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Abstract

The relationship between pairs of individuals is an important topic in many areas of population and quantitative genetics. It
is usually measured as the proportion of thegenome identical by descent shared by the pair and it can be inferred from
pedigree information. But there is a variance in actual relationships as a consequence of Mendelian sampling, whose
general formula has not been developed. The goal of this work is to develop this general formula for the one-locus
situation,. We provide simple expressions for the variances and covariances of all actual relationships in an arbitrary complex
pedigree. The proposed method relies on the use of the nine identity coefficients and the generalized relationship
coefficients; formulas have been checked by computer simulation. Finally two examples for a short pedigree of dogs and a
long pedigree of sheep are given.
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Introduction

The relationship between pairs of individuals is an important

topic in many areas of population and quantitative genetics [1].

The degree of relationship is measured as the proportion of the

genome identical by descent shared by the pair and can be

inferred from pedigree information. But there is a variance in the

realized, or actual, proportion of genome shared as a consequence

of Mendelian sampling and linkage. For instance, two full-sibs can

share zero, one or two alleles identical by descent (giving a

variance of 1/2 in the number of alleles actually shared), whereas

non inbred father and son share exactly one allele (variance of 0).

Formulae have been published for the variance of actual

relationship for a number of specific types of relatives (see [2]

and references therein) but a general formula has not been

developed.

Deviations of coancestry from the ideal situation of infinite

unlinked loci cause linkage disequilibria across pairs of loci [3].

These disequilibria are used extensively nowadays for mapping

regions controlling traits (e.g., by genome-wide association studies

(GWAS)), genomic selection in crop plants and domestic animal

populations, phasing of markers for imputation or quantitative

trait locus detection, or control of stratification in GWAS through,

for instance, principal component analysis. Therefore, a mathe-

matical formulation of these deviations is critical for the

understanding of modern methods of genetic analysis, even if

they are based on molecular markers.

For instance, Powell et al. [4] suggested a ‘‘reconciliation’’ of

identity by state (IBS, critical in GWAS studies) and identity by

descent (IBD, used in pedigree analysis) through a notion of base

population and the use of Wright’s F fixation indices. However,

this assumes ideal populations. In the case of plant and animal

breeding populations, pedigree is usually known.

For the simplest one locus situation the coancestry between two

individuals is the probability that two alleles chosen at random,

one from each individual, are identical by descent. The fraternity

coefficient is defined as the probability that single locus genotypes

(both genes) of two individuals are identical by descent. The

purpose of this note is hence to develop the theory to predict the

variances and covariances of realized coancestry and fraternity

coefficients for pedigreed populations at a single locus. Here we

develop a simple expression and algorithm to calculate the

variance of these two coefficients and verify it through computer

simulation.

Materials and Methods

In this section we show how the moments of coancestries can be

calculated from the identity coefficients developed by Harris [5]

and Gillois [6], and the generalized kinship coefficients of Karigl

[7].

The Nine Condensed Identity States
In the genealogical analysis we consider ‘virtual’ genes that are

all different in the founder population. In this setting, when

ignoring the paternal or maternal origin, the relationship between

two individuals for one locus can be described exhaustively with

the nine condensed identity coefficients. The calculation of these

coefficients from pedigrees is fairly well known [7].
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Figure 1 shows the nine condensed identity states as they have

been presented in the literature, starting from S1 (the four copies

are identical by descent), to S9 (the four copies are non-identical).

The probability of each state Sk is usually denoted as Dk.

The nine condensed identity coefficients express the identity

given the segregation at the previous generation, for example, two

full brothers whose parents were founders can be at the state S7 if

they both received the same copy from the sire and the dam, they

can be at state S8 if they received the same copy from the sire or

the dam but not both. Finally they can be at state S9 if they

received different copies from both the sire and the dam. The

probabilities of these three states are easy to obtain based on

Mendelian segregation rules:

D7~ Pr S7ð Þ~1=4,D8~ Pr S8ð Þ~1=2? and D9~ Pr S9ð Þ~1=4.

Identities of a founder parent-offspring case are even easier,

because only S8 has a nonzero probability: D8~ Pr S8ð Þ~1.

In general, the states S1, . . . S9 and the probabilities D1, . . .D9

define a categorical distribution for each pair of individuals. Each

independent locus observed in these two individuals is an

independent realized value of this categorical distribution.

