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Abstract: This article presents a general framework that allows irrational decision making to be
theoretically investigated and simulated. Rationality in human decision making under uncertainty is
normatively prescribed by the axioms of probability theory in order to maximize utility. However,
substantial literature from psychology and cognitive science shows that human decisions regularly
deviate from these axioms. Bistable probabilities are proposed as a principled and straight forward
means for modeling (ir)rational decision making, which occurs when a decision maker is in “two
minds”. We show that bistable probabilities can be formalized by positive-operator-valued projections
in quantum mechanics. We found that (1) irrational decision making necessarily involves a wider
spectrum of causal relationships than rational decision making, (2) the accessible information
turns out to be greater in irrational decision making when compared to rational decision making,
and (3) irrational decision making is quantum-like because it violates the Bell–Wigner polytope.

Keywords: bistable probabilities; human decision making; causal cognition; quantum cognition

1. Introduction

Understanding how humans form decisions is of great interest in a range of areas, and modeling
decision making is important to psychology, social science, politics, economics, computer science, and
cognitive science. Current models of human decision making rely on Bayesian probabilities, so much
so that the term “Bayesian Cognition” has become mainstream [1,2]. Bayesian models account for
rational decision making where “rationality” is defined by the laws of probability theory. However,
decades of research have found that a whole range of human judgement deviates substantially from
what would be normatively correct according to logic or probability theory.

Theories proposed to account for the deviation of human decision makers from rationality include
bounded rationality [3], dual process theories [4], models in quantum cognition [5–9], and a growing
list of cognitive biases and heuristics [10]. Dual process theories are prominent and widespread within
many fields of psychological science [11]. Whilst there are multiple variations of these theories, all have
in common the thesis that two processes are employed in human decision making: One fast, intuitive
system sometimes prone to error (System 1), and a second slower, more controlled process based on
rational thought (System 2). The extent to which either or both of these are employed is dependent on
the relative cognitive resources and time that each typically consumes.

System 1 is fast and requires few cognitive resources and little effort [4], so is often considered the
default system [12]. System 1 can be termed “irrational" because the intuition, biases, and heuristics
that typify this system often do not adhere to the laws of logic or probability theory. In contrast,
System 2 involves controlled analytic thought and is considered to be primarily logical and rational.
It requires conscious activation and is a significant drain on cognitive resources [4].

Many of the heuristics employed by System 1 can be considered in terms of attribute
substitution [10]. Put simply, humans tend to substitute a difficult problem for a more plausible,
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easier alternative. An example can be seen in the famous illustration of the conjunction fallacy, where
participants overestimate the likelihood of Linda to be both a bank teller and a feminist, compared
to her being a bank teller [13]. Rather than employing System 2 to conduct a rational estimation of
probabilities, participants instead substitute the easier representativeness bias to conclude that Linda
must be a feminist and that, therefore, the conjunction is the most likely option.

It is easy to see that the assumed rationality of Bayesian Cognition aligns more closely with System
2. The picture from the literature seems to suggest that human decision makers are often irrational
because they employ System 1, even when employing System 2 would result in a rational outcome.

Although rational models of human decision making have become prominent and have achieved
much success, there has been an emergence of models based on an alternative probabilistic framework
drawn from quantum theory [6–9]. These quantum models show promise in addressing decision
making that would normally be considered irrational [14,15]. This article continues this line of research
by proposing a model for irrational decision making based on the notion of a bistable probability.
The term “bistable” aims to capture the intuition of two sometimes competing systems involved in
decision making and consequently the decision maker’s being caught between two “minds”.

The view taken in this paper is that decisions based on intuition, i.e., made by System 1,
can sometimes result in a different outcome than judgements based on rational probability, i.e.,
made by System 2. When this happens, we deem the decision making to be “irrational”, as it deviates
from rational judgement. However, the theory presented in the following sections is agnostic to how
Systems 1 and 2 interact. It is the deviation from rational judgement that is the core issue.

We will show that bistable probabilities allow (ir)rational decision making to be systematically
investigated. Irrationality raises questions such as the following: (1) How does irrationality affect the
probabilistic judgement of causality? (2) Does irrationality affect the amount of information available
for decision making? (3) How do irrational decisions relate to rational probabilistic judgements? These
questions will be addressed in the following sections.

