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γδ T cells, αβ T cells, and innate lymphoid cells (ILCs) are capable of producing interleukin 
(IL)-17A, IL-17F, and IL-22. Among these three families of lymphocytes, it is emerging 
that γδ T cells are, at least in rodents, the main source of these key pro-inflammatory 
cytokines. γδ T cells were implicated in multiple inflammatory and autoimmune diseases, 
including psoriasis, experimental autoimmune encephalomyelitis and uveitis, colitis, and 
rheumatoid arthritis. Recent findings pointed toward a central role of γδ T cells in the 
pathogenesis of spondyloarthritis (SpA), a group of inflammatory rheumatic diseases 
affecting the axial skeleton. SpA primarily manifests as inflammation and new bone 
formation at the entheses, which are connecting tendons or ligaments with bone. In SpA 
patients, joint inflammation is frequently accompanied by extra-articular manifestations, 
such as inflammatory bowel disease or psoriasis. In humans, genome-wide associ-
ation studies could link the IL-23/IL-17 cytokine axis to SpA. Accordingly, antibodies 
targeting IL-23/IL-17 for SpA treatment already showed promising results in clinical 
studies. However, the contribution of IL-17-producing γδ T cells to SpA pathogenesis is 
certainly not an open-and-shut case. Indeed, the cell types that are chiefly involved in 
local inflammation in human SpA still remain largely unclear. Some studies focusing on 
blood or synovium from SpA patients reported augmented IL-17-producing and IL-23 
receptor-expressing γδ T cells, but other cell types might contribute as well. Here, we 
summarize the current understanding of how γδ T cells, αβ T cells, and ILCs contribute 
to the pathogenesis of human and experimental SpA.
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inTRODUCTiOn

Spondyloarthritis (SpA) encompasses a group of human rheumatic diseases that typically manifest as 
inflammation and new bone formation at axial joints, leading to severe lower back pain and impaired 
spinal mobility. Thereby, inflammation starts from entheses, the tendon to bone attachment sites. The 
family of SpA includes ankylosing spondylitis (AS), the SpA prototype (1), reactive arthritis, axial 
and undifferentiated SpA as well as psoriatic arthritis (PsA) and inflammatory bowel disease (IBD)-
associated arthritis. Different SpA pathologies demonstrate similar disease patterns and similar 
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genetic associations. First, the MHC class I molecule HLA-B27 
was identified to confer susceptibility to SpA, and HLA-B27 is 
present in approximately 90% of AS patients in Europe (2). Over 
the last few years, more and more genome-wide association stud-
ies revealed a link between the interleukin (IL)-23/IL-17 axis and 
SpA susceptibility (3–6). Newly identified susceptibility genes 
comprise IL-12B, IL-1R, CARD9, TYK2, STAT3, and IL-23R, the 
gene encoding for the IL-23 receptor (IL-23R). The latter is par-
ticularly interesting, because single nucleotide polymorphisms in 
IL-23R were associated not only with AS (7) or PsA (8) but also 
with psoriasis (9) and IBD (10), hence pathologies that frequently 
accompany articular inflammation in SpA.

Nonsteroidal anti-inflammatory drugs and TNF inhibitors 
serve as first-line treatment for SpA. However, new treatment 
strategies emerged with the identification of the IL-23/IL-17 axis 
as putative key pathway associated with SpA. Most prominently, 
anti-IL-17A (receptor) treatment improved SpA disease symp-
toms (11–17). By contrast, IL-23 inhibition presented ambiguous 
results (18–21) (ClinicalTrials.gov number NCT02437162). If 
these drugs should completely replace old treatment modalities 
in the future, it still needs to be validated further (22–24).

Enthesitis (25), thus entheseal inflammation, represents a main 
characteristic of SpA. It was suggested that mechanical stress and 
local microdamage might initiate entheseal inflammation (26, 
27), proposing the enthesis as primary lesion in SpA-associated 
joint inflammation (28–30). However, the link between host 
genetics, e.g., the IL-23/IL-17 axis, and local inflammation as 
well as new bone formation is not entirely clear. Strikingly, several 
SpA-focused studies suggested that the IL-23/IL-17 cytokine axis 
and innate immune activation might be of greater importance 
than classical autoreactivity of B or T cell receptors (6, 31, 32). 
Indeed, several albeit not all SpA patients demonstrated an 
increase in IL-23/IL-17 serum or synovial fluid levels (33–37). 
IL-17 cytokines are usually produced by lymphocytes, although 
earlier studies observed IL-17-producing mast cells (38), neutro-
phils, and myeloperoxidase-expressing cells (39) in SpA synovia. 
So, who does it? In the following, we summarize and discuss 
current data about human and experimental SpA and the three 
prime suspects of the IL-23/IL-17 axis: γδ T cells, αβ T cells, and 
innate lymphoid cells (ILCs).

