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Abstract

Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease

of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests dif-

ferently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and

respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA

PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the mono-

cyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV,

whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be

an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of

macrophages, particularly in the respiratory system. Here we describe the application of

CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of

the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs

maintained under standard husbandry conditions with normal growth rates and complete

blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood

monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and

macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic

differentiation and cell surface marker expression of macrophages of the respective origin.

Expression and correct folding of the SRCR5 deletion CD163 on the surface of macro-

phages and biological activity of the protein as hemoglobin-haptoglobin scavenger was con-

firmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3

and PMMs with PRRSV genotype 2 showed complete resistance to viral infections

assessed by replication. Confocal microscopy revealed the absence of replication structures

in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to

gene expression, i.e. at entry/fusion or unpacking stages.
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Author summary

Porcine Reproductive and Respiratory Syndrome is an endemic infectious disease of pigs,

manifesting differently in pigs of different ages but primarily causing late-term abortions

and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease

is the positive-strand RNA PRRS virus (PRRSV). PRRSV only infects a specific subset of

cells of the innate immune system of the monocyte/macrophage lineage. Previous

research found that the virus needs a specific receptor, CD163, in order to make its own

membrane fuse with the host cell membrane in an uptake vesicle to release the viral

genetic information into the cytosol and achieve a successful infection. CD163 has a

pearl-on-a-string structure, whereby the “pearl”/ domain number 5 was found to interact

with the virus and allow it to infect a cell. Here we describe how we generated pigs lacking

the CD163 subdomain 5 using so-called CRISPR/Cas9 gene editing in zygotes. The pigs

were healthy under normal husbandry conditions and other biological functions con-

ducted by the CD163 were found to be intact. We isolated a variety of monocyte and mac-

rophage cells from these pigs and found them to be completely resistant to PRRSV

infection.

Introduction

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically

important infectious diseases affecting pigs worldwide. The “mystery swine disease” was first

observed almost simultaneously in North America and in Europe in the late 1980s [1,2]. The

causative agent of PRRS was identified to be a virus later named PRRS virus (PRRSV). Infected

pigs may present with symptoms involving inappetence, fever, lethargy, and respiratory dis-

tress. However, the most devastating effects of PRRSV infection are observed in young piglets

and pregnant sows. In pregnant sows an infection with PRRSV can cause a partial displace-

ment of the placenta, leading to full abortions or to death and mummification of fetuses in
utero [3]. Late-term abortions occur in up to 30% of infected sows with litters containing up to

100% stillborn piglets. Live-born piglets from an antenatal infection are often weak and display

severe respiratory symptoms, with up to 80% of them dying on a weekly basis pre-weaning

[4,5]. Young piglets infected with PRRSV often display diarrhea and severe respiratory distress

caused by lesions in the lung. In pre-weaned piglets the infection may be transmitted via the

mammary gland secretions of an infected sow [6]. At this age the infection has a fatal outcome

in up to 80% of animals. After weaning mortality rates reduce, but continued economic losses

due to reduced daily gain and feed efficiency are often observed [4,7,8]. Due to reduction or

loss of pregnancies, death in young piglets, and decreased growth rates in all PRRSV infected

pigs it is estimated that more than $650m are lost annually to pork producers in the United

States alone [9,10].

PRRSV is an enveloped, plus-strand RNA virus belonging to the Arteriviridae family in the

order Nidovirales [11,12]. The PRRSV genome (~15 kb) encodes at least 12 non-structural and

seven structural proteins. The viral RNA is packaged by the nucleocapsid protein N, which is

surrounded by the lipoprotein envelope, containing the non-glycosylated membrane proteins

M and E, as well as four glycosylated glycoproteins GP2, GP3, GP4, and GP5, whereby GP2, 3,

and 4 form a complex [13–17].

PRRSV has a very narrow host range, infecting only specific subsets of porcine macro-

phages [18–20]. It is unknown yet how widespread PRRSV infections are within the superfam-

ily of the Suoidea. Whereby European wild boars have been shown to act as a reservoir for
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PRRSV [21], little is known about infection in African suids, such as bushpigs and warthogs.

In vitro virus replication is supported by the African Green Monkey cell line MARC-145.