2. Bistable Parameters and Bistable Projection Operators

In order to model the deviation of irrational decision making from rational decision making, we
propose a deformed probability, introducing what we term a “bistable parameter”. The purpose of this
parameter is to capture the disagreement between System 1 and System 2. In doing so, the degree of
substitution of a simple heuristic-based inference in place of a knowledge-based, classically Bayesian,
inference [16] is also accounted for.

Similarly to the noise model proposed by [17,18], bistable probabilities are founded on an event
space featuring two probabilities associated with a given decision outcome. The two probabilities
relate to System 1 and System 2. For example, consider the scenario depicted in Figure 1, where
System 2 is assumed to mediate the decisions of System 1. There are two decision outcomes A and B.
System 1 opts for outcome A with probability k. System 2 may intervene and alter the response
of System 1 with probability 1− p, resulting in choice B, or agree with System 1 and remain with
choice A with probability p. The final probability for choosing option A is a function of both k and p:
Pk(A) = 1− p− k + 2kp. Note that when k = 1, System 2 fully determines the final judgement, which
is hence considered “rational”. When 0 ≤ k < 1, the probability of the final judgement is deformed
by a degree of irrationality. When k = 0, the final outcome is considered “irrational" because it is the
converse of the rational judgement, i.e., Pk=1(A) = p vs. Pk=0(A) = 1− p. When k = 0.5, Pk(A) = 0.5
irrespective of System 2’s mediation. This reflects the situation when the decision maker is caught
between two minds with no means of resolving the conflict between the two, so the ultimate decision
is random. Finally, System 2 “agrees" with System 1 when Pk(A) = k. This occurs when p = 1, which
implies that no mediation is being employed by System 2.

Relating this to an example commonly used in the literature [13], we consider the following
question: Is a person, Linda, more likely to be (a) a bank teller, or (b) a bank teller and active in the
feminist movement? Without any additional information about Linda (for now, we will consider the
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question in the absence of the usually accompanying passage of background text), one might assume
that the option that is logically more likely is option a), and one might assign a higher probability to
this option. The reason that this is the logical and rational choice is tied to the rule that the probability
of a conjunction of two propositions cannot be higher than the probability of either of the individual
propositions (P(A ∧ B) ≤ P(A)). One’s intuitive response to this question might be to choose the
simpler option, a), illustrated as a high value for k, for example, 0.8. The parameter p determines the
degree to which System 2 allows the intuition of System 1 to determine the final decision. Due to the
fact that the option deemed more probable by System 1 would also be favored by a rationally driven
System 2, we assign a high value for p, for example, 0.9. Taking these values of k and p and following
our model, we find a probability of 0.74 for the final decision of option a), that Linda is a bank teller,
to be more likely.

System 2

Choice A Choice B

System 1

p

kp

1-p

(1-k)(1-p)

A B B A

A B

p 1-p

1-kk

k(1-p)

p(1-k)

Figure 1. A schematic setup for a bistable model structure.

Let us now consider the more complete example of the Linda problem, where a passage of
text is presented prior to the above question. This text provides additional background information
about Linda that tends to accord with a representation of someone who is active in the feminist
movement. The question, coupled with the presentation of the background information, provides a
classic demonstration of the conjunction fallacy, where the conjunction of two propositions (option b)
is judged to be more probable than one of the propositions (option a). This has been attributed to a
judgement heuristic labelled representativeness [13], to which System 1 is prone [10]. In our model, we
reflect the likely choice of a System-1-driven judgement by assigning a low value for k, for example, 0.3.
To determine a value of p, we can assign a low value based on the premise that the rational thought
process employed by System 2 is unlikely to allow the erroneous intuition of System 1 to determine
the final decision, and we might assign a value of 0.2, for example. Using these values for k and p in
our model, we find a probability of 0.62 for the final decision of option (a), that Linda is a bank teller,
to be more likely.

However, due to the fact that System 2 is constrained in terms of time and cognitive resources [4],
the probability that System 2 will differ from or mediate the intuition of System 1 depends on a range
of factors, including time constraints, motivation, and availability of cognitive resources. If one or
a combination of these factors is present in such a way that it would be reasonable to assume that
System 2 is less likely to intervene, we can instead choose a higher value of p, for example, 0.7. Using
the same value for k, 0.3, we find that it is now option (b), that Linda is a bank teller and active in the
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feminist movement, that has the higher probability in the final decision (0.62), which is illustrative of
the conjunction fallacy.

