top predictors of AKI onset were glomerular filtration rate, lactate dehydrogenase, alanine 

aminotransferase, aspartate aminotransferase, and C-reactive protein. Longitudinal data yielded marked 

improvement in prediction accuracy over individual time points. The inclusion of comorbidities and de- 

mographics further improves prediction accuracy. The best model yielded an area under the curve, ac- 

curacy, sensitivity, and specificity to be 0.965 ± 0.003, 89.57 ± 1.64%, 0.95 ± 0.03, and 0.84 ± 0.05, 

respectively, for the Montefiore validation dataset, and 0.86 ± 0.01, 83.66 ± 2.53%, 0.66 ± 0.10, 0.89 ±
0.03, respectively, for the Stony Brook Hospital validation dataset. 

Conclusion: LSTM model of longitudinal clinical data accurately predicted AKI onset in patients with 

COVID-19. This approach could help heighten awareness of AKI complications and identify patients for 

early interventions to prevent long-term renal complications. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Acute kidney injury (AKI) is common in hospitalized patients 

ith COVID-19 ( Huang et al., 2020 ; Zhu et al., 2020 ) and is as-

ociated with critical illness and mortality ( Brienza et al., 2021 ; 

arouk et al., 2020 ; Nadim et al., 2020 ; Oliveira et al., 2021 ;

hao et al., 2020 ). Contributing factors to hospital-acquired AKI 

nclude direct SARS-CoV-2 viral infection of renal cells and indi- 

ect effects such as sepsis, host-immune responses (i.e., inflamma- 

ory cytotropic and cytokine-mediated immune responses, among 

thers), hemodynamic compromise, acute respiratory distress syn- 
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rome, and systemic hypoxia ( Adapa et al., 2020 ; Ahmadian et al., 

021 ; Khan et al., 2020 ). Kidney complications in patients with 

OVID-19 might not receive adequate attention because medical 

roviders need to address more medically urgent issues of SARS- 

oV-2 infection. In patients with COVID-19, failure to identify at- 

isk patients could result in long-term renal damage. 

A few studies have used clinical variables at hospital admission 

o predict AKI ( Gabarre et al., 2020 ; Hectors et al., 2021 ; Xia et al.,

020 ), but using only clinical variables at admission to predict the 

evelopment of AKI is likely inaccurate because patients come into 

ospitals with different disease severities, or patients might have 

re-existing or community-acquired AKI. Although the temporal 

hanges of clinical variables associated with hospital-acquired AKI 

ave been reported ( Lu et al., 2021b ; Lu et al., 2022 ), no studies

ave integrated multiple time points of clinical variables to predict 

n-hospital AKI onset in COVID-19 to our knowledge. The ability 
iety for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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10,696
COVID-19 Positive No Cr (4,533)

CAKI (813)
ESRD or Dialysis prior 
to Hospitalization (511)

NAKI
(N = 2,857)

HAKI
(N = 1,982)

110,838
Tested for COVID-19

4,839
Final Cohort

258,999
Total Hospitalized

Figure 1. Flowchart of patient selection of patients with hospital-acquired AKI and 

those without AKI. AKI, acute kidney injury; CAKI, community-acquired AKI; Cr, cre- 

atinine; ESRD, end-stage renal disease; HAKI, hospital-acquired AKI; NAKI, non-AKI; 

Pts, patients. 

d

2

f

c

p

t

s  

2

1

a

t

2  

2

A

I

g  

c

i

p

u

l

b  

w

n

w

2

c

≥
(

l

D

c

c

p

t

o anticipate which patients will develop AKI would lead to better 

atient management, such as hemodynamic support, renal replace- 

ent therapy, and avoiding nonsteroidal anti-inflammatory drugs, 

ephrotoxins, and contrast ( Chan et al., 2021 ; Fisher et al., 2020 ;

amilton et al., 2020 ; Hirsch et al., 2020 ; Ouyang et al., 2021 ;

rabulus et al., 2020 ; Wagner et al., 2020 ), appropriate follow-up 

are, and timely intervention to prevent long-term kidney damage. 

