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Abstract: Broccoli (Brassica oleracea L. Var. italica) microgreens are rich in various nutrients, especially
sulforaphane. NaCl application is an effective method to reduce nitrate content, and to improve
sulforaphane content; however, NaCl application is associated with a risk in productivity reduction.
Ca application is a well-known approach to cope with salt stress. Thus, we hypothesized that
adding CaSO4 may mitigate the adverse effects of NaCl stress, and enhance the quality of broccoli
microgreens. In this study, we conducted an experiment to investigate the effects of a combined
treatment of NaCl and CaSO4 on the fresh yield, glucosinolates (GS), sulforaphane, nitrate, and
mineral element contents of broccoli microgreens. The results showed that the incorporation of
CaSO4 into NaCl solution unexpectedly increased the yield of the leaf area. Moreover, the addition of
CaSO4 ameliorated the decline in GS under NaCl stress, and induced the accumulation of Ca and S.
The nitrate content decreased more than three times, and sulforaphane content also decreased in the
combined treatment of NaCl and CaSO4. This study proposes that the incorporation of CaSO4 into
NaCl solution increases the yield, and alleviates the unfavorable effects induced by NaCl stress on the
quality of broccoli microgreens. This study provides a novel approach for microgreens production.

Keywords: sulforaphane; salinity; leaf area; glucosinolates; nitrate; broccoli

1. Introduction

Cruciferous microgreens are kinds of vegetables that have been reported to be more
nutrient-dense compared to their mature counterparts [1]. They are rich in healthy com-
pounds, such as GS, vitamins, and mineral elements [2,3]. As a result of their abundant
bioactive compounds, the chemoprotective effects of cruciferous microgreens against hu-
man diseases have been reported in numerous studies [4]. These characteristics make
cruciferous microgreens satisfy consumers’ interests in healthy diets, and have broad mar-
ket prospects [4]. Broccoli microgreens have received extensive research and more attention
for being rich in glucoraphanin, compared to other cruciferous microgreens in general [5].
The intact glucoraphanin has little biological activity, while its hydrolysate sulforaphane
exhibits impressive effects of cancer chemoprevention [6], neuroprotective protection [7],
and anti-diabetes effects [8].

Previous studies have shown that NaCl treatment greatly increases the content of
sulforaphane [9–11] by increasing transcription abundance of the GS hydrolytic enzyme
and its cofactor protein. This directs the GS hydrolytic enzyme to produce sulforaphane
rather than sulforaphane nitrile [10]. However, vegetables provide not only beneficial
compounds, but also antinutrients for humans, such as nitrates. A high intake of nitrates
is associated with a risk of carcinogenic nitrosamine formation [12]. NaCl application
has been considered to be an effective way to cope with high nitrate accumulation in
vegetables [13] such as lettuce [14] and artichoke [15]. This is due to the competition
between nitrate and chloride for the same anion channel [16]. Unfortunately, the risk of
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NaCl application to microgreens and spouts is apparent, such as a reduction in germination
and yield [10,17]. Meanwhile, low yields and short shelf life are two important factors that
restrict the development of the microgreens industry [18]. The addition of Ca to alleviate
NaCl stress has been reported for many crops [19–21]. Moreover, the application of Ca is a
mineral fortification approach that is used in producing food crops [22]. Otherwise, sulfur
is an essential component of GS. In order to elevate the content of GS, sulfur-containing
chemicals are commonly applied to cruciferous sprouts [23,24].

Although the alleviating effect of Ca on NaCl stress has been well documented in
common fruits and vegetables, little is currently known about its effects on microgreens.
Here, we hypothesized that incorporation of CaSO4 into NaCl solution could not only
enhance the yield, but also improve the quality of broccoli microgreens; hence, we sought
to investigate the effects of adding CaSO4 in NaCl solution on the yield and the content of
GS, sulforaphane, nitrate, and minerals (P, S, Na, K, Ca, Mg, Zn, Fe).

