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H I G H L I G H T S  

• The radiomics signature based on FS-T2WI images could predict HRC Status. 
• The radiomics nomogram performed better than the clinical-radiological model, and it might be an easy-to-use supporting tool for HRC status prediction. 
• Age, radiomics Rad_score and cytogenetic status play a combined effect on the overall survival of MM patients and are essential factors affecting the prognosis of 

patients.  
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A B S T R A C T   

Rationale and Objectives: Radiomics has demonstrated potential in predicting the cytogenetic status of multiple 
myeloma (MM). However, the role of single-sequence radiomic nomograms in predicting the high-risk cytoge
netic (HRC) status of MM remains underexplored. This study aims to develop and validate radiomic nomograms 
based on fat-suppressed T2-weighted images (T2WI-FS) for predicting MM’s HRC status, facilitating pre- 
treatment decision-making and prognostic assessment. 
Materials and methods: A cohort of 159 MM patients was included, comprising 71 HRC and 88 non-HRC cases. 
Regions of interest within the most significant tumor lesions on T2WI-FS images were manually delineated, 
yielding 1688 features. Fourteen radiomic features were selected using 10-fold cross-validation, employing 
methods such as variance thresholds, Student’s t-test, redundancy analysis, and least absolute shrinkage and 
selection operator (LASSO). Logistic regression was utilized to develop three prediction models: a clinical model 
(model 1), a T2WI-FS radiomic model (model 2), and a combined clinical-radiomic model (model 3). Receiver 
operating characteristic (ROC) curves evaluated and compared the diagnostic performance of these models. 
Kaplan-Meier survival analysis and log-rank tests assessed the prognostic value of the radiomic nomograms. 
Results: Models 2 and 3 demonstrated significantly greater diagnostic efficacy compared to model 1 (p < 0.05). 
The areas under the ROC curve for models 1, 2, and 3 were as follows: training set—0.650, 0.832, and 0.846; 
validation set—0.702, 0.730, and 0.757, respectively. Kaplan-Meier survival analysis indicated comparable 
prognostic values between the radiomic nomogram and MM cytogenetic status, with log-rank test results (p <
0.05) and concordance indices of 0.651 and 0.659, respectively; z-score test results were not statistically sig
nificant (p = 0.153). Additionally, Kaplan-Meier analysis revealed that patients in the non-HRC group, low-RS 
group, and aged ≤ 60 years exhibited the longest overall survival, while those in the HRC group, high-RS 
group, and aged > 60 years demonstrated the shortest overall survival (p = 0.004, Log-rank test). 
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Conclusions: Radiomic nomograms are capable of predicting the HRC status in MM. The cytogenetic status, 
radiomics model Rad score, and age collectively influence the overall survival of MM patients. These factors 
potentially contribute to pre-treatment clinical decision-making and prognostic assessment.   

1. Introduction 

Multiple myeloma (MM), a malignancy marked by the abnormal 
proliferation of plasma cells, constitutes approximately 1.8 % of all 
cancers and 18 % of hematologic malignancies in the United States, 
primarily affecting the bone marrow [1]. The variability in survival 
times among MM patients, along with their extreme insensitivity to 
chemotherapy and poor prognosis, may be attributed to unrecognized 
genetic abnormalities at chromosomal and genetic levels and the 
absence of effective early-stage treatment modalities [2–3]. The Na
tional Comprehensive Cancer Network (NCCN) guidelines and the In
ternational Myeloma Working Group (IMWG) diagnostic criteria for risk 
stratification mandate evaluation of MM patients for cytogenetic 
markers, including t(4;14), t(14;16), t(14;20), del(17/17p), chromo
some 1q amplification, p53 mutations, and non-hyperdiploid karyo
types, identified as high-risk cytogenetic (HRC) factors [4–6]. In HRC 
patients ineligible for autologous stem cell transplantation, early 
administration of chemotherapeutic agents such as bortezomib, lenali
domide/carfilzomib, and lenalidomide significantly extends overall 
survival (OS) [7–8]. Early tandem autologous stem cell transplantation 
in eligible HRC patients enhances OS [9–10]. Consequently, cytogenetic 
factors hold significant clinical value in assessing the disease process, 
selecting treatment options, and predicting prognosis in MM. 