Machine learning (ML) helps tackle complex and multimodal 

ata and is increasingly being used in medicine. ML learns rela- 

ionships between different data elements to inform outcomes. In 

ontrast to traditional analysis methods such as logistic regression, 

L does not require relationships between different input variables 

nd outcomes to be explicitly specified a priori . Time series predic- 

ion using ML is possible but with added complexity because there 

re additional dependencies among input variables. A recurrent 

eural network is a powerful type of neural network designed to 

andle sequence dependence. The long short-term memory (LSTM) 

etwork ( Hochreiter and Schmidhuber, 1997 ), an artificial recurrent 

eural network architecture in deep learning, is ideal for process- 

ng sequential data. Unlike standard feedforward neural networks, 

STM has feedback connections and is well-suited to classify, pro- 

ess, and make predictions based on time series data. 

The goal of this study was to develop an LSTM-ML algorithm 

o integrate longitudinal clinical data to predict hospital-acquired 

KI onset in hospitalized patients with COVID-19. Inputs to the ML 

odel included longitudinal clinical laboratory values, longitudinal 

ital signs, demographics, and comorbidities. We trained and val- 

dated our model on Montefiore Health System data and further 

ross-validated on Stony Brook Hospital data. 

ethods 

tudy population and data collection 

The Montefiore Health System serves a large low-income, 

acially and ethnically diverse population. Data from the Mon- 

efiore Health System consisted of 15 hospitals located in the 

ronx and the Lower Hudson Valley and Westchester County. De- 

dentified health data were made available for research after stan- 

ardization to the Observational Medical Outcomes Partnership 

OMOP) Common Data Model (CDM) version 6. OMOP CDM rep- 

esents health care data from diverse sources stored in standard 

ocabulary concepts ( Hripcsak et al., 2015 ). This approach allows 

or the systematic analysis of disparate observational databases, 

ncluding data from the electronic medical record (EMR), admin- 

strative claims, and disease classification systems (e.g., ICD-10, 

NOWMED, LOINC). ATLAS, a web-based tool developed by the 

bservational Health Data Sciences and Informatics (OHDSI) com- 

unity that enables navigation of patient-level, observational data 

n the CDM format, was used to search vocabulary concepts and 

acilitate cohort building. Data were subsequently exported and 

ueried as SQLite database files using the DB Browser for SQLite 

version 3.12.0). 

Montefiore Health System data consisted of 258,999 hospital- 

zed patients from March 11, 2020, to January 21, 2021, in the 

ontefiore Health System. SARS-CoV-2 infection was confirmed by 

eal-time polymerase chain reaction (PCR) test via nasopharyngeal 

wab specimen. Exclusion criteria included patients who were not 

ested for COVID-19 or had a negative test result for COVID-19, 

ithout creatinine measurements, with community-acquired AKI 

CAKI), and with end-stage kidney disease or requiring dialysis be- 

ore hospitalization ( Figure 1 ). The final sample size used in the 

nalysis was 4839 patients with COVID-19, of whom 2857 had 

AKI and 1982 had AKI. Montefiore Health System data were used 

or training and validation with fivefold cross-validations. Subsets 

f the Montefiore Health system data have been used to address 
803 
ifferent questions ( Hoogenboom et al., 2021a,b; Iosifescu et al., 

022; Lu et al., 2022, 2021c ). 

Stony Brook Hospital data were used for validation only (not 

or training). Stony Brook Hospital data consisted of 6678 persons 

linically suspected of COVID-19 infection in the emergency de- 

artment from February 7, 2020, to June 30, 2020, of whom 2892 

ested positive using a real-time PCR test for SARS-CoV-2 on a na- 

opharyngeal swab specimen ( Chen et al., 2021 ; Lu et al., 2021a ,

021b ; Zhao et al., 2020 ). Only hospitalized patients with COVID- 

9 with creatinine (n = 1029) were used, of whom 308 had AKI 

nd 721 had NAKI. A variance and a subset of Stony Brook Hospi- 

al data have been used to address different questions ( Chen et al., 

021 ; Hou et al., 2021 ; Lam et al., 2020 ; Li et al., 2020 ; Shen et al.,

021 ; Zhao et al., 2020 ). 