It should be noted that, although the preceding example frames the model in terms of a process
(i.e., System 1 providing an intuition for which System 2 may or may not intervene and override),
this model is not a dynamic one. It is agnostic to the order of System 1 and 2 and incorporates a time
element only in the selection of a value of p (i.e., in determining the opportunity that System 2 might
have to intervene in the above example). For a dynamic model, see [19]. We do not claim that defining
irrationality in the preceding way presents a complete picture. In fact, irrationality can be considered
in different ways, e.g., in relation to ideas and theories about anti-realism [20] or to some theories about
biases and perceptions in cognitive science [17,18,21–23]. However, by parameterizing irrationality
using a bistable parameter, irrationality can be investigated in a systematic way.

Whilst comparisons have been made between a similar noise model [24] and models based on
quantum formalism [25], we show that the bistability model developed in the present paper can be
encapsulated within a quantum framework. Bistable probabilities can be expressed as normalized
positive-operator-valued (POV) measures [26]. A projection in quantum mechanics is defined by using
orthogonal states, |φi〉, i.e.,

πi = |φi〉〈φi|, (1)

with the following conditions:

πiπj = δi,jπi, and
d

∑
i=1

πi = I, (2)

in which δi,j is the Kronecker delta and d is the dimension of the Hilbert space. However, a general
measurement in quantum mechanics is described by means of a POV projection acting on the quantum
state defined in the complex Hilbert space [27]. Despite the fact that orthogonality is not a necessary
condition with respect to such projections, which means that the results of two measurements following
each other are not the same, i.e., EiEi 6= Ei, the second condition holds:

d

∑
i=1

Ei = I. (3)

In a binary system, a set of unsharp projections is defined as follows [28],

En
± =

1
2
I2×2 ±

η

2
σ · n̂, 0 ≤ η ≤ 1, (4)

in which I2×2 is the two-dimensional identity matrix, η ∈ [0, 1] is the so-called noisy parameter, σs are
the standard Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (5)

and n̂ = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) gives the direction of projections in the Bloch sphere.
Although in quantum cognition, the noise parameter η is attributed to memorylessness and weak

interaction [29], we ascribe it to the impact of irrationality on decision making.
We consider a linear map η = 2k− 1 together with an extended noise interval η ∈ [−1, 1]. Hence,

we obtain the bistable projection as follows:

Pn̂
± = (1− k)I2×2 ± (2k− 1)πn̂

± (6)
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in which k is a bistable parameter and defined in the interval 0 ≤ k ≤ 1. πn̂
± is a positive value

projection and is defined by

πn̂
± =

1
2
[I2×2 ± σ · n̂]

=

(
cos2 ϑ

2 e−iϕ sin ϑ
2 cos ϑ

2
eiϕ sin ϑ

2 cos ϑ
2 sin2 ϑ

2 .

)
(7)

By using an analogy with quantum mechanics, we postulate that the probability of an irrational
decision is given by the expectation value of the associated bistable projection, that is,

P±(k, n) = 〈ψ|Pn̂
±|ψ〉, (8)

in which the bistable projection Pn̂
± is defined by the Equation (6) and |ψ〉 = (

√
p,
√

1− p)T gives the
probability of a rational decision. Note that in the special case in which the bistable projection (8) is
defined in the direction z,

Pz
+ =

(
k 0
0 1− k

)
, Pz
− =

(
1− k 0

0 k

)
. (9)

We can reproduce the output of bistable decision making, i.e.,

Pk(+) =
(√

p
√

1− p
)( k 0

0 1− k

)( √
p√

1− p

)
= 1− p− k + 2kp (10)

Pk(−) =
(√

p
√

1− p
)( 1− k 0

0 k

)( √
p√

1− p

)
= p + k− 2kp. (11)

3. Causality

In this section, we address the question of what irrationality means for the probabilistic judgement
of causality.