γδ T Cells
Although pre-committed effector γδ T  cells represent a major 
source of IL-17/IL-22 under steady-state conditions in rodents 
(40–42), data reporting IL-17/IL-22-producing γδ T  cells in 
healthy human individuals are rare (42–44). However, γδ T cells 
are clearly associated with different infections and tumors as well as 
autoinflammatory and autoimmune diseases in humans (45, 46).  
First studies suggesting a possible connection between γδ T cells 
and SpA were published approximately 30 years ago, just shortly 
after the discovery of γδ T cells (47, 48). By now, a number of 
studies demonstrated a decrease of γδ T cells in blood (49–51), 
while others showed that γδ T cells were frequently present in SpA 
patients’ synovial fluid (52, 53), suggesting that γδ T cells might 
play a role in disease induction and/or persistence in humans.

In fact, a direct association of γδ T  cells and IL-17/IL-22 
secretion in human SpA was first described by Kenna and 

colleagues, demonstrating an enrichment of IL-23R+ IL-17-
producing γδ T  cells in blood of AS patients (54). Strikingly, 
this phenotype was absent in rheumatoid arthritis patients (54), 
suggesting specific involvement of IL-17-producing γδ T  cells 
in SpA pathogenesis rather than in arthritic inflammation in 
general. Along the same line, the analysis of tissue samples 
from enthesitis-related arthritis (55), reactive arthritis or undif-
ferentiated SpA (56) as well as juvenile idiopathic arthritis (JIA) 
patients (57) revealed an increase in blood and synovial fluid 
IL-17-producing γδ T  cells. Notably, such increased numbers 
of IL-17-producing γδ T  cells might be driven by a defined 
arthritic cytokine environment (57). Although IL-23 certainly 
represents the main driver cytokine inducing enhanced IL-17 
secretion by different cell types, also IL-9-driven expansion of 
IL-17-producing γδ T  cells in PsA synovial fluid was recently 
demonstrated (58).

γδ T cells were implicated not only in SpA and related dis-
eases in humans but also in mice. In various mouse models for 
non-autoimmune arthritis, including non-autoimmune antigen-
induced arthritis (59), mannan-induced arthritis (60), or CFA-
injected IFN-γ−/− mice (61), γδ T cells were increased in numbers 
and were the main source of pathogenic IL-17 in inflamed tissues.

So, how do SpA-associated IL-17-producing γδ T cells get into 
inflamed sites in humans and mice? It is tempting to speculate 
that circulating and/or γδ T cells from distant tissues might leave 
their sites of origin and gather at the sites of crime, the inflamed 
joints. Accordingly, blood isopentenyl pyrophosphate-responsive 
Vγ9+ (53) or α4β7+ mucosal (γδ) T cells (52) might preferentially 
accumulate in JIA joints during an acute flare or a low acute-phase 
response, respectively. Likewise, CCR2+Vγ6+ IL-17-producing γδ 
T cells were recruited to joints by CCL2-inducing CD4+ T cells in 
arthritic Il-1rn−/− mice (62).

However, there is more to be considered than migration of 
γδ T cells into inflamed tissues when trying to solve the case of 
idiopathic local entheseal inflammation in SpA. Applying an 
IL-23-dependent mouse model resembling inflammation-driven 
bone destruction (63) and most features of human SpA (64), tis-
sue-resident IL-23R+RORγt+CD3+CD4−CD8− lymphocytes were 
discovered in mouse entheses (64). Systemic IL-23 overexpression 
induced local inflammation in the enthesis by triggering resident 
IL-23R+RORγt+CD3+CD4−CD8− lymphocytes to secrete IL-17 
and IL-22, ultimately leading to IL-17-dependent enthesitis, IL-22-
dependent bone remodeling as well as aortic root inflammation and 
psoriasis (64). Based on this study, we could recently demonstrate 
that Vγ6+ γδ T  cells reside within mouse entheses, where they 
constitute the large majority of IL-23R+RORγt+CD3+CD4−CD8− 
lymphocytes in steady state and increase in numbers during 
inflammation (65). Whether Tcrd−/− mice would thus be protected 
from IL-23-dependent entheseal inflammation is still a matter of 
investigation. Notably, aging male DBA mice still develop severe 
enthesitis and new bone formation in the absence of γδ T  cells 
(66). However, whether this phenotype results from entheseal γδ 
T cell redundancy or an increased presence of enthesis-resident 
lymphocytes other than γδ T  cells that functionally refills their 
empty niche (67) still remains an open question.