KI definitions 

Hospital-acquired AKI was defined using the Kidney Disease: 

mproving Global Outcomes (KDIGO) criteria ( Ad-hoc working 

roup of ERBP et al., 2012 ; Khwaja, 2012 ) as either a 0.3 mg/dl in-

rease in serum creatinine within 48 hours or a 1.5-times increase 

n serum creatinine within a 7-day iterative window. Fifty-seven 

ercent of the patients had pre-existing creatinine baseline val- 

es. For patients who did not have creatinine baseline values, the 

owest creatinine value during hospitalization was considered the 

aseline creatinine ( Hirsch et al., 2020 ; Pelayo et al., 2020 ). CAKI

as defined as AKI within 24 hours of admission. Urine output was 

ot used to define AKI because it was not reliably documented. AKI 

as staged per KDIGO guidelines: stage 1: ≥0.3 mg/dl or to > 1.5 to 

-times increase in creatinine; stage 2: > 2 to ≤3-times increase in 

reatinine; and stage 3: > 3-times increase in creatinine or rise to 

4.0 mg/dl, or new initiation of renal replacement therapy (RRT) 

 Ad-hoc working group of ERBP et al., 2012 , Khwaja, 2012 ). 

Demographics, clinical comorbidities, longitudinal vital signs, 

aboratory blood tests, and blood gases were extracted from EMRs. 

emographic data included age, sex, ethnicity, and race. Chronic 

omorbidities included obesity, diabetes, congestive heart failure, 

hronic kidney disease, coronary artery disease, chronic obstructive 

ulmonary disease (COPD), and asthma. 

Longitudinal laboratory tests and vital signals included crea- 

inine, albumin, alanine aminotransferase (ALT), aspartate amino- 
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Figure 2. (A) A LSTM network that takes multiple time points of clinical laboratory values and vital signs as input. (B) A network that takes as input the demographics and 

comorbidities values. (C) An LSTM network that combines both longitudinal feature values and the demographics and comorbidities values to predict hospital-acquired AKI 

onset in COVID-19 patients. AKI, acute kidney injury; LSTM, long-short-term memory. 

t

(

p

p

p

P

a

a

d

P

a

w

p

t

E

a

i

a

p

r

n

f

c

n

b

w

t

0

t

fi

A

t

i

m

t

n

p

t

t

R

o

s

d

t

p

e

T

w

L

p

b

w

S

(

p

g

i

u

e

g

w

w

t

t

o

R

t

ransferase (AST), brain natriuretic peptide, C-reactive protein 

CRP), d-dimer, eGFR, ferritin, lactate dehydrogenase (LDH), lym- 

hocytes, troponin-T, white blood cells (WBCs), diastolic blood 

ressure, systolic blood pressure, temperature, heart rate, and 

ulse oximetry. An average of daily values was used. 

rediction model 

We built a model combining LSTM recurrent neural networks 

nd traditional feedforward neural networks, which take as input 

 combination of longitudinal vital signs, laboratory blood tests, 

emographics, and chronic comorbidities to predict AKI outcomes. 

rediction was made using values from individual time points and 

 combination of multiple time points before the onset of AKI, as 

ell as demographics and comorbidities. Figure 2 describes the 

rediction models. In Figure 2 A, the LSTM network takes multiple 

ime points of clinical laboratory values and vital signs as input. 

ach LSTM unit comprises a cell, an input gate, an output gate, 

nd a forget gate. The cell remembers values over arbitrary time 

ntervals, and the three gates regulate the flow of information in 

nd out of the cell. LSTM is well-suited to classify, process, and 

redict the given time series of unknown durations. The popular 

ectified linear function is set as the activation function at each 

ode except for the nodes in the output layer where the Softmax 

unction is used. In Figure 2 B, the network takes demographics and 

omorbidities as input. In Figure 2 C, the model combines longitudi- 

al clinical laboratory values, vital signs, demographics, and comor- 

idities values to predict hospital-acquired AKI onset in patients 

ith COVID-19. 