3.1. Inferring Causality

Let us start with Reichenbach’s principle: We assume that two variables Y and Z are found to be
statistically dependent; then, (i) either Y is part of a cause of Z or Z is part of a cause of Y, as shown
in the plot Figure 2a, and (ii) Y and Z have a common cause X, illustrated in the plot Figure 2b.
Consequently, causal independence implies statistical independence, i.e., P(Y, Z) = P(Y)P(Z) and
P(Y, Z|X) = P(Y|X)P(Z|X), in which X is the collection of all variables acting as common causes [30].
Therefore, causality can determined based on probabilities. In fact, the following relation:

Pk(Y = i)Pk(Z = j) 6= Pk(Y = i, Z = j) (12)

in which i, j can be any observable outcomes ±, characterizes a causal relationship, i.e., either Y causes
Z or Z causes Y. Conversely, probabilities that are not factorizable are non-causal, and are therefore
un-deterministic [30]. For example, by using (10), and assuming a rational non-causal relationship
between two variables (k = 1), Y = + and Z = +; i.e.,

Pk=1(Y = ±, Z = ±) = Pk=1(Y = ±)Pk=1(Z = ±). (13)
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Then, by considering (0 ≤ k < 1), we have

1− P(Y = +, Z = +)− k + 2kP(Y = +, Z = +) 6=
[1− P(Y = +)− k + 2kP(Y = +)] [1− P(Z = +)− k + 2kP(Z = +)] . (14)

In other words, the presence of irrationality eliminates the cognitive agent’s ability to recognize
independence, and potentially spurious causality is discerned by the agent. The tendency to
overestimate relationships between events is seen in many heuristics stemming from System 1
processes, such as the illusion of validity bias [31], spontaneous causal inference [32], and illusions of
causation [33]. In addition, this effect is exemplified in classically irrational thought processes, such as
superstition and Obsessive Compulsive Disorder, where actions are erroneously causally linked to
positive or negative events in an individual’s mind. In addition, a comprehensive empirical study
of human causal reasoning found that participants committed violations of the Markov condition,
which prescribes when variables are independent of each other [34]. For example, in a common
cause network (Figure 2b), the Markov condition entails that variables Y and Z are conditionally
independent, i.e., non-causally related, when the value of X is known. However, participants deemed
Y and Z to influence each other when they were supposedly independent because of the Markov
condition. These violations were present in experimental conditions which were specifically designed
to distinguish between the processing of System 1 and System 2. These findings suggest that the
distortion is not always due to System 1.

Figure 2. Alternative causal models based on Reichenbach’s principle.

The bistable model can also account for situations where the converse occurs; namely, a rational
causal relation (see Equation (12)) is distorted into a non-causal relation. Consider a common effect
network where X → Z and Y → Z, (Figure 2a). If the value of Z is known, then X and Y become
conditionally dependent. However, they may be irrationally deemed to be conditionally independent,
and hence not causally related—for example, Ozone → Humidity and Air Pressure → Humidity.
If it becomes known that the Humidity is high, then, rationally, Ozone and Air pressure become
conditionally dependent. However, irrationally, one might see these as independent. The distortion
also corresponds to violations of the “causal faithfulness condition" which states that variables that are
causally connected are probabilistically dependent [35].

3.2. Causal Strength Criterion

By employing causal strength and its power, we study the impact of irrationality on a final
judgement. The definition of the causal strength measure given by [36–39],

∆P = P(Y|X)− P(Y|¬X), (15)
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is independent of P(X), but we should note that the causal strength is low if P(Y|¬X) is high. Therefore,
as another criterion, the power of causal strength κ is suggested:

κ =
∆P

P(¬Y|¬X)
, (16)

in which ∆P is given by relation (15).
By using relations (15) and (16), for a final judgement with probability P(Xout = +) = 1− p− k +

2kp, the causal strength measure and its power are obtained as

∆Pk = P(Xout = +|k = +)− P(Xout = +|k = −) = k + p− 1

κ =
∆Pk

P(Xout = −|p = −) =
k + p− 1

(1− p)(1− k)
, (17)

in which the causal strength measure and its power clearly depend on the probability k. In fact, the
relations of (17) indicate that increasing irrationality, i.e., lower levels of k, decreases the causal strength
and its power.