Fluorescence in situ hybridization (FISH) of CD138-positive cells is 
regarded as the gold standard for detecting genetic abnormalities in MM. 
Additionally, the International Myeloma Working Group (IMWG) 
consensus recommends evaluating more complex parameters, such as 
gene expression profiles, mutation detection, and copy number abnor
malities [11]. These tests are primarily performed following unilateral 
bone marrow aspiration or biopsy [2]. However, these invasive pro
cedures increase the risk of clinical infection and economic burden on 
patients, while yielding samples that do not represent the overall het
erogeneity of the disease. Consequently, there is an urgent need to 
develop non-invasive methods to determine the cytogenetic status of 

tumors before treatment. 
Whole spine magnetic resonance imaging (MRI) is now the preferred 

diagnostic modality for early detection of bone marrow lesions, owing to 
its superior soft tissue contrast [12–13]. Fat-suppressed T2-weighted 
images (T2WI-FS), a standard sequence in whole spine imaging, are 
critical for diagnosing MM as they enhance the detection of subtle bone 
marrow edema, allow for comprehensive assessment of bone destruc
tion, and clearly delineate the anatomy of the destruction sites, while 
eliminating interference from fatty signals [14]. Conversely, conven
tional MRI findings, such as cumulative vertebral body count and lesion 
growth patterns, may correlate with cytogenetic status and prognosis 
[12]. However, these analyses often lack sufficient accuracy and depend 
heavily on the subjective judgment of radiologists. 

Radiomics, a non-invasive imaging-based assessment technique, has 
recently emerged as a tool for early diagnosis, molecular typing, and 
prognostic evaluation of diseases by extracting high-throughput imag
ing data and applying statistical and other analytical methods [15–16]. 
Previous studies on hematologic radiomics are limited, with recent re
ports indicating that radiomics facilitates discrimination between HRC 
and non-HRC statuses in MM [17–18]. However, while these studies 
developed radiomic models for HRC status using multiple MRI se
quences, our study aims to construct and validate a clinical radiomic 
nomogram based on T2WI-FS sequences, predicting MM cytogenetic 
status and analyzing its prognostic value in overall survival OS. 

2. Materials and methods 

The institutional review board at our institution approved this 
retrospective study and waived the requirement for informed patient 
consent. 

2.1. Patients 

This study included 759 patients with pathologically confirmed MM, 
spanning from January 2013 to December 2021. Inclusion criteria were 
as follows: 1) pre-treatment T2WI-FS MRI; 2) available FISH results; 3) 
complete clinical information; 4) presence of at least one vertebral 
lesion. Exclusion criteria included: 1) non-whole spine examinations; 2) 
presence of malignant bone metastases or severe scoliosis deformities; 3) 
poor image quality; 4) non-MM bone marrow or extramedullary lesions. 
Ultimately, 159 MM cases were included in this study, with a detailed 
patient selection flow chart provided in Fig. 1. Cytogenetic status was 
assessed using FISH, with high-risk classification based on the presence 
of one or more of the following: t(4;14), t(14;16), t(14;20), del(17p), 
chromosome 1q amplification, p53 mutation, or other chromosomal 
abnormalities outside of any non-hyperdiploid karyotype. Based on 
FISH results, patients were categorized into HRC status (71 patients) and 
non-HRC status (88 patients). Subsequently, the 159 MM cases were 
randomly allocated into a training cohort (n = 111) and a validation 
cohort (n = 48) in a 7:3 ratio. 