The available dataset was split into 80% for training and 20% for 

esting. Adam optimizer was used with the default learning rate of 

.001. To determine the optimal number of epochs without overfit- 

ing, one round of training with a validation split ratio of 20% was 

rst carried out with a large number of epochs (50 in this case). 

fterward, both the training loss history and validation loss his- 

ory were examined. The optimal epoch was 15, at which the val- 

dation loss started worsening, as further training should result in 

odel overfitting. Once the optimal epoch of 15 was determined, 

he model was retrained with this optimal number of epochs. Fi- 

ally, the trained model was tested on the test dataset. Prediction 
804 
erformance was evaluated by the area under the curve (AUC) of 

he receiver operating characteristic (ROC) curve, accuracy, sensi- 

ivity, specificity, and Brier score. 

anking of clinical predictors 

To provide interpretability of the LSTM model, the importance 

f different clinical variables in predicting AKI onset was mea- 

ured based on game theory–based optimal Shapley values. A pre- 

iction can be explained by assuming that each feature value of 

he instance is a “player” in a game where the prediction is the 

ayout. Shapley values—a method from coalitional game theory—

xplain the fair distribution of the “payout” among the features. 

he python package SHAP (SHapley Additive exPlanations) package 

as used to calculate the feature importance values ( Lundberg and 

ee, 2017 ). The results of top predictors were plotted as Beeswarm 

lots. In addition, calibration plots of the predicted vs true proba- 

ility for predicting AKI onset for individual-day and all-day data 

ith and without comorbidities and demographics were analyzed. 

tatistical analysis 

All statistical analyses were performed using Python packages 

Tensorflow, Sklearn and Statsmodels) and R. Frequencies and 

ercentages for categorical variables between the AKI and NAKI 

roups were compared using the chi-square test. Group differences 

n frequencies and percentages for categorical variables were tested 

sing the chi-square test or Fisher exact test. Continuous variables, 

xpressed as median (interquartile range), were compared between 

roups using nonparametric Mann-Whitney U test. Mortality rates 

ere compared between groups with the chi-square test adjusted 

ith covariates. The mortality odds ratio was obtained using logis- 

ic regression with adjustment for sex, age, and major comorbidi- 

ies. P -values < 0.05 were considered statistically significant unless 

therwise specified. 

esults 

Table 1 (A) summarizes patient demographics and comorbidi- 

ies of 1982 patients with AKI and 2857 patients with NAKI from 
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Table 1 

Demographic information of (A) Montefiore Health System data and (B) Stony Brook Hospital data. 

(A) Montefiore health system data NAKI (2857) AKI (1982) P -values 

Demographics 

Age, median (IQR) 61 (47, 75) 70 (60, 81) < 0.001 

Female gender, n (%) 1491 (52.2) 843 (42.5) < 0.001 

Race, n (%) 0.085 

White 246 (16.0) 177 (14.1) 

Black/African American 850 (55.4) 724 (57.6) 

Asian 92 (6.0) 59 (4.7) 

Other 205 (13.3) 154 (12.3) 

Unknown 141 (9.3) 142 (11.3) 

Ethnicity, n (%) < 0.001 

Hispanic 1323 (46.3) 726 (36.7) 

Non-Hispanic 1534 (53.7) 1256 (63.3) 

Comorbidities, n (%) 

Diabetes 506 (17.7) 483 (24.4) < 0.001 

Congestive heart failure 162 (5.7) 195 (9.8) < 0.001 

Chronic kidney disease 328 (11.5) 376 (19.0) < 0.001 

Hypertension 741 (26.0) 519 (26.2) 0.087 

Coronary artery disease 183 (6.4) 144 (7.3) 0.265 

COPD/asthma 304 (10.6) 139 (7.0) < 0.001 

Liver disease 41 (1.4) 34 (1.7) 0.511 

Unadjusted mortality, n (%) 204 (7.1) 743 (37.4) < 0.001 

Mortality odds ratio 6.3 [5.3, 7.6] < 0.001 

(B) Stony Brook Hospital data NAKI (721) AKI (308) P -values 

Demographics 

Age, median (IQR) 59 (47, 73) 70 (55, 80) < 0.001 

Female gender, n (%) 312 (43.3) 118 (38.3) 0.139 

Race, n (%) 0.66 

White 384 (53.3) 177 (57.5) 