Strikingly, resident γδ T  cells have just recently also been 
identified in human entheses (68). Thus, it appears likely that 
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FigURe 1 | Involvement of interleukin (IL)-17/IL-22-producing lymphocytes in spondyloarthritis (SpA)-associated inflammation. Genetic and epigenetic 
predisposition, altered microbial composition, and entheseal microdamage can influence the induction and progression of tissue inflammation in SpA. In  
addition to tissue-resident γδ T cells and ILC3s, circulating and/or gut-derived γδ T cells, ILC3s, TH17 cells, or mucosal-associated invariant T (MAIT) cells  
might promote IL-23-driven joint inflammation by producing increased amounts of IL-17 and IL-22.

3

Reinhardt and Prinz IL-17/IL-22-Producing Lymphocytes in SpA

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 885

under steady-state conditions, entheseal γδ T cells reside in this 
very specific anatomical niche to control tissue homeostasis and 
possibly physiological bone remodeling after injury and exercise, 
while upon the elevation of IL-23 serum levels, they are driven to 
increase IL-17/IL-22 production and thus promote SpA (Figure 1).

innate Lymphoid Cells
Innate lymphoid cells were identified around 10 years ago (69), 
but might have played important roles in joint inflammation 
even before adaptive immune cells developed over 450 million 
years ago. By now, it is clear that ILCs are crucially involved in 
the pathogenesis of a variety of inflammatory diseases, but also 
in tissue homeostasis (70, 71). For example, different ILC subsets 
were implicated in human and experimental rheumatic diseases 
(72). Recently, elevated numbers of ILC1s, ILC2s, and ILC3s were 
measured in blood samples from PsA patients, while only ILC3 
numbers positively correlated with disease activity (73). However, 
circulating ILC3s in PsA patients displayed an immature phe-
notype, only produced moderate amounts of IL-17/IL-22, and 
did not express NKp44 (73). Interestingly, this further implies 
that final ILC3 maturation might only occur directly at the site 
of inflammation, presumably directly in the joints. However, as 
ILCs possess a high degree of plasticity (74), the transformation 
of inflammatory ILC1s or ILC2s into ILC3-like cells might also be 
possible (75, 76). In addition to an enrichment of NKp44− ILC3s 
in PsA blood, NKp44+CCR6+ IL-17- (77) or GM-CSF-producing 
(78) ILC3s were abundantly present in SpA synovial fluid. Here, 
circulating NKp44+ILC3 numbers inversely correlated with 

disease activity (77), possibly resulting from the migration of 
circulating (immature) ILC3s to target tissues.

Association between SpA and intestinal inflammation is well 
established (79), and at least 50% of SpA patients suffer from 
(sub)clinical gut inflammation (80). A connection between ILCs 
and SpA-associated gut inflammation was described by differ-
ent studies. In blood from entheropathic SpA patients, levels of 
IL-17-producing ILC3s were significantly higher as compared 
to IBD patients and healthy controls (81). While intestinal CD4+ 
T cells represented the main source of local IL-22 in Crohn’s dis-
ease patients, IL-22-producing NKp44+ ILCs were predominant 
in the gut of AS patients (82), highlighting differences between 
the etiology of IBD and SpA-associated intestinal inflammation. 
Surprisingly, particularly α4β7+IL-23R+ IL-17/IL-22-producing 
ILC3s were increased in gut, blood, bone marrow, and synovial 
fluid from AS patients with intestinal inflammation, suggesting 
that gut-derived functionally mature ILC3s might emigrate from 
intestinal tissues to α4β7 ligand-expressing joints, promoting 
local SpA-associated inflammation (83). SpA-associated α4β7+ 
synovial T cells were also already described before (84). Based 
on these results, ILC3s were proposed to function as “cytokine 
shuttles from gut” to extra-intestinal tissues (85). Strikingly, 
IL-17/IL-22-producing ILC3s appeared to be RORγt− but Tbet+ 
(83), possibly reflecting a particular developmental stage (86).

Although tissue residency is not well established for human 
ILCs, there is good evidence that ILCs in mice are generally 
tissue-resident (87, 88). Thus, the migration of gut-derived 
ILCs into SpA joints appears surprising at first glance. However, 
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photoconversion experiments in mice could reveal CCR7-
dependent ILC3 migration from gut to mesenteric lymph nodes 
(89), supporting the notion that intestinal ILCs can, at least to 
some extent, traffic to distant sites. The expression of a particular 
chemokine/cytokine signature, homing receptors, and respec-
tive ligands might promote their traveling. For instance, NKp44 
ligand was shown to be expressed by chondrocytes, even in non-
inflamed joints (90).