2.2. Follow-up plan 

To evaluate the prognostic value of the HRC status prediction model, 
OS was calculated from the time of initial diagnosis to either the date of 
death or the study endpoint (December 2021) for patients who remained 
alive. The median survival time post-diagnosis for each tumor grade 
determined the minimum follow-up duration for surviving patients, set 
at 15 months for high-risk and 27 months for non-high-risk groups as per 
FISH analysis. Patients who did not meet the minimum follow-up 

Fig. 1. Flowchart of the patient selection process. MM, multiple myeloma; 
FISH, fluorescence in situ hybridization; MRI, magnetic resonance imaging; FS- 
T2WI, fat-suppressed T2-weighted magnetic resonance imaging. 
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duration or were lost to follow-up were excluded, resulting in 98 of the 
159 patients being included in the final analysis. Clinical characteristics 
of these 98 patients, including age, β2-microglobulin, lactate dehydro
genase, blood albumin, cytogenetic status, OS, MRI lesion growth pat
terns, and model-stratified risk groups, were collected and analyzed. 

Details on MRI data acquisition, region of interest (ROI) segmentation, 
reproducibility analysis, and radiomic feature extraction are provided in 
Supplementary S1. 

Fig. 2. Flowchart of the MM radiomics approach for predicting cytogenetic status. (I) Manual outlining of the ROI for focal, hybrid, and diffuse lesions. (II) Extraction 
of image histology features, including shape and size, first-order statistical, texture, and wavelet features. (III) Dimensional reduction of the features using the LASSO 
regression model. (IV) Combining imaging histological features and clinical features to construct prediction models, further statistical analysis such as ROC curves are 
used; (V) Finally, column line plots are used to show the MM cytogenetic status prediction results on clinical validity. ROI, region of interest; LASSO, least absolute 
shrinkage and selection operator; ROC, receiver operating characteristic; MM, multiple myeloma. 

Table 1 
Characteristics of patients in training and validation cohorts.  

Characteristics Training 
cohort 
(N = 111) 

P value Validation 
cohort 
(N = 48) 

P value 

Cytogenetic Status     
HRC 51(45.95 %)  20 (41.67 %)  
Non-HRC 60 (54.05 %)  28(58.33 %)  
Gender   0.347  0.304 
Male 73(65.77 %)  32 (66.67 %) 
Female 38 (34.23 %)  16 (33.33 %) 
Age (Years) 57.42 ± 8.72  0.003* 59.0 ± 10.05 0.049* 
BMG 8.93 ± 7.85  0.361 7.029 ± 3.91 0.323 
ALB 35.86 ± 7.39  0.645 36.34 ± 8.16 0.806 
HB 100.5 ±

27.34  
0.323 100.06 ± 29.09 0.118 

LDH 219.8 ±
113.95  

0.400 198.3 ± 88.34 0.138 

MRI Patterns   1.000  0.653 
Focal pattern 65 (58.56 %)  29 (60.42 %)  
Diffuse/Hybrid pattren 46 (41.44 %)  19 (39.58 %)  
Compression Fracture   0.097  1.000 
Yes 70 (63.06 %)  34 (70.83 %)  
No 41 (36.94 %)  14 (29.17 %)  
Whole Spinal 

Infiltration   
0.421  0.323 

Yes 49 (41.14 %)  17 (35.42 %)  
No 62 (58.86 %)  31 (64.58 %)  

Note: P-value < 0.05 was considered as a significant difference. “*” represented 
the Student’s t-test. “†” represented the Pearson’s chi-squared test. 
HRC = High-Risk Cytogenetic. 
BMG = Beta-2-MicroGlobulin 
ALB = Albumin LDH = Lactate Dehydrogenase. 

Table 2 
Results of multivariate logistic regression analysis of three established models in 
a cohort.  