Entry of PRRSV into macrophages has been shown to occur via pH-dependent, receptor medi-

ated endocytosis [22,23]. Various attachment factors and receptors have been indicated to be

involved in the PRRSV entry process (reviewed in [24]). Heparan sulphate was identified early

as an attachment factor of the virus [25–27]. In vitro infection of pulmonary alveolar macro-

phages (PAMs) but not MARC-145 cells was shown to be inhibited by an antibody targeting

CD169 (sialoadhesin), a lectin expressed on the surface of macrophages [28]. Overexpression

of CD169 in previously non-permissive PK-15 cells showed internalization but not productive

replication of PRRSV [29]. Finally, an in vivo challenge of genetically modified pigs in which

the CD169 gene had been knocked out revealed no increased resistance to PRRSV infection,

suggesting that CD169 is an attachment factor that is not essential for PRRSV infection [30].

Even though cell surface protein expression is a major determinant of PRRSV binding and

internalization, there appears to be a redundancy amongst cell surface attachment factors, with

the potential for additional, as yet unidentified receptors, being involved [31]. The scavenger

receptor CD163, also known as haptoglobin scavenger receptor or p155, is expressed on spe-

cific subtypes of macrophages and has been identified as a fusion receptor for PRRSV. The

extracellular portion of CD163 forms a pearl-on-a-string structure of nine scavenger receptor

cysteine-rich (SRCR) domains and is anchored by a single transmembrane segment and a

short cytoplasmic domain [32]. CD163 has a variety of biological functions, including mediat-

ing systemic inflammation and the removal of hemoglobin from blood plasma (reviewed in

[33,34]). Overexpression of CD163 renders non-susceptible cells permissive to PRRSV infec-

tion [35], whereby it was found that CD163 does not mediate internalization but is crucial for

fusion [36]. The transmembrane anchoring and an interaction with the SRCR domain 5

(SRCR5) of CD163 were found to be essential for successful infection with PRRSV [34,35].

Recent in vivo experiments with CD163 knock-out pigs confirmed that CD163 is required for

PRRSV infection [37]. However, as CD163 has important biological functions the complete

knockout could have a negative physiological impact on the animal, particularly with respect

to inflammation and/or infection by other pathogens. Interestingly, whereas all the other eight

SRCR domains have been shown to be involved in different biological functions, no specific

role has been associated with SRCR5, other than in PRRSV infection [34]. Therefore, this

study aimed to generate pigs with a defined CD163 SRCR5 deletion and to assess the suscepti-

bility of macrophages from these pigs to PRRSV infection.

Results

Generation of live CD163 SRCR5 deletion pigs by CRISPR/Cas9 editing

in zygotes

The CD163 gene is not correctly represented in the current pig reference genome sequence

(Sscrofa10.2) [38]. Through targeted sequencing we established a detailed model of the porcine

CD163 locus (S1 File). Briefly, CD163 is encoded by 16 exons with exons 2–13 predicted to

encode the SRCR domains of the protein [39]. Interestingly, SRCR5 is predicted to be encoded

by one single exon, namely exon 7 (Fig 1A). Thus, an editing strategy was developed to excise

exon 7 using the CRISPR/Cas9 genome editing system [40,41]. A combination of two guide

RNAs, one located in the intron 5’ to exon 7 and one in the short intron between exons 7 and

8 was predicted to generate a deletion of exon 7, whilst allowing appropriate splicing of the

remaining exons. Due to the short length of the intron between exons 7 and 8 (97 bp) only one

suitably unique targeting sequence (crRNA) with a corresponding protospacer adjacent motif

was identified. Three candidate crRNA sequences were selected in the immediate upstream
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area of exon 7. All four sequences were assessed in vitro for cutting efficiency by transfection of

porcine kidney PK15 cells with a plasmid based on px458 [42] encoding the complete single

guide sequence (sgRNA), driven by the hU6 promoter, and a CAG promoter driving

NLS-Cas9-2A-GFP. Transfected cells were isolated by fluorescence activated cell sorting

(FACS) for GFP and cutting efficiency at the target site was assessed using a Cel1 surveyor

assay. Three out of four guides were shown to direct cutting of DNA as anticipated (2

upstream and one downstream of exon 7). Following double transfection assay and subsequent

PCR analysis it was found that only the combination of guides SL26 and SL28 generated the

desired exon 7 deletion in the CD163 gene (Fig 1B). Based on these results the guide combina-

tion of sgSL26 and sgSL28 was used for in vivo experiments.