Black/African American 52 (7.2) 26 (8.4) 

Asian 22 (3.1) 10 (3.3) 

Other 6 (0.8) 2 (0.6) 

Unknown 257 (35.6) 93 (30.2) 

Ethnicity, n (%) 0.015 

Hispanic 197 (27.3) 62 (20.1) 

Non-Hispanic 524 (72.7) 246 (79.9) 

Comorbidities, n (%) 

Diabetes 159 (22.1) 108 (35.0) < 0.001 

Congestive heart failure 38 (5.3) 55 (17.9) < 0.001 

Chronic kidney disease 45 (6.2) 58 (18.8) < 0.001 

Hypertension 302 (41.9) 196 (63.6) < 0.001 

Coronary artery disease 91 (12.6) 73 (23.7) < 0.001 

COPD/asthma 57 (7.9) 33 (10.7) 0.144 

Liver disease 7 (1.0) 2 (0.7) 0.612 

Unadjusted mortality, n (%) 50 (6.9) 97 (31.5) < 0.001 

Mortality odds ratio 4.67 [3.1,7.0] < 0.001 

Demographic characteristics and comorbidities of NAKI and AKI patients. Chi-square test or Fisher’s exact test was used for group comparison of categorical 

variables in frequencies and percentages. Mann-Whitney U test was used for group comparison of continuous variables in medians and IQR. Mortality odds 

ratios were adjusted for demographics and comorbidities (see Methods). 

AKI, acute kidney injury; COPD, chronic obstructive pulmonary disease; IQR, interquartile range; NAKI, non-AKI. 
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he Montefiore Health System. The AKI cohort was older and had 

ewer females compared with the NAKI cohort ( P < 0.001). Race 

 P = 0.085) was not, but ethnicity ( P < 0.05) was, significantly dif-

erent between groups. Patients with AKI generally had more co- 

orbidities ( P < 0.05). Diabetes, congestive heart failure, chronic 

idney disease, and COPD ( P < 0.05)—but not hypertension, coro- 

ary artery disease and liver disease ( P > 0.05)—were significantly 

ifferent between groups. The unadjusted mortality rate was 37.4% 

or the AKI cohort and 7.1% for the NAKI cohort. The mortality 

dds ratio of AKI compared with NAKI was 6.32 (95% CI: 5.3, 7.6). 

able 1 (B) shows patient profiles for the Stony Brook University 

ospital data. Although there were some differences in the two 

atasets, they were overall quite similar. 

Figure 3 shows the feature importance of clinical variables in 

redicting AKI at −3, −2, −1, and 0 days before onset. The top four 

ariables at day 0 of AKI onset were eGFR, LDH, AST, and ALT; at 

1 day, eGFR, AST, LDH, and ALT; at −2 days, eGFR, AST, LDH, and

LT; and at −3 day, LDH, eGFR, AST, and ALT. The feature impor- 

ance had higher weighting for days closer to onset. Most of the 

op variables were consistent across different days. 
805
Figure 4 shows the feature importance of clinical variables in 

redicting AKI integrating all four time points combined. The top 

ve variables that predict AKI onset using all 4 days of data were 

GFR, LDH, AST, ALT, and CRP. The importance indices were overall 

igher for the model integrating four time points combined com- 

ared with those using individual time points. 

To further evaluate prediction models, we analyzed the loss 

unctions of the training and validation dataset to predict AKI onset 

or one run that included clinical data, demographics, and comor- 

idities at four time points ( Figure 5 ). Both training and validation 

odels performed well with loss functions rapidly decreasing to- 

ard zeros with increasing epochs. A typical ROC curve for AUC 

f the validation dataset to predict AKI onset for the same model 

one of fivefold cross-validation) is shown in Figure 5 . The AUC was 

.957. 