Models Included variables(P value) 

Model 1 Age(0.004)  
LDH(0.090)  
BMG(0.323)  
ALB(0.286) 

Model 2 auto_lbp.3D.m2_firstorder_10Percentile(0.044)  
auto_lbp.3D.m2_firstorder_RootMeanSquared(0.029)  
auto_original_firstorder_Kurtosis(0.060)  
auto_square_firstorder_Skewness(0.005)  
auto_squareroot_firstorder_RootMeanSquared(0.100)  
auto_squareroot_firstorder_Variance(0.045)  
auto_wavelet.HHH_gldm_LowGrayLevelEmphasis(0.027)  
auto_wavelet.HHL_glszm_SizeZoneNonUniformity(0.016)  
auto_wavelet.HLH_glszm_ZoneEntropy(0.079)  
auto_wavelet.HLL_glrlm_GrayLevelVariance(0.097)  
auto_wavelet.HLL_glszm_GrayLevelVariance(<0.001)  
auto_wavelet.LHL_firstorder_TotalEnergy(0.043)  
auto_wavelet.LLH_gldm_LargeDependenceEmphasis(0.062)  
auto_wavelet.LLL_glszm_LowGrayLevelZoneEmphasis(0.084) 

Model 3 Radiomics Score(<0.001)  
Age(0.004)  
LDH(0.090)  
BMG(0.323)  
ALB(0.286) 

The p-value for each radiomic feature associated with MM HRC status was 
calculated using the Mann–Whitney U or Student’s t-test. 
BMG = Beta-2-MicroGlobulin 
ALB = Albumin 
LDH = Lactate Dehydrogenase. 
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2.3. Radiomic feature selection 

Each radiomic feature was initially standardized and normalized, 
with batch effects—arising from variability in imaging acquisition pa
rameters, scanner models, and reconstruction settings—being removed 
[19]. Feature screening in the training cohort aimed to eliminate irrel
evant and redundant information. Initially, a variance threshold was 
applied to discard features with a variance less than 0.8 [17]. Subse
quently, a batch t-test, serving as a univariate feature selection method, 
was used to analyze the relationship between features and classification 
outcomes using p-values. All features yielding p-values less than 0.1 
were retained. Redundancy analysis was then employed to address 
covariance issues among the features, retaining 21 features with corre
lation coefficients below 0.8. Finally, the least absolute shrinkage and 
selection operator (LASSO) algorithm was applied to identify the most 
predictive features within the training cohort. A flow chart detailing this 
procedure is depicted in Fig. 2. 

2.4. Development of the three models. 

Model 1: Clinical characteristics by sex and Age and laboratory 
indices, including blood β2 microglobulin (BMG), blood albumin (ALB), 
and lactate dehydrogenase (LDH) at the time of initial diagnosis, were 
studied. A radiologist with 20 years of experience (reader 3) assessed the 
general imaging features, including mode of lesion growth (focal, mixed, 
or diffuse), involvement of the entire spinal vertebral body (yes or no), 
and compression fractures (yes or no). Univariable analysis was used to 
identify potential clinical-imaging features that differed significantly 
between the HRC and the non-HRC groups in both the training and 

validation cohorts. Multifactorial logistic regression analysis was per
formed on the training cohort to establish model 1. 

Model 2: Logistic regression was used to construct a model based on 
features screened from the FS-T2WI training cohort. 10-fold cross- 
validation was used to determine the optimal conditioning parameter 
C to control the trade-off between the training cohort’s accuracy and the 
model’s complexity. Model 2 was built using the output of the best 
radiomic model as the radiomic features. 

Model 3: The radiomic features of model 2 were weighted by their 
coefficients to calculate the radiomic score (RS). The radiomic score 
from model 2 was combined with model 1 to build model 3. To provide 
an individualized and easy-to-use tool for predicting the cytogenetic 
status of patients with MM before treatment, we visualized the com
bined model as a radiomic nomogram. 

2.5. Statistical analysis 

Statistical analyses were performed using SPSS software (Version 
26.0; IBM et al., N.Y., USA) and R software (https://www.r-project.org; 
Version 4.1.2). Continuous variables (Age, BMG, ALB, and LDH) be
tween HRC and non-HRC patients were compared using the independent 
samples t-test or the Mann–Whitney U test. Categorical variables were 
compared using the chi-square test or the Fisher test. Differences were 
considered statistically significant for p < 0.05. The packages in R 
software involved in this study are shown in Supplementary S2. 