sgRNAs SL26 and SL28 were microinjected together with mRNA encoding the Cas9 nucle-

ase into the cytosol of zygotes (Fig 1C). Editing efficiency was assessed in a small number of

Fig 1. Generation of an exon 7 deletion in CD163 using CRISPR/Cas9. A) Schematic of the CD163 gene in the pig genome on

chromosome 5. Indicated in red are the 16 exons encoding the CD163 mRNA, in varied colors underneath are the 9 scavenger

receptor cysteine-rich (SRCR) domains that form the pearl on a string structure of the CD163 protein. Excision of exon 7 using two

guide RNAs (sgSL26 & sgSL28) located in the flanking introns should result in SRCR 5 removal from the encoded protein. Indicated

are also the locations of sgRNAs SL25 and SL27. B) In vitro assessment of guide RNAs sgSL25, sgSL26, sgSL27, and sgSL28.

PK15 cells were transfected with either a single plasmid encoding a guide RNA + Cas9 or co-transfected with combination of two

such plasmids. Transfected cells were identified by GFP expression and isolated by FACS. Cutting efficiency of single guide RNA

transfection was assessed by a Cel1 surveyor assay. Relative efficiency of exon 7 deletion upon double transfection was assessed

by PCR. C) Schematic of the Cas9/guide RNA injection into zygotes. The injection mix was injected into the cytoplasm of zygotes and

contained uncapped, non-polyadenylated guide RNAs sgSL26 and sgSL28, as well as capped, polyadenylated Cas9 mRNA.

doi:10.1371/journal.ppat.1006206.g001
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injected zygotes by in vitro culture to the blastocyst stage, genomic DNA extraction, whole

genome amplification and PCR amplification across exon 7. The analysis revealed that two out

of 17 blastocysts contained a deletion of the intended size and Sanger sequencing confirmed

the deletion of exon 7. Edited blastocyst B2 showed a clean deletion and subsequent re-ligation

at the cutting sites of sgSL26 and sgSL28, whilst edited blastocyst B14 showed that in addition

to the intended deletion there was also a random insertion of 25 nucleotides at the target site

(S1 Fig). None of the full length PCR products showed nucleotide mismatches at either cutting

site in a T7 endonuclease assay. The overall editing rate in the blastocysts was 11.7%.

To generate live pigs, 24–39 zygotes injected with sgSL26, sgSL28, and Cas9 mRNA were

transferred into the oviduct of recipient gilts. A total of 32 live piglets were born and genotyp-

ing of ear and tail biopsies revealed that four of the piglets had an exon 7 deletion, correspond-

ing to 12.5% of the total. In addition to the intended deletion of exon 7, three out of the four

animals showed insertions of new DNA at the target site probably as a consequence of non-

homologous end joining (NHEJ) repair. Pig 347 showed a 2 bp truncation at the sgSL26 cut-

ting site and a 66 bp insertion between the cutting sites, pig 346 showed a deletion of 304 bp

after the cutting site of sgSL26, and pig 310 showed a short 9 bp insertion at the cutting sites

(S2 Fig). Pig 345 was found to have a precise deletion of exon 7 without insertion or deletion

of random nucleotides at the cut sites (S2B & S2D Fig). Interestingly PCR amplification indi-

cated that pigs 310, 345, and 347 were all mosaic for an editing event, with pig 310 having a

low frequency heterozygous (one allele edited) compared to unedited cells, whilst pigs 345 and

347 have both homozygous (both alleles edited) and heterozygous cell types (S2A & S2C Fig).

Genotype and phenotype of F1 generation pigs

To generate fully homozygous and heterozygous pigs, 310 was mated with 345. This mating

yielded a litter of 6 heterozygous, 2 biallelic/homozygous CD163 SRCR5 deletion (ΔSRCR5),

and 4 wild type CD163 piglets (S3 Fig). Sequencing of the animals revealed all the heterozygotes

to have inherited their edited allele from 345. Pig 629 was found to be biallelic for the exon 7

deletion with one allele carrying the genotype of 345 and the other allele the one from 310.

Interestingly 630 was found to be homozygous for the edited allele with the 9 bp insert between

the cutting sites of sgSL26 and sgSL28 as found in the 310 founder / parent (Fig 2). We con-

clude that this homozygous state has arisen from a gene conversion event in the zygote.