2. Materials and Methods
2.1. Experimental Design and Treatments

Broccoli (Brassica oleracea L. Var. italica) seeds (Wenzhou Zhaofeng Seed Co., Ltd.,
Wenzhou, China) were rinsed with distilled water after being immersed in 1% (v/w)
sodium hypochlorite for 30 min, and were then soaked in distilled water for 3 h at 30 ◦C.
Submerged seeds (2 g seeds per tray, 17 cm × 17 cm) were placed in culture trays that
were filled with quartz sand. The microgreens trays were placed in a growth chamber with
environmental conditions as follows: a photoperiod of 14 h light/10 h dark, at 22 ± 2 ◦C.
Seeds were germinated for 2 days in distilled water for root elongation of the microgreens.
Then, two-day-old microgreens treated with distilled water (CK); 80 mmol/L NaCl (Na);
1.39 mmol/L CaSO4 (Ca), which is the concentration of a nearly saturated solution that
is not precipitated, dissolved at 10–30 ◦C; and 80 mmol/L NaCl + 1.39 mmol/L CaSO4
(NaCa). The solution in each tray was replaced daily. Trays were arranged randomly, and
were systematically rotated every day to enhance the uniformity of the light environment.
On the ninth day after sowing, microgreens were harvested, immersed immediately in
liquid nitrogen, and then stored at −80 ◦C for sulforaphane and nitrate, or were lyophilized
for GS and mineral elements analysis.

2.2. Determination of GS

The GS determination procedures were performed as previously described by
Zhu et al. [25], with slight modifications. Briefly, freeze-dried samples (50 mg) were
boiled with 5 mL of methanol (70%, v/v), in order to inactivate myrosinase. Then, 2 mL
of the supernatant were loaded into a 1 mL DEAE-Sephadex A25 column, and desulfated
overnight with 250 µL of aryl sulfatase. The resultant desulphoglucosinolates were eluted
with 2 mL of water, and filtered through a 0.22 µm membrane. Separation and detection
were performed on a Waters ACQUITY Arc system (Waters Co., Milford, MA, USA) that
was equipped with a 2489 UV/Vis detector, using a prontosil ODS2 column (250 × 4 µm,
5 µm, Bischoff, Leonberg, Germany) at 229 nm. Determination was conducted at a flow rate
of 1 mL/min in a linear gradient, beginning with 0% acetonitrile for 1 min, reaching 20%
acetonitrile at 32 min, and constant 20% acetonitrile for 6 min. Glucotropaeolin (PanReac
AppliChem, Darmstadt, Germany) was added to each sample as an internal standard.

2.3. Determination of Sulforaphane

The extraction and analysis of sulforaphane used the method as described by
Guo et al. [26], with some modifications. Broccoli microgreens (0.5 g fresh shoots) were
ground with 1 mL of distilled water. After 3 h of incubation at 37 ◦C, the microgreens ho-
mogenate was extracted three times with 10 mL of dichloromethane. The dichloromethane
fraction was dried at 35 ◦C under vacuum on a rotary evaporator. The residue was dis-
solved in 2 mL of acetonitrile and through a 0.22 µm membrane filter. The extracts were
analyzed using a Waters ACQUITY Arc system (Waters Co., Milford, MA, USA) that was
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equipped with a 2489 UV/Vis detector, using a prontosil ODS 2 column (250 × 4 µm, 5 µm,
Bischoff, Leonberg, Germany). The flow rate was 0.6 mL/min in a linear gradient of 10–60%
acetonitrile from 0 to 25 min, reaching 100% acetonitrile at 30 min. The absorbance value
was 254 nm. Sulforaphane (Sigma Chemical Corporation, St. Louis, MO, USA) was used as
an external standard.

2.4. Determination of Nitrate

The nitrate content was determined spectrophotometrically, as described by
Cataldo et al. [27]. One gram of fresh sample was ground in 3 mL of distilled water.
The extract was centrifuged at 3000× g for 10 min, and the supernatant was filtered. Then,
0.1 mL of the supernatant was mixed with 0.4 mL of 5% (w/v) salicylic acid (in H2SO4) and
9.5 mL of 8% NaOH. After 30 min, the nitrate content was measured at a wavelength of
410 nm.