Table 3 
Diagnostic performance of three models in the training and validation cohorts.  

Cohorts Models AUC(95 %CI) Acc Sen Spe PPV NPV Cutoff 

Training Set Model 1 0.650(0.545–0.755)  0.622  0.608  0.683  0.717  0.510  0.469  
Model 2 0.832(0.756–0.908)  0.767  0.706  0.800  0.817  0.686  0.492  
Model 3 0.846(0.771–0.919)  0.748  0.824  0.733  0.817  0.667  0.405 

Validation Set Model 1 0.702(0.547–0.857)  0.667  0.600  0.786  0.786  0.500  0.485  
Model 2 0.730(0.576–0.884)  0.646  0.599  0.929  0.607  0.700  0.784  
Model 3 0.757(0.618–0.896)  0.708  0.900  0.636  0.679  0.750  0.336 

AUC = area under the curve; 
Acc = Accuracy. 
Sen = Sensitivity. 
Spe = Specificity. 
PPV = positive predictive value; 
NPV = positive predictive value; 
The cut-off values were determined based on the output value of each predictive model in the training cohort. 

Fig. 3. ROC curves of model 1, model 2, and model 3 are used to predict HRC status in the training (a) and validation sets (b). ROC is the receiver operating 
characteristic; HRC is the high-risk cytogenetic. 

S. Liu et al.                                                                                                                                                                                                                                       



Journal of Bone Oncology 47 (2024) 100617

5

3. Results 

3.1. Patient characteristics 

The clinical imaging characteristics of MM in the training and vali
dation cohorts are shown in Supplementary S3. We included 88 (55.35 
%) patients with HRC status and 71 (46.54 %) with non-HRC status. 
There was no significant difference in the distribution of cytogenetic 
status between the training and validation cohorts (p = 0.619). There 
were no significant differences in clinical imaging features between the 
training and validation cohorts (p = 0.113–0.924). 

3.2. Feature importance 

Of the 1,688 radiomic features, 1,553 had good reproducibility (ICC 
> 0.9) and were included in the feature selection step. A total of 1,445 
features were retained after variance thresholding, 137 features were 
obtained after the batch t-test, 21 were retained after redundancy 
analysis, and finally, 14 features were retained after LASSO regression 
and 10-fold cross-validation, including eight wavelet-filtered features 
and six first-order features. 

3.3. Prediction model development, performance, and validation 

Model 1: Univariate analysis showed a significant difference in Age 
(Table 1) between the two groups. A multifactorial logistic analysis 
determined Age, ALB, BMG, and LDH, combined with clinical signifi
cance (Table 2). Model 1 showed diagnostic accuracy of 0.622, AUC of 
0.650, sensitivity of 61 %, specificity of 68 %, positive predictive value 
(PPV) of 72 %, and negative predictive value (NPV) of 51 % (Table 3). 

Model 2: The fourteen most predictive features were selected by lo
gistic regression, including eight wavelet-filtered features and six first- 
order features, as shown in Table 2. Model 2 achieved an accuracy of 
0.767, AUC of 0.832, sensitivity of 71 %, specificity of 80 %, PPV of 82 
%, and NPV of 69 % (Table 3). 

Model 3: The Radiomic Score of the selected features in Model 2 was 
calculated by weighting them according to their coefficients and 
including the distribution of the FISH results in the training and vali
dation sets, as shown in Supplementary S4. Multifactorial logistic 
regression retained Age, ALB, BMG, LDH, and Rad-Score as risk factors 
(Table 3). Model 3 showed a diagnostic accuracy of 0.748, AUC of 0.846, 
sensitivity of 82 %, specificity of 73 %, PPV of 82 %, and NPV of 67 % 
(Table 3). 