We now consider a situation in which an outcome of variable X causes the outcome of variable Y.
When the level of bistability changes, what effect does it have on the cause–effect relationship between
Xout and Yout? In other words, if we rationally assume that there is a cause–effect relationship between
two variables, what can we say about the cause–effect relationship between the final outcomes?
For simplicity, we assume that the bistable projections of variable X are given by the relations in (9)
and the associated bistable projections of variable Y = ± are considered in the x-axis direction:

PY
k (+) =

(
1
2 k− 1

2
k− 1

2
1
2

)
,PY

k (−) =
(

1
2

1
2 − k

1
2 − k 1

2

)
. (18)

Hence, the causal strength measure is given by

∆Pk = Pk(Y = +|X = +)− Pk(Y = +|X = −)
= 〈PY

k (+)PX
k (+)〉 − 〈PY

k (+)PX
k (−)〉

=
1
2
(1− k− p + 2kp) (19)

κ =
1− p− k + 2kp

p + k− 2kp + (1− 2k)
√

p(1− p)
(20)

in which we assume that a real Hilbert space describes the original probability of the system, i.e.,
|ψ〉 = (

√
p,
√

1− p)T . Again, the above-mentioned relations (19) and (20) illustrate that the causal
strength decreases by increasing the role of the bistable parameter, that is, decreasing the bistable
parameter. In addition, we note that if the value of the bistable parameter is equal to k = 0.5,
both criteria approach zero, which means that it is not possible to establish a cause–effect relationship
between variables Xout and Yout.

4. Polytopes of Bistable Probabilities

We now consider a joint decision scenario where two decisions E1 and E2 with probability P1

and P2, with P12 denoting the joint probability. There are necessary and sufficient conditions for the
rational values of P1, P2, and P12, as in the following [40]:

0 ≤ Pi ≤ 1, Pi ≥ P12, P12 ≥ 0, P1 + P2 − P12 ≥ 1, (21)

where i = 1, 2. The above-mentioned relations are so-called Boole’s conditions [40]. By considering a
three-dimensional space in which P1, P2, and P12 are coordinate axes, Boole’s conditions (21) construct a
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polytope. Therefore, each point that fulfills Boole’s conditions is a potential rational choice. The plot in
Figure 3a illustrates a geometrical representation of this polytope. Now, based on this interpretation, by
which the polytope indicates the volume of information that can be accessed, we consider two bistable
outputs and their conjunction operator. To obtain the polytope structure, we consider the geometrical
structure of the truth table of bistable outputs, which is the same as the truth table of non-bistable
outputs. We can obtain a collection of linear inequalities for probabilities of bistable outputs:

(Pk
1 , Pk

2 , Pk
12) = λ1(0, 0, 0) + λ2(0, 1, 0)

+ λ3(1, 0, 0) + λ4(1, 1, 1) (22)

in which λi ≥ 0, for i = 1, · · · , 4 and ∑4
i=1 λi = 1. The following polytope’s equations describe

information which is accessible:

(2k− 1)Pi − Pk
12 ≥ k− 1, i = 1, 2, (23)

and

(2k− 1)(P1 + P2)− Pk
12 ≤ 2k− 1, (24)

while we keep in mind the following classical identity:

P(E1 ∨ E2) = P(E1) + P(E2)− P(E1 ∧ E2). (25)

In addition, in the case where k = 1/2, Pk
12 is independent of probabilities Pi, i = 1, 2, 0 ≤

Pk
12 ≤ 1/2. Plots (a)-(f) in Figure 3 illustrate polytopes of the outputs for different values of k, that

is, k = 1, 0.9, · · · , 0.5. This figure indicates that the accessible information increases as the bistable
parameter decreases. In other words, increasing irrationality in decision making results in an increase
in the amount of information accessible to the cognitive agent transacting the decision.

Figure 3. Polytopes for different values of k ∈ {1.0, 0.9, 0.8, 0.7, 0.6, 0.5} are respectively shown in
plots (a)–(f).
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We define a new concept, “pure irrational information volume” (PIIV), as the difference in volumes
of a polytope of irrational decision making (0 ≤ k < 1) compared to the polytope of rational decision
making (k = 1), that is, ∆(k) = V(k)−V(k = 1). This indicates the extra information that is accessible
in irrational decision making. In the case of bistablity, the PIIV is given by:

∆(k) =
1− k

6
+

1− k
2

√
2(2k− 1)2 + 1
(2k− 1)2 + 1

. (26)

In fact, PIIV ∆(k) is a criterion by which we draw a comparison between the amount of information
accessible by System 1 and System 2. Figure 4 indicates function ∆(k) as a function of k. The plot
illustrates that decreasing parameter k, i.e., increasing irrationality, causes the accessible information
to increase. This increased availability of information to the irrational decision maker could be
interpreted in terms of exploration [41], where irrationality may be seen to co-occur with the search for
novel information or with increased actions or strategies available to the cognitive agent. To place this
into the context of attribute substitution, the PIIV accounts for the wider variety of available heuristics
employed by a decision maker who is relying on System 1.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 4. Pure irrational information volume (PIIV), i.e., ∆(k) as a function of the bistable parameter k.