The migration of peripheral ILC3s into inflamed tissues in 
the context of SpA appears to be an interesting hint. However, 
the presence of resident NKp44+ ILC3s in non-inflamed human 
spinal entheses has just been reported (68). Further, that study 
demonstrated that, in consistence with mouse entheseal tissues 
(64, 65), human entheses responded to stimulation with IL-23/
IL-1β by increasing IL-17/IL-22 production (68). Thus, in addi-
tion to γδ T  cells, enthesis-resident ILC3s represent another 
candidate of innate lymphocytes that might be involved in the 
induction and/or progression of SpA (Figure 1).

αβ T Cells
Although recent studies point toward a chief contribution of 
innate lymphocytes to SpA, it is inevitable to include αβ T cells 
into the inner circle of prime suspects.

The “arthritogenic peptide theory” suggested that CD8+ T cells 
specific for HLA-B27-presented peptides might be involved in 
SpA disease pathogenesis (91, 92). Some immunohistological 
analyses indeed demonstrated that CD8+ T cells were predomi-
nant in human entheseal infiltrates (93, 94). However, studies in 
an experimental SpA model, HLA-B27-transgenic rats, did not 
support this theory (95, 96). Notably, HLA-B27 molecules can 
also be recognized as B27 β2-microglobulin-free heavy chains 
by killer immunoglobulin-like receptors (KIRs) (97, 98). HLA-
B27/KIR3DL2 binding can induce RORγt expression in CD4+ 
αβ T  cells and thus a T helper 17 (TH17) cell phenotype (99). 
Accordingly, although not confirmed in early axial SpA (100), 
KIR3DL2+ TH17 cells were increased in AS patients, suggesting 
that these cells might represent a therapeutic target for SpA treat-
ment (101). HLA-B27 also appears to be associated with dysbiosis 
(102–105), possibly resulting from HLA-B27 misfolding-induced 
(106, 107) upregulation of the IL-23/IL-17 axis (108), innate 
immune activation, and intestinal TH17 cell expansion (109) early 
in life (110).

In fact, several albeit not all (39, 54, 111) SpA studies observed 
increased amounts of TH17 cells in blood and/or synovial fluid 
(100, 112–117), possibly in a sex-dependent manner (118). While 
IL-17 is the most representative cytokine ascribed to TH17 cells, 
GM-CSF-producing TH17 cells were also elevated in SpA patients 
(78). However, the increase in GM-CSF-producing lymphocytes 
was not specific for TH17 cells, as IL-17-producing CD8+ T cells, 
γδ T  cells, and ILC3s co-producing GM-CSF were similarly 
expanded (78).

Supposing that increased numbers of TH17 cells promote 
SpA—how to keep these cells in check? In fact, miR-10b-5p (119) 
and IL-10-producing B  cells (120) were recently proposed as 
putative negative regulators trying to control TH17 cells from SpA 
patients. Although increases in regulatory T  cells in gut (121), 
blood, and synovial fluid (122, 123) from SpA patients also hinted 

toward an unsuccessful reaction to suppress autoinflammation, 
these cells might be functionally defect (124), demonstrating an 
imbalance in IL-10/IL-17 production (125).

Finally, unconventional/innate IL-17/IL-22-producing αβ 
T cell subsets might be associated with SpA. While neither human 
nor experimental SpA-associated IL-17-producing invariant 
natural killer T  cells were identified so far, IL-17-producing 
CD8+ T  cells (78, 126) or mucosal-associated invariant T 
(MAIT) cells (127, 128) were described. Surprisingly, increased 
IL-17 production by MAIT cells derived from AS patients was 
IL-23-independent, but rather promoted by IL-7 (128)—similar 
findings were recently reported in multiple sclerosis patients 
(129). Indeed, IL7R polymorphisms are associated with AS 
(4), and it was proposed that mechanical stress-induced IL-7 
secretion by synovial fibroblasts could induce MAIT cell activa-
tion and thus IL-17 secretion during SpA pathogenesis (130). 
However, enthesis-resident MAIT cells have not been described 
so far.