Fig. 4. Clinical practice results. (a) The nomogram shows the use of model 3 in clinical practice. (b,c) Calibration curves of the training and validation sets for the 
nomogram. The x-axis represents the nomogram-predicted probability, and the y-axis represents the actual probability of MM HRC status. A perfect prediction would 
correspond to the 45◦dotted black dashed line. The red solid line represents the training cohort(n = 111), and the blue solid line is bias-corrected by bootstrapping (B 
= 1000 repetitions), indicating observed nomogram performance. 
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3.4. Validation of the models 

In the validation cohort, model 1 had a diagnostic accuracy of 0.667, 
AUC of 0.702, sensitivity of 60 %, specificity of 79 %, PPV of 50 %, and 
NPV of 49 %. Model 2 had a diagnostic accuracy of 0.646, AUC of 0.730, 
sensitivity of 60 %, specificity of 93 %, PPV of 61 %, and NPV of 70 %. 
Model 3 had a diagnostic accuracy of 0.708, AUC of 0.757, sensitivity of 
90 %, specificity of 64 %, PPV of 68 %, and NPV of 75 % (Table 3). 

3.5. Comparison of the diagnostic performance of the three models 

In the training cohort, both model 2 and model 3 had better diag
nostic performance and AUC than model 1 (p < 0.05, Delong test). In 
both the training and validation cohorts, the diagnostic performance 

(AUC) of model 3 was improved over that of model 2, but the difference 
between the two models was not statistically significant (training: p =
0.794; validation: p = 0.801), as shown in Fig. 3. 

3.6. Clinical usefulness 

Model 3 was presented in the form of a nomogram. The calibration 
curves of the nomogram were confirmed in both the training and vali
dation cohorts (Fig. 4). The Hosmer-Lemeshow test results were insig
nificant (training: p = 0.272; validation: p = 0.250). The analysis of 
decision curves for the three prediction models is given in Fig. 5. The 
results show that models 2 and 3 have more favorable forecasting ability 
than model 1 when the risk threshold probability is above 10 %. 

3.7. Survival analysis 

The clinical characteristics of the 98 patients analyzed are shown in 
Table 4, where the high- and low-RS groups were defined according to 
the cutoff value of the joint model (cutoff score = -0.337). Kaplan-Meier 
analysis showed that MM cytogenetic status and the joint model were 
associated with statistically significant OS differences between the high- 
and low-RS groups (p < 0.05, log-rank test; Fig. 6). The C-index values 
for MM cytogenetic status and joint model were 0.651 and 0.659, 
respectively, and the z-score test showed no significant difference in 
prognostic values between MM cytogenetic status and joint model (p =
0.153). 

In addition, integrating the cytogenetic status of MM patients (HRC 
group vs. non-HRC group), the high- and low-RS and Age (Age > 60 vs. 
Age ≤ 60) of model 3, all patients were divided into a total of 8 groups 
(as shown in Fig. 7). The Kaplan-Meier results showed that MM patients 
in the type = non-HRC group, low-RS group, and Age ≤ 60 had the most 
extended overall survival, whereas type = HRC group, high-RS group, 
and MM patients Age > 60 had the shortest overall survival (p = 0.004, 
Log-rank test). 

4. Discussion 

Our study utilized radiomic nomograms based on T2WI-FS images to 
predict MM cytogenetic status. The radiomic model, which combines 
radiomic features with Age, LDH, BMG, and ALB, outperformed the 
clinical model (AUC 0.846 vs 0.650, p < 0.05), demonstrating the in
cremental value of radiomic features in predicting the cytogenetic status 
of MM. Furthermore, the combined model stratified MM into high- and 
low-RS groups based on OS, and its prognostic performance paralleled 
that of MM cytogenetic status. 