Fig 2. Genotypes and growth of assessed F1 animals.

doi:10.1371/journal.ppat.1006206.g002
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Animals 627, 628, 629, 630, 633, and 634 were selected for further analysis, representing the

various genotypes (wild type, heterozygous, and biallelic/homozygous) and genders. Growth

rates of both ΔSRCR5 and heterozygous animals were comparable to wild type animals (Fig 2).

Blood samples were taken from all six animals at 10 weeks of age and analyzed by a full blood

count conducted by the diagnostics laboratory at the Royal (Dick) School of Veterinary Sci-

ences, University of Edinburgh. The blood counts of all animals were within reference values

(S1 table). Size, stature and other morphological features of ΔSRCR5 and heterozygous pigs

were comparable to their wild type siblings (Fig 3A).

At 8 weeks of age, pulmonary alveolar macrophages (PAMs) were isolated from all six ani-

mals by bronchoalveolar lavage (BAL). DNA was extracted from the PAMs and analyzed by

PCR and Sanger sequencing. The PAM genotype confirmed the results obtained from the ear

biopsies; 628 and 633 were wild type, 627 and 633 heterozygous, and 629 and 630 ΔSRCR5,

Fig 3. Excision of exon 7 results in an SRCR5 CD163 deletion in pigs. A) Representative photos of the

male sibling pigs with three different ΔSRCR5 genotypes at 5 months of age. Left, wild type pig 628, middle,

heterozygous pig 627, and right, biallelic pig 629. B) Genotyping of pulmonary alveolar macrophages (PAMs).

DNA was extracted from PAMs and genotype assessed by PCR across Intron 6 to Exon 8. The unmodified

genome PCR is predicted to result in a 900 bp product, whilst exon 7 deletion should result in a 450 bp PCR

product. C) RNA phenotype of pulmonary alveolar macrophages. RNA was extracted from PAMs, converted

into cDNA using oligo(dT) primer, and analyzed by PCR across Exons 4–9. The unmodified cDNA should

result in a 1686 bp product, whilst the exon 7 deletion is expected to yield a 1371 bp product. D) Protein

phenotype of CD163 from PAMs. PAM cells were lysed with reducing SDS sample buffer and CD163

expression analyzed by western blot. E) CD163 mRNA levels in PAMs. RNA was extracted from the same

number of PAM cells, DNA removed by DNase treatment, and RNA quantified by 1-step RT-qPCR.

Expression levels were normalized using β-Actin expression levels and to the highest CD163-expressing

animal. Error bars represent SEM, n = 3*2.

doi:10.1371/journal.ppat.1006206.g003

Macrophages from pigs lacking CD163 SRCR5 domain are PRRSV resistant

PLOS Pathogens | DOI:10.1371/journal.ppat.1006206 February 23, 2017 6 / 28



respectively. Sequencing of PCR products confirmed that all editing events had resulted in

complete deletion of exon 7. Whilst pigs 627 and 633 had a clean deletion of exon 7 with pre-

cise religation at the sgSL26 and sgSL28 cutting sites in one allele, 629 had one allele with a

clean deletion and one allele with a 9 bp insertion between the sites, and pig 630 had both

alleles with the 9 bp insertion (Fig 3B). RNA was extracted from the PAMs, converted into

cDNA using oligo(dT) primed reverse transcription, amplified by PCR and analyzed by Sanger

sequencing. PCR products spanning exons 4 to 9 showed the expected 315 bp deletion in both

heterozygous and ΔSRCR5 animals (Fig 3C). A third fragment situated between the full length

and exon 7 deletion band in 627 and 634 was confirmed to be a hybrid of the full length and

the exon 7 deletion fragment. This shows that deletion of exon 7 has not disrupted the use of

the correct splice acceptor site of exon 8. Expression of CD163 protein was assessed by western

blot of PAM lysate. The wild type pigs 628 and 633 expressed the full length protein with a pre-

dicted size of 120 kDa but is described to run at roughly 150 kDa [43], likely due to glycosyla-

tion, whereby a protein band at roughly 100 kDa may indicate the expression of another

isoform, which could correspond to the described human isoform CRA_a or CRA_b (Gen-

Bank references EAW88664.1 and EAW88666.1). Heterozygous animals 627 and 634 express

both the full-length and the ΔSRCR5 protein (Fig 3D). The band of the full-length protein is

clearly stronger, indicating either higher expression of the full-length gene or increased bind-

ing of the full-length protein by the polyclonal CD163 antibody used in this study. To further

examine this, gene expression was quantified by RT-qPCR on RNA extracted from PAMs and

normalized to β-actin expression, demonstrating no significant difference in total CD163

mRNA expression between wild type, heterozygous and ΔSRCR5 animals (Fig 3E).