To improve interpretability of the models, Beeswarm plot 

 Figure 6 ) was used. There was high density of reduced (blue) 

GFR that had positive SHAP values, indicative of improved predic- 

ion. There was high density of elevated (red) LDH that had posi- 

ive SHAP values, indicative of improved prediction. Similarly, there 
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Figure 3. Bar graph displays the importance of different clinical variables from a single day in predicting AKI positivity, measured using game theory–based optimal Shapley 

values. AKI, acute kidney injury; alt, alanine transaminase; ast, aspartate aminotransferase; crp, C-reactive protein; egfr, estimated glomerular filtration rate; ldh, lactate 

dehydrogenase. 

Figure 4. Bar graph displays the importance of different clinical variables from all 4 

days in predicting AKI positivity, measured using game theory–based optimal Shap- 

ley values. AKI, acute kidney injury; alt, alanine transaminase; ast, aspartate amino- 

transferase; crp, C-reactive protein; egfr, estimated glomerular filtration rate; ldh, 

lactate dehydrogenase. 
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ere high densities of elevated AST, ALT, and CRP that had positive 

HAP values. The remaining variables had relatively lower SHAP, 

eflecting lower importance for prediction. 

To further improve the interpretability of the models, we gen- 

rated calibration plots of the predicted versus true probability for 

redicting AKI onset for individual-day and all-day data with and 

ithout comorbidities and demographics ( Figure 7 ). Except for day 

 data, all other data points showed good performance. The all-day 

ata showed the best performance. The addition of comorbidities 

nd demographics further improved the performance. 

Table 2 (A and B) summarizes the performance metrics for 

STM model using individual time points and all four time points 

ith fivefold cross-validation for the Montefiore Health System val- 

dation dataset. AUC and other metrics for individual time points 

ere inferior compared with those of all four time points. The AUC 

or −3, −2, −1, and 0 days and all 4 days were 0.75 ± 0.01, 0.82 ±
.01, 0.75 ± 0.01, 0.79 ± 0.01, and 0.956 ± 0.005, respectively. The 

ddition of comorbidities and demographics into the LSTM model 

urther improved performance, with the corresponding AUC of 0.77 

0.01, 0.84 ± 0.01, 0.80 ± 0.01, 0.83 ± 0.01, and 0.965 ± 0.003, 
806 
espectively. The best model (all time points along with comorbidi- 

ies and demographics) yielded AUC of 0.965 ± 0.003, accuracy of 

9.57 ± 1.64%, sensitivity of 0.95 ± 0.03, specificity of 0.84 ± 0.05, 

nd Brier score of 0.08 ± 0.01. Low Brier scores indicated good per- 

ormance. 

ross-validation with Stony Brook Hospital data 

For cross-validation using an independent dataset, we tested 

ur predictive model on the Stony Brook Hospital dataset. The 

KI and NAKI cohorts were 70 and 59 years old, and consisted 

f 38.3% and 43.3% female, 20.1% and 27.3% Hispanics, 57.5% and 

3.3% Caucasian, 8.4% and 7.2% Blacks, 3.9% and 3.9% other races, 

0.2% and 35.6% unknown/not reported, with 31.5% and 6.9% unad- 

usted mortality rate, respectively. The LSTM predictive model with 

ll four data time points yielded an AUC of 0.83 ± 0.03, accuracy 

8.93 ± 2.74%, sensitivity 0.73 ± 0.09, and specificity 0.80 ± 0.05 

 Table 2 C). The addition of comorbidities and demographics data 

ielded an AUC of 0.86 ± 0.01, accuracy of 83.66 ± 2.53%, sensitiv- 

ty of 0.66 ± 0.10, specificity of 0.89 ± 0.03, and Brier score of 0.12 

0.01. 

iscussion 

This study applied LSTM to integrate longitudinal clinical data 

o predict hospital-acquired AKI onset in patients with COVID-19. 