Among the clinical risk factors, only Age was an independent pre
dictor of cytogenetic status in MM after univariate and multifactorial 
analyses, this finding aligns with previous studies that identify Age as 
the most pertinent factor for cytogenetic status and prognosis, poten
tially linked to genetic factors that precipitate an earlier age of onset 
[20–21]. Although previous studies have established a connection be
tween LDH, BMG, ALB, cytogenetic status, and prognosis, BMG levels 
may reflect tumor load, renal function, and host immune function. In 
contrast, reduced ALB levels may indicate the impact of interleukin six, 
produced by the myeloma cell microenvironment, on the liver. Addi
tionally, besides increased capillary permeability and heightened tumor 
depletion catabolism, inadequate protein intake may also contribute to 
lower ALB levels in patients with MM [22]. LDH, a glycolytic enzyme in 
human cells, is widely distributed in leukocytes, erythrocytes, and other 
organ tissues, typically exhibiting high activity. Serum LDH levels pri
marily reflect the proliferation, metabolism, and other biological char
acteristics of LDH-rich cells [23]. Laboratory levels of these 
malignancies may correlate with cytogenetic status [24–26]. Conse
quently, we retained LDH, BMG, and ALB as clinically relevant risk 
factors, enhancing the predictive performance of the clinical model. 

Fourteen radiomic features extracted from T2WI-FS MRI images 

Fig. 5. Decision curve analysis of the three models for predicting MM HRC 
status. The y-axis measures the net benefits; the green line represents model 1, 
the red line represents model 2, and the blue line represents model 3. The gray 
line assumes all patients have a malignant biological behavior prognosis. The 
black line represents the assumption that no patient has a malignant biological 
behavior prognosis. The graph demonstrates that if the risk threshold proba
bility is set over 10%, models 2 and 3 have more benefits for predicting MM 
HRC status than model 1. MM, multiple myeloma; HRC, high-risk cytogenetic. 

Table 4 
The characteristics of high-risk and low-risk MM in the survival analysis.  

Characteristics High-risk(N = 49) Low-risk(N = 49) P value 

Cytogenetic Status    <0.001*** 
HRC 33(67.35 %) 8 (16.33 %)  
Non-HRC 16 (32.65 %) 41(83.67 %)  
Age (Years) 56.84 ± 9.13 60.08 ± 9.06  0.048* 
BMG 8.67 ± 7.36 8.72 ± 8.34  0.975 
ALB 35.44 ± 9.01 36.24 ± 6.93  0.621 
LDH 231.1 ± 151.25 213.2 ± 96.22  0.487 
MRI Patterns    0.151 
Focal pattern 26 (53.06 %) 33 (67.35 %)  
Diffuse/Hybrid pattren 23 (46.94 %) 16 (32.65 %)  
OS (median [range], days) 17.9(2–58) 26.2(1–75)  0.009** 

HRC = High-Risk Cytogenetic. 
BMG = Beta-2-MicroGlobulin 
ALB = Albumin 
LDH = Lactate Dehydrogenase. 
OS = Overall Survival. 
High- and low-RS groups were defined based on scores from a combined model 
combining age, BMG, ALB, LDH, and radiomic features. For the low-RS group, 
the score of the integrated model was less than the cutoff; for the high-RS group, 
that was larger than the cutoff. 
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showed a high correlation with MM cytogenetic status. Rahmouni et al. 
[14] suggested that T2WI-FS offers a significant advantage in diagnosing 
MM spinal lesions, thus, utilizing T2WI-FS single sequence radiomic 
features can yield crucial information to characterize MM heterogeneity. 
Furthermore, extracting radiomic features from a single sequence re
duces the source data bias linked to the poor alignment of multiple se
quences in the spine. Gillies et al. [27] proposed that a binary classifier- 

based model necessitates ten samples per feature. In our study, we ul
timately employed logistic regression to select 14 radiomic features, 
creating a radiomic model for early prediction of cytogenetic status in 
MM; similar AUC values were observed between the training and vali
dation cohorts, indicating the absence of overfitting. 