2.5. Determination of Mineral Elements

Dry sample was digested with mixed acid (VHNO3:VHF, 1:1) in a microwave oven di-
gestion system (MARS6, CEM Corporation, Matthews, NC, USA) [28]. The concentrations
of elements were determined via inductively coupled plasma-atomic emission spectrom-
etry (iCAP 6300 series, Thermo Fisher Scientific Inc., Waltham, MA, USA). The detailed
analytical conditions were previously described [29]. The calibration curve (R2 > 0.999)
was built using a multi-element calibration standard. The elemental recoveries were in the
range of 90 to 110%.

2.6. Statistical Analysis

Experimental data were expressed in terms of the mean ± standard deviation (SD)
of three biological replicates. Origin 9.0 software was used to calculate and draw data.
One-way analysis of variance (ANOVA) with Tukey’s test were conducted on data, and
p < 0.05 was considered significant [30].

3. Results
3.1. Yield

The NaCl treatment reduced the yield. However, the combined treatment of NaCl and
CaSO4 had the largest yield and leaf area among treatments, of which fresh yield was about
two-fold compared to the control (Figure 1C). The leaf area from the combined treatment
was larger than that of other treatments (Figure 1A,B).
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Figure 1. Fresh yield and dry yield of broccoli microgreens under different treatments. (A) Trays of
microgreens under different treatments; (B) Leaves of microgreens under different treatments;
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(C) Fresh yield of microgreens under different treatments; (D) Dry yield of microgreens under differ-
ent treatments. CK, distilled water; Na, 80 mmol/L NaCl; NaCa, 80 mmol/L NaCl + 1.39 mmol/L
CaSO4; Ca, 1.39 mmol/L CaSO4; scale bar = 1 cm. Data are expressed as the mean ± standard
deviation (SD), values labelled with different letters are significantly different (p < 0.05).

3.2. Nutritional Characteristic

NaCl treatment led to the lowest value of both the total GS and individual GS contents,
especially in glucoraphanin, glucoiberin, gluconapin, and glucoerucin; moreover, the
addition of CaSO4 was effective in preventing a decline in GS, resulting in no significant
changes in glucoiberin, signirin, gluconapin, and neoglucobrassicin contents compared
with the control. Moreover, among all treatments, the content of 4-hydroxyglucobrassicin
under the combined treatment was the highest. CaSO4 treatment increased the total content
of GS in comparison with that of the control (Table 1). The results of sulforaphane showed
that NaCl treatment induced the highest sulforaphane content, while no significant changes
occurred in the other treatments (Figure 2).

Table 1. Glucosinolates composition and content (µmol/100 g dry weight) in shoots of broccoli
microgreens under different treatments.

Treatments 1 CK Na NaCa Ca

Glucoiberin 252.5 ± 14.6 ab 70.97 ± 4.79 c 195.7 ± 48.1 b 324.0 ± 67.6 a
Progoitrin 1252 ± 252 b 451.1 ± 16.2 c 988.2 ± 180 b 1887 ± 129 a

Signirin 246.2 ± 75.6 a 89.74 ± 4.57 b 200.8 ± 30.0 a 310.1 ± 19.9 a
Glucoraphanin 1944 ± 7.46 a 561.7 ± 25.5 c 1203 ± 203 b 2249 ± 167 a

Gluconapin 114.2 ± 8.44 b 42.72 ± 2.50 c 103.0 ± 23.1 b 150.4 ± 4.55 a
4-hydroxyglucobrassicin 402.8 ±22.5 b 227.7 ± 20.3 c 576.0 ± 74.0 a 522.0 ± 61.8 ab

Glucoerucin 1456 ± 34.2a 562.6 ± 9.51 c 1153 ± 118 b 1671 ± 124 a
Glucobrassicin 532.2 ± 7.38 b 166.7 ± 4.32 d 352.2 ± 84.2 c 664.9 ± 30.0 a

4-methoxyglucobrassicin 189.0 ± 5.49 a 63.30 ± 0.70 c 125.0 ± 17.8 b 141.0 ± 8.83 b
Neoglucobrassicin 88.09 ± 6.64 ab 52.58 ± 1.83 c 69.30 ± 17.1 bc 110.4 ± 8.95 a