Using the Iverson brackets notation, the moments of the

conventional categorical distribution for the identity states k,k1

and k2 are:

E i~k½ �ð Þ~Dk

Var i~k½ �ð Þ~Dk 1{Dkð Þ ð1Þ

Cov i~k1½ �, j~k2½ �ð Þ~{Dk1
Dk2

ð2Þ

where ‘‘i = k’’ is a probabilistic event meaning that the realized

value for a given locus in a given pair of individuals is the state ‘‘k’’,

the Iverson variable i~k½ � equals 1 if the event is true and 0 if the

event is false.

The Variance of the Coancestry Coefficient Accounting
for Segregation

The expected coancestry coefficient between two individuals

can be calculated from the condensed identity coefficients using

the formula [5]

wab~D1z
1

2
D3zD5zD7ð Þz 1

4
D8

or

wab~W’D ð3Þ

Where W’~ 1 0 0:5 0 0:5 0 0:5 0:25 0ð Þ’ and

D’~ D1 D2 . . . D9ð Þ’.
When considering variance due to segregation, each constant

Dk has to be replaced by the corresponding Iverson bracket i~k½ �.
The variance of the relationship between two individuals due to

the segregation can be easily obtained from formula 3 as:

Var Wabð Þ~Var W’Dð Þ~W’Var Dð ÞW

or,

Var Wabð Þ~
X9

k~1
w2

kVar i~k½ �ð Þ

z2
X9

k1~1

X9

k2~k1z1
wk1

wk2
Cov i~k1½ �, j~k2½ �ð Þ

ð4Þ

(note that w stands for expected coancestry and W for realized or

actual coancestry, i.e., given the Mendelian segregation). Replac-

ing formulas (1) and (2) in (4) gives:

Var Wabð Þ~
X9

k~1
w2

kDk 1{Dkð Þ

{2
X9

k1~1

X9

k2~k1z1
wk1

wk2
Dk1

Dk2

ð5Þ

which has up to 25 nonzero terms. Reordering the terms of

formula 5,

Var Wabð Þ~
X9

k~1

w2
kDk

{
X9

k~1

w2
kD

2
k{2

X9

k1~1

X9

k2~k1z1

wk1
wk2

Dk1
Dk2

Var Wabð Þ~
P9

k~1

w2
kDk{

P9
k~1

wkDk

P9
k~1

wkDk

which can be easily expressed as a function of generalized kinship

coefficients. Following Karigl’s [7] notation,

Var Wabð Þ~wab,ab{wabwab ð6Þ

where the term wab,ab is a generalized coefficient of kinship for two

pairs of individuals.

Covariances between coancestry relationship coefficients can be

also derived from the generalized kinship coefficients. The proof is

included in the Supplementary Material and the result is the

obvious generalization of formula 6.

Cov Wab,Wcdð Þ~wab,cd{wabwcd

Figure 1. The nine condensed identity states. Upper dots
represent both copies of individual ‘‘i’’ and lower dots represent both
copies of individual ‘‘j’’. Dots linked with lines are identical by descent
and dots not linked are explicitly non identical.
doi:10.1371/journal.pone.0057003.g001
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The number of covariances of the coancestry coefficients is very

large. If there are n nz1ð Þ=2 different coancestry coefficients,

there are n nz1ð Þ n nz1ð Þz2ð Þ=8 different covariances.

The Variance of the Fraternity Coefficient Accounting for
Segregation

The fraternity coefficient can be obtained from the condensed

states of identity :

dab~D1zD7

In this case, formula 5 can also be used but the correct weights

must be set, that is, W’~ 1 0 0 0 0 0 1 0 0ð Þ’. In

this case W’D only has up to four nonzero elements.

Var Dabð Þ~D1 1{D1ð ÞzD7 1{D7ð Þ{2D1D7

(note that D stands for realized fraternity and d for expected

fraternity).

Formula 5, in fact, also holds for any linear aggregate of D0s. For

instance, W’~ 1 1 1 1 0 0 0 0 0ð Þ’ or

W’~ 1 1 0 0 1 1 0 0 0ð Þ’correspond respectively to

inbreeding coefficients of individual i and j. A formula for the

covariance of two fraternity coefficients is given in Appendix S1.