Macrophages of ΔSRCR5 pigs are fully differentiated and express

macrophage-specific surface proteins

To assess the differentiation potential of monocytes into CD163-expressing macrophages we

isolated peripheral blood monocytes (PBMCs) from whole blood and then differentiated them

into macrophages by CSF1-induction for seven days. Expression of macrophage specific mark-

ers was assessed by immunofluorescence labelling and FACS analysis. CD14 and CD16 levels

are clear indicators of the differentiation of peripheral blood monocytes with levels of both

increasing significantly upon differentiation [44,45]. CD14/CD16 staining of the PMMs from

the ΔSRCR5, heterozygous, and wild type animals were all within the previously observed and

documented levels [46], with difference being observed between the various genotypes (Fig

4A). CD172a, also known as SIRP α, is expressed at high levels on both monocytes and macro-

phages [45] and was expressed at high levels in cells from all animals. CD169, described as an

attachment factor for PRRSV [29], is not expressed in monocytes but is highly expressed in tis-

sue macrophages [47] and was expressed at expected levels in cells from our animals (Fig 4B).

An additional differentiation marker found to be expressed on PMMs is SWC9, also known as

CD203a, as well as the putative PRRSV attachment factor CD151 [48,49]. Expression of SWC9

highlighted the full differentiation of the PMMs. CD151 expression together with the previously

shown CD169 expression demonstrated that both putative PRRSV attachment factors or recep-

tors are still expressed on macrophages from ΔSRCR5 animals (Fig 4C). As in humans, expres-

sion of CD163 in pigs is restricted to monocytes and macrophages. CD163 is expressed at high

levels in tissue macrophages, but at low levels in blood monocytes and in bone marrow-derived

macrophages [50] (porcine macrophage markers are reviewed in [51]). Both the wild type and

the ΔSRCR5 CD163 were recognized on the surface of the PAMs (Fig 4D). This indicates that

the ΔSRCR5 version of CD163 is likely to be properly folded as the clone 2A10/11 antibody

only recognizes the protein in a non-reduced, native conformation. The medians of CD163
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fluorescence intensity of pigs 628, 633, 627, 634, 629, 630 were 23.3, 16.7, 18.3, 16.5, 18.8, and

17.2, respectively, with the isotype control medians ranging from 1.88–3.79. Overall, PBMCs

isolated from all animals, independent of their genotype were shown to be fully differentiated

into PMMs upon CSF1 induction. They all expressed macrophage-specific surface markers,

including CD169, CD151, and CD163, which have putative functions in PRRSV entry.

To confirm the results from the in vitro differentiation PAMs were isolated by BAL and

characterized for the expression of macrophage-specific surface proteins CD14, CD16, CD169,

CD172a, and CD163 as described above. CD14/CD16 staining of the PAMs from the ΔSRCR5,

heterozygous, and wild type animals were all within the previously observed and documented

levels [46] (S4A Fig). Also CD169 and CD172a were within expected levels, confirming full dif-

ferentiations (S4B Fig). The medians of CD163 fluorescence intensity of pigs 628, 633, 627,

634, 629, 630 were 35.9, 22.7, 26.4, 24.4, 17.9, and 26.7, respectively, with isotype control medi-

ans ranging from 2.13–3.84 (S4C Fig). This indicates slightly higher expression levels of

Fig 4. ΔSRCR5 peripheral blood monocyte-derived macrophages (PMMs) are fully differentiated and express macrophage-

specific markers. Peripheral blood monocytes were isolated from the blood of the wild type (red), heterozygous (blue), and ΔSRCR5

(green) animals. Following cultivation in the presence of recombinant human CSF1 (rhCSF1) for seven days PMMs were analyzed

by FACS. A) Co-staining with CD14-FITC and CD16-PE antibodies recognizing the native structure of the proteins (colored contour

plots; red wild type, blue heterozygous, green ΔSRCR5) relative to isotype controls (grey). B) Co-staining with CD169-FITC and

CD172a-PE antibodies recognizing the native structure of the proteins (colored contour plots) relative to isotype controls (grey). C)

Co-staining with SWC9 (CD203a)-FITC and CD151-RPE antibodies recognizing the native structure of the proteins (colored contour

plots) relative to isotype controls (grey). D) Staining against the native structure of surface expressed CD163 (colored) relative to an

isotype control staining (grey).

doi:10.1371/journal.ppat.1006206.g004
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CD163 on PAMs compared to PMMs. Overall, PAMs isolated from all animals, independent

of their genotype were shown to be fully differentiated and to express macrophage-specific sur-

face markers, including CD169 and CD163, which have implicated functions in PRRSV entry.