he inputs to the LSTM model were longitudinal clinical labo- 

atory values, longitudinal vital signs, demographics, and comor- 

idities. LSTM using longitudinal data markedly improves predic- 

ion accuracy over individual time points, with the top predic- 

ors of AKI onset to be eGFR, LDH, AST, ALT, and CRP. Inclu- 

ion of comorbidities and demographics further improved pre- 

iction performance. The best model was the one that used all 

ime points along with comorbidities and demographics, yielding 

n AUC of 0.965 ± 0.003, accuracy of 89.57 ± 1.64%, sensitiv- 

ty of 0.95 ± 0.03, specificity of 0.84 ± 0.05, and Brier score of 

.08 ± 0.01 for the Montefiore validation dataset. When tested 

n an external validation dataset from Stony Brook Hospital, the 

orresponding performance indices were 0.86 ± 0.01, 83.66 ±
.53%, 0.66 ± 0.10, 0.89 ± 0.03, and 0.12 ± 0.01, respectively. 

n addition, analysis was performed to improve interpretability of 

STM models. This approach could help frontline physicians to 
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Figure 5. (A) The loss functions for the training and validation dataset to predict AKI onset for one run for the model that included clinical data at for four time points along 

with demographics and comorbidities. (B) ROC curve generated with the AKI onset predictive model, built and trained using clinical variables across all 4 days combined 

with comorbidities and demographic information. AKI, acute kidney injury; ROC, receiver operating characteristic. 

Figure 6. Beeswarm plot for model interpretability for Montefiore data. Importance of variables are ranked from top to bottom. Colors indicate higher (red) or lower (blue) 

feature values. Positive SHAP values (to the right of the 0 line) indicate data contributing to improved prediction of AKI onset. AKI, acute kidney injury; alt, alanine transam- 

inase; ast, aspartate aminotransferase; crp, C-reactive protein; egfr, estimated glomerular filtration rate; ldh, lactate dehydrogenase; SHAP, SHapley Additive exPlanations; 

wbc, white blood cell. 
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aise awareness for AKI complications and identify patients who 

ight need early interventions to prevent AKI and long-term renal 

omplications. 

LSTM networks are well-suited to make predictions with time 

eries data. The importance indices and prediction performance in- 

ices were overall much higher for the model integrating all four 

ime points compared with those using individual time points. The 

op predictors of AKI onset were eGFR, LDH, AST, ALT, and CRP. 

he SHAP Beeswarm plots were helpful in assessing the direc- 

ion of changes and variability of prediction performance of top 

redictors, providing some interpretability of LSTM results. LDH is 

 marker of cell death and multiorgan failure ( Lim et al., 2020 ;

okhtari et al., 2020 ; Thierry and Roch, 2020 ). Reduced eGFR, an 

ndicator of kidney dysfunction, has been associated with AKI in 

OVID-19 ( Mirijello et al., 2021 ). Elevated CRP is indicative of in- 
807
ammation and cytokine storm, among others ( Lorenz et al., 2020 ). 

levated ALT and AST are indicative of liver enzyme dysfunction 

 Zhang et al., 2020 ). 

A few studies have used clinical variables at hospital admis- 

ion to predict AKI ( Gabarre et al., 2020 ; Hectors et al., 2021 ;

ia et al., 2020 ), but predicting AKI development using only clin- 

cal variables at admission is likely inaccurate because patients 

ame into hospitals with different disease severities or might have 

ommunity-acquired AKI. The temporal characteristics of clinical 

ariables leading up to in-hospital AKI development have been re- 

orted ( Lu et al., 2021b ; Lu et al., 2022 ). Lu et al. previously re-

orted abnormal creatinine, procalcitonin, WBC count, LDH, and 

ymphocyte count at admission to be associated with a higher like- 

ihood of AKI development ( Lu et al., 2022 ). They applied logis- 

ic regression models to determine how accurate clinical variables 
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Figure 7. Predicted vs true probability plots for predicting AKI onset. (A) Montefiore data without comorbidities and demographics. (B) Montefiore data with comorbidities 

and demographics. The best predictions fall along the y = x line. AKI, acute kidney injury. 

Table 2 

Area under the curve (AUC), accuracy, sensitivity, specificity, and Brier scores of predicting AKI onset using data from individual days and all 4 days before 

AKI onset, (A) without and (B) with comorbidities and demographic data from the Montefiore health system test dataset. (C) performance indices of the Stony 

Brook Hospital testing dataset. 