Results

In this section, the coancestry of a pair of English Setter dogs is

presented in order to illustrate the calculations and to compare the

results with MonteCarlo simulations. Afterwards, the coancestries

of 11 Latxa sheep were also analyzed in order to test the

computational feasibility of the algorithms.

Example. The Genetic Relationship between the Setters
Dash 2nd and Moll 3rd

During the XIX century, animal breeders sometimes planned

in-and-in pedigrees to keep the blood ‘‘pure’’. Edward Laverack

[8] implemented the matings presented in Figure 2 to achieve ‘‘the

perfection of form adapted to speed nose and endurance’’ required

for hunting dogs. The intricacy of this ancient pedigree satisfies

our testing purposes.

Sting and Belle 2nd, close relatives after 5 generations of full

brother matings, were mated with Cora 2nd and Fred 1st, collateral

relatives. The resulting progeny, Dash 2nd and Moll 3rd, are

simultaneously half brothers and aunt-nephew and their close

relatives are highly inbred. For that reason, the relationship

between these two dogs has nine non-null condensed identity

coefficients, that is

D~

0:21844

0:03435

0:16199

0:01491

0:20813

0:02345

0:20100

0:13242

0:00531

2
66666666666666664

3
77777777777777775

In Table 1 we present the coancestry coefficient and its variance

calculated after formulae (3) and (4), as well as MonteCarlo

estimates of coancestries and their the variances, obtained by gene

dropping [9]. Both the theoretical values and the MonteCarlo

estimates agree perfectly well.

It is well known that the inbreeding of an individual is equal to

the coancestry between his parents. Nevertheless, it is interesting to

note that the variance of the actual inbreeding coefficient of an

individual is not equal to the variance of the actual coancestry

between his parents. For instance, the expectation of the

inbreeding of Dash 2nd is 0.4297 (Table 1) calculated from the

condensed identity coefficients between Dash 2nd and Moll 3rd.

Although not included in Table 1, the coancestry between his

parents, Cora 2nd and Sting, calculated from their shared

condensed identity coefficients, is obviously 0.4297. However,

the variance of the actual inbreeding of Dash 2nd is 0.2451, yet the

variance of the coancestry between its parents is 0.0922. In

general, the variance of the inbreeding will be equal or greater

than the corresponding coancestry because it accumulates an extra

step of Mendelian segregation.

It can be shown algebraically that the variance of the realized

inbreeding coefficient F is f(1–f) (where f is the expected inbreeding

coefficient) as it should be. In effect, by definition, the realized

inbreeding is Fa~2Waa{1. Applying formula 6 and the result

presented in [7], i.e. waa,aa~ 1z3fað Þ=4, it turns out that

Var Fað Þ~fa 1{fað Þ.Results presented in lines 3 and 4 of Table 1

agree with that formula.

There is also a good agreement between the theoretical

covariance between two coancestries and the values estimated by

MonteCarlo simulation. For example, the covariance between the

coancestry of the pair Cora 2nd and Siting and the coancestry of

Figure 2. The pedigree of Dash 2nd and Moll 3rd.Two English
setters breed by Edward Laverackin the middle of S. XIX.
doi:10.1371/journal.pone.0057003.g002
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the pair Dash 2nd and Moll 3rd has a theoretical value of 0.04188.

The covariance between the coancestry of the pair Cora 2nd and

Sting and the coancestry of the pair Fred 1st and Belle 2nd is

0.04466. The corresponding MonteCarlo estimates for both

covariances are 0.04179 and 0.04436.

Example. Long Pedigree in Latxa Breed
A complex pedigree of 6175 animals of the Latxa sheep was

analyzed. We computed the coancestries and variances and

covariances of coancestries of the last eleven individuals (in

renumbering order). This was an expensive task, for the recursions

in Karigl’s method [7] required the computation of .340,000,000

coefficients. The results for four individuals are in Tables 2 and 3;

the pedigrees of those four individuals are known for 9–11

generations (often incompletely: the number of equivalent

complete generations (e.g. [10]) is respectively 2.85, 4.06, 4.34,

3.28). Individuals 1 and 8 are father and son; individuals 1 and 2

are slightly related. Neither 1 nor 9 are inbred. It can be seen that

low relationships (e.g. animals 1 and 2) have proportionally higher

variances, as shown by [2], whereas null relationships have a null

variance. Interestingly, there are negative covariances among

relationships. Covariances between realized coancestries are most

often very small, except the covariances between very close ones,

e.g. Cov W1,8,W8,8ð Þ, which is natural.