Total glucosinolates 6478 ± 418 b 2289 ± 43.2 d 4966 ± 584 c 8031 ± 539 a
1 CK, distilled water; Na, 80 mmol/L NaCl; NaCa, 80 mmol/L NaCl + 1.39 mmol/L CaSO4; Ca, 1.39 mmol L-1
CaSO4. Data are expressed as the mean ± standard deviation (SD), values labelled with different letters are
significantly different (p < 0.05).
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Figure 2. Sulforaphane content of broccoli microgreens under different treatments. CK, distilled
water; Na, 80 mmol/L NaCl; NaCa, 80 mmol/L NaCl + 1.39 mmol/L CaSO4; Ca, 1.39 mmol/L
CaSO4; DW, dry weight. Data are expressed as the mean ± standard deviation (SD), values labelled
with different letters are significantly different (p < 0.05).
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The nitrate level in the NaCl treatment and combined treatment was considerably
lower than that of other treatments, more than two times lower (Figure 3). Compared to
the control, NaCl treatment increased K but reduced Ca, Mg, and Zn concentrations, while
the combined treatment increased the content of Ca and S (Table 2).
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Figure 3. Nitrate content of broccoli microgreens under different treatments. CK, distilled water; Na,
80 mmol/L NaCl; NaCa, 80 mmol/L NaCl + 1.39 mmol/L CaSO4; Ca, 1.39 mmol/L CaSO4; DW, dry
weight. Data are expressed as the mean ± standard deviation (SD), values labelled with different
letters are significantly different (p < 0.05).

Table 2. Mineral content of broccoli microgreens under different treatments (mg/100 g dry weight).

Treatments 1 CK Na NaCa Ca

Macroelements
P 887.3 ± 15.9 a 876.8 ± 20.0 a 801.2 ± 18.9 b 878.5 ± 11.2 a
S 263.9 ± 2.32 c 262.5 ± 5.62 c 310.9 ± 7.18 b 368.1 ± 4.39 a

Na 127.8 ± 21.6 c 4729 ± 331 b 7514 ± 641 a 52.80 ± 20.2 c
K 488.1 ± 14.1 c 607.0 ± 10.7 a 505.1 ± 30.5 bc 581.1 ± 29.3 b
Ca 493.2 ± 20.3 c 360.9 ± 6.77 d 715.4 ± 16.1 b 1678 ± 41.8 a
Mg 302.7 ± 6.66 a 270.6 ± 8.23 b 228.9 ± 12.2 c 286.8 ± 3.43 ab

Microelements
Zn 7.54 ± 0.46 a 6.61 ± 0.26 b 6.96 ± 0.34 ab 7.30 ± 0.07 ab
Fe 11.78 ± 1.32 a 13.23 ± 3.17 a 12.86 ± 2.58 a 12.72 ± 0.90 a

1 CK, distilled water; Na, 80 mmol/L NaCl; NaCa, 80 mmol/L NaCl + 1.39 mmol/L CaSO4; Ca, 1.39 mmol/L
CaSO4; Data are expressed as the mean ± standard deviation (SD), values labelled with different letters are
significantly different (p < 0.05).

4. Discussion

Data from the literature confirm that NaCl has biofortification effects as eustress [13].
Our research showed that the biofortification effect of NaCl occurred via sulforaphane
increase and nitrate decrease in broccoli microgreens. These findings are consistent with
the research of Guo et al. [31], who reported that high NaCl concentrations (more than
80 mmol/L) induced sulforaphane production in different broccoli cultivars, while low
NaCl concentrations were ineffective.

Nevertheless, NaCl treatment leads to a decline in yield, GS content, and middle-
microelements in broccoli microgreens. Esfandiari et al. [10] reached similar conclusions.
They showed that high NaCl solution concentrations decreased the germination and fresh
weight of broccoli sprouts that were cultivated under light, as well as GS, especially gluco-
raphanin, glucoerucin, glucoiberverin, and gluconapin. However, Guo et al. [31] showed
that higher NaCl concentrations increased the content of glucoraphanin. The discrepancies
may have arisen from different cultivation methods: the broccoli seed in the Guo et al. [31]
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study was sown on a filter paper upon vermiculite, and grown in an incubator in darkness.
The broccoli microgreens cultivar used in our study was rich in P, Ca, and K contents, which
were inconsistent with previous studies [32]. The contents of Ca and Mg decreased under
NaCl treatment, a finding that is similar to the results of Hassini et al. [33].