Although seemingly plenty of studies described an association 
of TH17 cells and SpA, CD4+ cell depletion did not protect from 
IL-23-dependent inflammation (64). Along the same line, aging 
male DBA Tcrb−/− mice did still develop enthesitis and new bone 
formation (66), and γδ T  cells, but not αβ T  cells, dominated 
among pathogenic IL-17-producing enthesis-resident lympho-
cytes in mice (65). Together, this indicates that TH17 cells might 
rather not mediate the first line of action when local entheseal 
immune cells are provoked by the various environmental triggers, 
such as mechanical stress, dysbiosis, or genetic and epigenetic 
predisposition (131) (Figure 1).

COnCLUDing ReMARKS: wHODUniT?

After lining up the usual and a few unusual suspects, it seems that 
although strong arguments point toward an important contribu-
tion of the IL-23/IL-17 axis mediating SpA, it still remains diffi-
cult to pinpoint which of the above-described cell types are major 
players (132). Overall, recent studies collectively favor innate 
and innate-like immune cell involvement rather than adaptive 
T  cells (6, 31, 32). As opposed to conventional B and T  cells, 
innate and innate-like lymphocytes are commonly enriched in 
non-lymphoid tissues, and thus association with autoinflamma-
tory diseases affecting particular tissues appears feasible (133). 
In this respect, it is worth considering the differential effects that 
genetics and environmental factors might elicit in innate versus 
adaptive immune traits (134).

Still, the relative contributions of tissue-resident cells, i.e., γδ  
T cells and ILC3s, versus recruited cells to SpA pathologies are 
not entirely clear. The “mechanical stress and entheseal micro-
damage hypothesis” (26, 27) supports the idea of inflammation-
promoting enthesis-resident cells. In this regard, one might 
hypothesize that mechanical stress triggers resident immune 
cell activation—either directly or indirectly via stromal cell 
activation. Indeed, mechanical stress was shown to support 
enthesitis and new bone formation in TNFΔARE and aging male 
DBA mice, whereas remarkable experiments involving hind limb 
unloading significantly reduced disease symptoms (135). Since 
human tissues are generally difficult to obtain, various animal 
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studies experimentally addressed immune pathways associated 
with SpA. However, it should be noted that many animal models 
only work in a specific genetic background, and vast differences 
exist between individual SpA models. While some models 
strongly depend on IL-23, others are based on TNF dysregulation  
(136, 137). Consequently, experimental data might be controver-
sial: while Rag2−/− mice did not develop pathologies upon IL-23 
overexpression (64), arguing against a role for innate lympho-
cytes in disease induction, enthesitis in Rag1−/− TNFΔARE mice was 
unaffected (135).

In the human system, many traits originate from analysis of 
circulating immune cell populations. However, such data remain 
inherently difficult to interpret: an increase in a particular 
circulating cell population does not unequivocally suggest their 
increased migration to joint tissues, while a decrease cannot 
unambiguously imply these cells already relocated from blood 
into distant sites. And why should otherwise tissue-resident 
ILC3s, TH17 cells, MAIT cells, or γδ T cells, leave the intestine 
and migrate into axial sites and distant tissues? Indeed, increased 
levels of CCL20, the chemokine attracting CCR6+ cells, were 
detected in SpA joints, albeit not as prominent as in rheumatoid 
arthritis (138). Altered gut epithelial and vascular barrier integ-
rity in SpA patients might further promote intestinal immune cell 
emigration (139). Importantly, the trafficking of intestinal IL-17-
producing γδ T cells to an entirely different tissue, the leptome-
ninges, was described in a mouse model for stroke (140, 141).  
Notably, a gut/joint axis in SpA might also exist for antigen-
presenting cells carrying bacterial antigens from gut to axial sites, 

thus contributing to the induction of a local immune response 
(142). Whether SpA-associated joint-infiltrating lymphocytes 
enter tissues as already activated and functionally mature cells 
also remains an open question. Relatedly, CXCL4 was recently 
identified as a novel potent inducer of human TH17 cells enriched 
in PsA joints, and CXCL4 levels also positively correlated with 
disease severity, thus suggesting a CXCL4-driven local boost of 
TH17 cells (143).

In conclusion, there is growing evidence that innate and 
tissue-resident IL-17-producing γδ T cells and perhaps also ILC3s 
might be locally primed by genetic and epigenetic predisposition, 
mechanical stress as well as by increased systemic inflammation 
caused by intestinal dysbiosis. However, future studies will need to 
elaborate prevailing theories about the SpA-associated sequence 
of events. No matter whether ILC3s, γδ T cells, or any other innate 
lymphocytes primarily promote inflammation in SpA, in the end, 
the pathogenic action of all these cell types can be collectively 
targeted via the IL-23/IL-17 axis.
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