5. The Bell–Wigner Polytope of Irrational Decision Making

When studying probability theory at school, toy examples such as tossing coins or pulling colored
marbles from a bag are often used. When a red marble is drawn from a bag, it is unquestionably
assumed that it already had the property of being red before it was pulled out of the bag. Its property of
pre-existing redness is simply noted when the marble is retrieved, thereby contributing to the relative
frequency of red marbles sampled from the bag. When George Boole was developing probability theory
in the mid-1850s, he did so by considering what he called the “conditions of possible experience”.
He formalized his intuitions into inequalities that the relative frequencies must satisfy. For example,
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for events E1 and E2 with relative frequencies p− 1 and p2 and where p12 denotes the frequency of the
joint event E1 ∧ E2,

0 ≤ pi ≤ 1, i = 1, 2, 3. (27)

0 ≤ pij ≤ min{pi, pj}, i, j = 1, 2, 3. (28)

pi + pj − pij ≤ 1, i, j = 1, 2, 3. (29)

p1 + p2 + p3 − p12 − p13 − p23 ≤ 1. (30)

p1 − p12 − p13 + p23 ≥ 0 (31)

p2 − p12 − p23 + p13 ≥ 0 (32)

p3 − p13 − p23 + p12 ≥ 0 . (33)

Pitowsky [42] uses the preceding inequalities to define the “Bell–Wigner" polytope. Basically, it is
the region within the polytope that defines Boole’s conditions of possible experience. Pitowsky [40]
shows that quantum systems do not always adhere to these conditions, meaning that “quantumness"
can be identified by regions that are outside of the Bell–Wigner polytope [43]. We will use this property
in the following to examine whether irrational decision making conforms to Boole’s condition of
possible experience or is quantum-like. For this purpose, three bistable parameters k1, k2, and k3 are
used to respectively attenuate the probabilities p1, p2, and p3. These parameters were systematically
manipulated and the inequalities were tested for violation. Figure 5 depicts six plots for different
values of k3, while each plot indicates values of inequality (31) with respect to different values of k1 and
k2. These plots illustrate that the maximum violation of the Bell–Wigner polytope happens whenever
just one probability becomes irrational. In other words, decision making is necessarily quantum-like in
the presence of irrationality. A future direction is to examine the hypothesized connection between
quantum-like decision making and irrationality by using the QTEST framework [44]. For example,
QTEST could be used to estimate how far simulated data fit a Bayesian model. A lack of good fit of a
Bayesian model could suggest the presence of a quantum-like model. This is because Bayesian models
derive from standard probability theory and must therefore be bounded by the Bell–Wigner polytope.

(a) (b) (c)

(d) (e) (f)

k
1

k
2

k
1

k
2

k
1

k
2

k
1

k
2

k
1

k
2

k
1

k
2

Figure 5. Bell–Wigner polytopes for different values of k3 = 1, 0.9, · · · , 0.5 are illustrated in plots (a), (b),
· · · , (f). Colors differentiate different values of k1, with blue signifying k1 = 0.5 and green signifying
k1 = 1. Paramater k2 varies from 0.5 to 1. Bars below the k1, k2 plane signify negative probabilities.

6. Conclusions

In this paper, we introduced and studied the mathematical consequences of a bistable probabilistic
model which enables degrees of irrationality (that is, disagreement between System 1 and System 2) to
be systematically investigated. By means of POV projections, it was shown that the bistable model
can be considered part of an overarching quantum formalism. We discussed the implications of the
bistable model in terms of the propensity of cognitive agents to spuriously infer causality, the impact
of irrationality on causal power, and formalizing the amount of extra information available to the
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irrational decision maker. Finally, we simulated decision making and demonstrated violations of the
Bell–Wigner polytope. Such violations suggest that irrational decision making is quantum-like.
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