More than alleviating yield decline caused by NaCl stress, adding CaSO4 improved
yield and increased the leaf area of broccoli microgreens (Figure 1). Leaf expansive growth
and structural growth depends on hydraulics and carbon metabolism [34]. Turgor could
be a candidate for the coupling among cell wall metabolism, cell wall mechanics, and
the hydraulic control of plant cell growth [34]. Salinity can cause higher leaf turgor [35];
consequently, the pressure caused by turgor transmits stresses to the cell wall, which
stretches irreversibly [36]. Moreover, it has been reported that Na+ causes softening of
the cell wall, and Ca2+ signaling participates in maintaining cell wall integrity during
NaCl stress. According to the “pectate cycle” mechanism, the cell wall must recruit a large
amount of Ca, in order to tighten new wall matrix during the process of wall expansion [37].
Therefore, it can be inferred that the reason for growth promotion appearance under the
combined treatment is that Na+ softened the cell wall, and the high NaCl concentration
provided turgor for cell growth; meanwhile, Ca2+ participated in maintaining cell wall
integrity via signaling, and leading to new cell wall construction as a raw material.

Along with yield improvement and growth promotion (Figure 1), the combined treat-
ment of NaCl and CaSO4 altered the nutritional traits of broccoli microgreens. Firstly,
the broccoli microgreens were Ca-fortified from the addition of CaSO4, which was con-
sistent with results from hydroponic tomatoes [38]. Secondly, the decline in the content
of GS caused by NaCl treatment was impaired from adding CaSO4, and more than half
of individual GS contents were consistent with the control. Notably, the content of 4-
hydroxyglucobrassicin under the combined treatment of NaCl and CaSO4 was the highest
among all treatments. These results were in accordance with Sun et al. [39], who found
that 4-hydroxyglucobrassicin content nearly doubled in CaCl2 solution. Preharvest CaSO4
treatment was reported to improve the content of total GS and individual GS in broccoli
microgreens [24], which was consistent with our data. Thirdly, NaCl treatment increased
the sulforaphane content, while adding CaSO4; namely, the combined treatment showed a
similar sulforaphane level with the CaSO4 treatment. Owing to Ca2+ signaling that con-
tributes to plant physiological response regulation [40], and the negative effect of Ca2+ on
the sulforaphane formation during the glucoraphanin hydrolysis process in vitro [41], we
speculated that the positive effect of NaCl on the sulforaphane production was indirectly
and/or directly inhibited by Ca. In the research by Guo et al. [24], the sulforaphane content
of broccoli microgreens improved from CaSO4 (10 mmol/L) treatment, mainly due to an
increase in glucoraphanin; meanwhile, an increase in glucoraphanin was not found in our
study. Such a discrepancy may be due to the relatively lower CaSO4 concentration that we
applied, which did not significantly improve the production of glucoraphanin (Table 1), in
addition to the negative effect of Ca2+ on sulforaphane formation during the glucoraphanin
hydrolysis process [41]. Finally, since the presence of Cl− and Ca can help enhance ni-
trate reductase activity to assimilate nitrate into organic nitrogen compounds [42], the
combined treatment showed the lowest nitrate content. Accordingly, our findings indicate
that the addition of CaSO4 in NaCl solution alleviated the unfavorable effects induced by
NaCl stress.

5. Conclusions

The results showed that NaCl stress increased the content of sulforaphane, but reduced
yields and the content of GS; moreover, adding CaSO4 increased yields (about two times),
and obtained Ca-fortified, low-nitrate, and normal GS and sulforaphane content in broccoli
microgreens products. This study provides new perspectives on the roles of Na and Ca in
leaf growth. Instead of applying multi-element fertilizers [43], the incorporation of CaSO4
into NaCl solution provides a potential economical and convenient strategy to increase
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yields for microgreen grower communities, and to enhance broccoli microgreens quality
for consumer’s special needs.
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