ΔSRCR5 macrophages are not susceptible to infection with PRRSV

genotype 1

PRRSV has two different genotypes with distinct geographic distribution, with genotype 1

being found primarily in Europe and Asia and genotype 2 in the Americas and Asia. The two

genotypes show differences in both antigenicity and severity of pathology and show an evolu-

tionary divergence of>15% on a whole genome scale and *40% on the nucleotide level

between them (reviewed in [52]). Genotype 1 can be further divided into three subtypes, based

on the ORF7 sequence and geographical distribution, whereby subtype 1 is pan-European

whilst subtypes 2 and 3 are currently limited to Eastern Europe [53]. Here we tested all geno-

type 1 subtypes of PRRSV, represented by subtype 1 strain H2 (PRRSV H2) [54], subtype 2

strain DAI (PRRSV DAI) [55], and subtype 3 strain SU1-Bel (PRRSV SU1-Bel) [56], originally

isolated from the UK, Lithuania, and Belarus, respectively.

PAMs were infected at an MOI = 1 in a single-round infection. 19 hours post inoculation

(hpi) the cells were harvested and stained with a FITC-labelled antibody against PRRSV-N

protein. Infection levels were assessed by FACS analysis. All three virus subtypes resulted in

infection levels of 40–60% in wild type and heterozygous animals, with more than 98% of

infected cells being classified as CD163 positive. A slightly higher, statistically significant infec-

tion was observed in heterozygous animals infected with PRRSV H2 and DAI. The reason for

this is unclear, but may reflect either altered CD163 protein expression profile in heterozygous

animals or other, as yet unidentified, genetic properties. By contrast, cells from both ΔSRCR5

animals (629 and 630) were found to be highly resistant to infection in this assay (Fig 5A–5C).

A second assay was performed to assess whether virus could replicate in PAMs then infect

neighboring cells in a multiple-round infection time course. Cells were inoculated at

MOI = 0.1 and supernatant samples collected at indicated time points. Viral RNA was

extracted from the supernatants and analyzed by RT-qPCR. For PRRSV H2 and SU1-Bel spe-

cific probes and primers against ORF7 were employed. To quantify PRRSV DAI vRNA specific

primers against ORF5 and BRYT green dye binding were used due to the limited genome

information available on this strain. All wild type and heterozygous animals replicated the

virus to similar levels. Virus levels started to rise by 12 hpi and increased exponentially up to

36 hpi when they plateaued. PRRSV SU1-Bel levels reached their plateau at 48 hpi. The quanti-

fication limit of the RT-qPCR corresponded to a CT value of 35, which corresponded to 1E4

TCID50/ml for PRRSV H2, 1E3 TCID50/ml for PRRSV DAI, and 5E3 for PRRSV SU1-Bel.

vRNA levels in supernatants from ΔSRCR5 PAMs in this multiple round infection did not

increase above the quantification limit (Fig 5D–5F). In order to assess whether infectious viri-

ons were produced a TCID50 assay was conducted on supernatant collected at 48 hpi, when all

three subtypes had reached a plateau. Serial dilutions were started at a 1:10 dilution, corre-

sponding to a detection limit of 63 TCID50/ml. Virus produced from PAMs of wild type or

heterozygous origin was infectious and levels measured were comparable to those calculated

for the vRNA extractions. By contrast, homozygous ΔSRCR5 PAMs did not support virus pro-

duction at the detection limit of this assay (Fig 5G–5J). In summary, PAMs from ΔSRCR5 ani-

mals could not be infected by PRRSV genotype I at a high MOI nor did they replicate the virus

over a 72 h time course.