Discussion

In this paper we have shown that variances and covariances of

coancestries and inbreeding coefficients can be calculated analyt-

ically using the classical condensed identity coefficients. These

tasks require using Karigl’s [7] double-pair coancestries. For small

pedigrees or pedigrees with many generations, it is better to use

tabular algorithms to obtain all double-pair coancestries, but in

genealogies with a large number of individuals and a small number

of generations, recursive function strategies were implemented to

calculate only the coancestries required. An intermediate strategy

(i.e., our method) was to store those coefficients that are being

calculated for further use. Both approaches are computationally

demanding because the number of double pair coancestries is n4,

where n is the number of individuals. However, in practice the

number of computed coefficients may be much lower: 3406106

relationships were computed in the Latxa example, against a

possible total of 1454|1012.

The extension to several independent loci is straightforward.

The categorical distribution in formulas (1) and (2) has to be

replaced by the corresponding multinomial distribution, which

basically consists in dividing variances and covariances by the

number of loci. However, linkage affects variation in the actual

identity coefficients between individuals with the same pedigree,

and therefore increases its variance. The treatment of linkage is

difficult and has been partially dealt with by several authors (see

[2] and references therein). An interesting suggestion by Goddard

[11], is to use the effective number of loci (Me) defined as the

number of loci that provides the same variance of realized

relationship as obtained in the more realistic situation. It can be

calculated as Me~ 2NeLð Þ= log 4NeLð Þ where Ne is the effective

population size and L the gamete length in Morgan. Then, we

simply divide the variances by this effective number of loci. In our

example the variance of coancestry of Dash 2ndand Moll 3rd

(assuming a genome with 100 linked loci and a recombination

fraction of 0.01 among adjacent loci) was 0.0204 (simulation

results) and therefore, the effective number of loci is

0:0810=0:0204~4 not far from the value obtained using God-

dard’s formula (5.5 by using a Ne~3).

Incomplete pedigrees will lead to estimate error. They will tend

to bias coancestries and their coancestries downwards and increase

their errors. For instance, two individuals with no recorded father

will have null coancestries, and their common descendants (if any)

will have smaller coancestries and covariances of the coancestries.

Methods to deal with unknown paternities include either the use of

uncertain paternities [12], or of pseudo-parents [13]. Rules to

derive approximate covariances of coancestries may be obtained

from those methods.

Instead of pedigree, markers are often used to derive

relationships, for instance by computing measures of molecular

coancestry and referring them to descent (e.g., [14]). These

relationships are computed after observing the molecular state of

the individual (not of their parents), i.e., the Mendelian sampling is

somehow ‘‘observed’’. So, molecular-based relationships do not

suffer from sampling due to Mendelian sampling. They suffer,

nevertheless, from lack of definition of allelic frequencies (i.e.,

which base population do we refer to?) and from sampling error

due to the finite number of markers and linkage.

Table 1. Exact relationships of Dash 2nd and Moll 3rd and their corresponding Montecarlo gene dropping estimates obtained with
100000 samples.

W Expectation Variance
Montecarlo
mean Montecarlo variance

Coancestry 1 0 1
2

0 1
2

0 1
2

0 1
2

1
4

0 0.5371 0.0810 0.5367 0.0811

Fraternity 1 0 0 0 0 0 1 0 0 0.4194 0.2435 0.4169 0.2431

Inbreeding Dash 2nd 1 1 1 1 1 0 0 0 0 0.4297 0.2451 0.4309 0.2452

Inbreeding Moll 3rd 1 1 0 0 1 1 0 0 0 0.4844 0.2498 0.4845 0.2497

doi:10.1371/journal.pone.0057003.t001

Table 2. Coancestries of four individuals in the Latxa sheep.

1 2 8 9

1 0.5 0.0025 0.2543 0

2 0.5052 0.0037 0

8 0.5043 0

9 0.5

doi:10.1371/journal.pone.0057003.t002
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Supporting Information

Appendix S1 Covariances of two coancestries or frater-
nities.
(PDF)
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