Furthermore, the low variability of the results, as demonstrated by 
the comparative analysis of the ten randomized folds used in cross- 
validation, suggests stable predictive performance. In this study, 8 of 
the 14 radiomic features derived from T2WI-FS images in the logistic 
regression model were wavelet-filtered, and 6 were first-order features, 
suggesting that both wavelet transform filters and first-order features 
hold the potential to unveil tumor biology at multiple scales [28]. 
Wavelet-filtered features can offer more insights into the biological 
behavior and heterogeneity of tumors than subjective evaluations by 
radiologists or low-dimensional radiomics, as demonstrated in studies 
on intrahepatic cholangiocarcinoma, renal cell carcinoma, prostate 
cancer, and bladder cancer [29–32]. Conversely, first-order features 
provide more reproducible low-dimensional information, as evidenced 
in cystic renal masses and coronary atherosclerotic disease [33–34]. 
Consequently, our results indicate that the radiomic features of T2WI-FS 
MRI images can independently delineate differences in the cytogenetic 
status of patients with MM. 

The model that combines radiomic features and clinical factors 
outperformed the clinical model, demonstrating the incremental value 
of radiomic features in predicting MM cytogenetics. Finally, we 
employed nomograms to visualize pre-treatment decisions for MM cy
togenetic status, the outcomes of which are yet to be determined. 
Combined modeling of nomograms could serve as an effective and user- 
friendly adjunct tool to estimate MM cytogenetic status pre-treatment 
via non-invasive diagnostic methods, particularly for patients unable 
to undergo biopsy or cytogenetic examination. 

Moreover, the present study evaluated the prognostic value of the 
combined model, an excellent contribution to current radiomics studies 
of cytogenetic status in MM patients, enabling direct demonstration of 
clinical relevance. In this study, MM patients with non-HRC status 
derived greater benefit from treatment and exhibited longer OS 
compared with those with HRC status, consistent with previous studies 

Fig. 6. Kaplan-Meier survival analysis of the cytogenetic status (A) and model 3 (B). The joint model successfully classified MM into high- and low-RS groups with 
significantly different prognoses, similar to the performance of cytogenetic status. 

Fig. 7. Kaplan-Meier survival analysis was conducted using the cytogenetic 
status, Rad_score, and age of MM patients. The results indicated that MM pa
tients in the type = non-HRC group, the low-RS group, and the Age ≤ 60 group 
experienced the longest overall survival, while those in the type = HRC group, 
the high-RS group, and the Age > 60 group had the shortest overall survival. 
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that identified cytogenetic status as a crucial prognostic marker for MM 
patients. Additionally, this study categorized MM samples into high-RS 
and low-RS groups based on the Rad_score from the combined model. 
We demonstrated that the radiomics model Rad_score offers prognostic 
value comparable to that of cytogenetic status. We found that cytoge
netic status, the radiomics model Rad_score, and age collectively influ
ence the overall survival of MM patients. These factors can predict 
patient prognosis to a certain extent. 

5. Limitations 

It should be noted that our study has some limitations. We did not 
subdivide MM into multiple immunoglobulin types, a direction that may 
be explored in subsequent studies. Conversely, our analysis was limited 
to T2WI-FS images; future studies should integrate more sequences and 
clinical parameters for enhanced comparative analysis modeling. 
Accordingly, our results demonstrate that even single-sequence T2WI-FS 
images can achieve promising predictive power compared to other 
studies. Moreover, while we explored the model’s impact on the prog
nostic assessment of MM patients and concluded that the Rad_score can 
serve as a critical factor in assessing prognosis, constructing a predictive 
model for MM prognosis remains an unmet challenge, which will be 
addressed in our future work. 

6. Conclusion 

In summary, a radiomic nomogram based on T2WI-FS sequences can 
predict MM cytogenetic status more accurately than a purely clinical 
model, enabling risk stratification of MM according to OS. Additionally, 
age, the radiomics Rad_score, and cytogenetic status collectively impact 
the overall survival of MM patients. These factors are crucial in affecting 
patient prognosis, assisting in pre-treatment decision-making that in
cludes chemotherapy regimens and planning for autologous stem cell 
transplantation, and are particularly beneficial for future targeted 
therapy decisions. 
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