(A) Without comorbidities and demographic data 

AUC Accuracy Sensitivity Specificity Brier Score 

Day −3 0.75 ± 0.01 65.05 ± 1.92% 0.75 ± 0.03 0.61 ± 0.03 0.21 ± 0.01 

Day −2 0.82 ± 0.01 73.94 ± 1.22% 0.57 ± 0.05 0.87 ± 0.01 0.17 ± 0.01 

Day −1 0.75 ± 0.01 69.47 ± 0.33% 0.64 ± 0.02 0.78 ± 0.03 0.20 ± 0.01 

Day 0 0.79 ± 0.01 66.61 ± 0.03% 0.64 ± 0.03 0.81 ± 0.03 0.19 ± 0.01 

All time points 0.956 ± 0.005 87.98 ± 1.75% 0.88 ± 0.05 0.87 ± 0.05 0.09 ± 0.01 

(B) With comorbidities and demographic data 

Day −3 0.77 ± 0.01 69.10 ± 1.24% 0.68 ± 0.03 0.70 ± 0.02 0.20 ± 0.01 

Day −2 0.84 ± 0.01 76.46 ± 0.43% 0.68 ± 0.03 0.82 ± 0.03 0.17 ± 0.01 

Day −1 0.80 ± 0.01 70.53 ± 1.29% 0.65 ± 0.04 0.79 ± 0.04 0.19 ± 0.01 

Day 0 0.83 ± 0.01 65.45 ± 1.05% 0.63 ± 0.02 0.82 ± 0.01 0.19 ± 0.01 

All time points 0.965 ± 0.003 89.57 ± 1.64% 0.95 ± 0.03 0.84 ± 0.05 0.08 ± 0.01 

(C) Stony Brook Hospital data prediction performance 

All time points 0.83 ± 0.03 78.93 ± 2.74% 0.73 ± 0.09 0.80 ± 0.05 0.16 ± 0.01 

All time points + comorbidities and demographics 0.86 ± 0.01 83.66 ± 2.53% 0.66 ± 0.10 0.89 ± 0.03 0.12 ± 0.01 
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ould also predict hospital-acquired AKI at different, but individual, 

ime points before AKI onset. To our knowledge, there has been no 

tudy that integrated multiple time points of clinical variables us- 

ng machine learning or other methods to predict in-hospital AKI 

nset in COVID-19. Our study is novel because it used LSTM to 

ntegrate multiple time point data to predict in-hospital develop- 

ent of AKI with two health system data, along with analysis to 

nable interpretability of LSTM models (such as SHAP Beeswarm 

lots and calibration plots). Our cohort consisted of a diverse popu- 

ation that included Black and Hispanic patients. The top predictors 

f AKI are similar to those reported previously. The slight differ- 

nces in predictors from the two studies could be because of dif- 

erence in analysis methods, sample sizes, patient cohorts, among 

thers. 

To improve generalization, we tested our model on an indepen- 

ent dataset that mainly consisted of Caucasians. The Stony Brook 

ospital cohort had a 31% AKI incidence rate, whereas Montefiore 

ohort had a 41% AKI incidence rate. The mortality rates in the AKI 

nd NAKI groups in the Stony Brook Hospital data were slightly 

ower. The performance indices were excellent for this indepen- 
808
ent dataset, suggesting that this predictive model has significant 

eneralizability. 

This study had several limitations. These findings need to be 

eplicated on additional data from other hospitals to expand gen- 

ralizability. As with all observational studies, other residual con- 

ounders may exist that were not accounted for in our analy- 

is. Urine analysis data, such as proteinuria and hematuria, were 

ot used in our predictive modeling owing to their small sam- 

le sizes. Prospective studies validating our predictive models are 

arranted. 

onclusions 

This study employed a sophisticated ML method to integrate 

ongitudinal clinical data to predict in-hospital onset a few days 

rior. This approach has the potential to provide frontline physi- 

ians with an objective quantitative tool to stratify patients with 

OVID-19 who are at risk of developing AKI in time-sensitive and 

otentially resource-constrained environments. 
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