To explore the possibility that PMMs could be a suitable alternative to monitor PRRSV

infection and investigate whether ΔSRCR5 PMMs, like PAMs, are resistant to PRRSV infection
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we tested infectivity with all three genotype 1 subtypes of PRRSV, represented by the strains

described above. PMMs were infected and assessed as described for PAMs above in both sin-

gle-round infections (S5A–S5C Fig) and multiple-round infections (S5D–S5F Fig). The results

obtained from PMMs confirmed the ones obtained in PAMs as no replication of PRRSV was

observed in cells from ΔSRCR5 animals. Interestingly, PMMs replicated all viruses to higher

levels than PAMs, suggesting that PMMs are not only suitable but may in fact be a superior

model for in vitro infection studies with PRRSV.

As there could be a genetic variation of CD163 within the Suidae superfamily we performed

an in vitro control experiment to assess the susceptibility of warthog (Phacocherus africanus)
PMMs to PRRSV infection. Interestingly, warthog PMMs were found to be as susceptible to

infection with all PRRSV genotype 1 subtypes as the pig PMMs. They all replicated the virus at

Fig 5. ΔSRCR5 pulmonary alveolar macrophages (PAMs) are not susceptible to infection with PRRSV genotype 1. A-C)

PAMs from wild type (red), heterozygous (blue), and ΔSRCR5 (green) animals were inoculated at MOI = 1 of PRRSV genotype 1,

subtype 1 (strain H2, A), subtype 2 (strain DAI, B), and subtype 3 (strain SU1-Bel, C). 19 hpi cells were detached, fixed and stained

with an anti PRRSV-N protein antibody and CD163. Infection was quantified by FACS analysis. Over 98% of infected macrophages

were qualified as CD163 positive. Infection levels were statistically analyzed using an unpaired t-test of all wild type against all

heterozygous or all biallelic / homozygous data points. Error bars represent SEM, n = 3. D-F) Replication growth curves of PRRSV

genotype 1, subtype 1 (strain H2, C), subtype 2 (strain DAI, D), and subtype 3 (strain SU1-Bel, F). PAMs from wild type (red, 628 filled

circle, 633 open circle), heterozygous (blue, 627 filled square, 633 open square), and ΔSRCR5 (green, 629 triangle pointing down,

630 triangle pointing up) animals were inoculated at MOI = 0.1 of the respective strain. Cell supernatant was collected at indicated

time points to measure the released viral RNA by RT-qPCR. Error bars represent SEM, n = 3*2. G-J) Quantification of infectious

particles produced at 48 hpi by TCID50 analysis. Cell supernatant collected at the 48 hpi time point of infection of the time-course

experiment was analyzed for infectious viral particle production quantified by TCID50. Infection levels were statistically analyzed using

an unpaired t-test of all wt against all het or all ΔSRCR5. Error bars represent SEM, n = 3.

doi:10.1371/journal.ppat.1006206.g005
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a similar rate and to comparable titers (S6 Fig). This also shows that the virus poses a threat to

African pig breeding countries.

Peripheral blood monocyte-derived ΔSRCR5 macrophages are not

susceptible to infection with PRRSV genotype 2

To assess the infectability of the ΔSRCR5 macrophages with the Asian/American genotype 2 of

the virus we selected two strains associated with high virulence, pathology, morbidity and

mortality; strain VR-2385, isolated in Iowa in 1992 [57] and MN184, isolated in Minnesota in

2001 [58], (both kindly provided by Prof. Tanja Opriessnig). PMMs from the different CD163

genotypes were subjected to a multiple-round infection. Therefore, cells were inoculated at

MOI = 0.1 and supernatant samples collected throughout the progression of infection at 6, 24,

32, 48, and 72 hpi. Viral RNA was extracted from the supernatants and analyzed by RT-qPCR.

Virus levels for both strains started to rise after the 6 hpi time point and increased exponen-

tially up to 32 hpi when they plateaued (Fig 6A & 6B). The virus amplification in the male

homozygous and heterozygous macrophages appears to reach higher levels for strain VR-

2385, whereby no difference could be observed for strain MN184. The quantification limit of

the RT-qPCR for VR-2385 was found to be at a CT value of 32, which corresponded to 3E2

TCID50/ml, for MN184 the quantification limit was at CT value of 36, corresponding to 25

TCID50/ml. vRNA levels in supernatants from ΔSRCR5 PMMs in this multiple round infec-

tion did not increase above the quantification limit. No replication of PRRSV was observed in

ΔSRCR5 animals.

The arrest in infection of ΔSRCR5 pulmonary alveolar macrophages

(PAMs) occurs prior to the formation of the replication/transcription

complex

In the porcine kidney cell line PK-15, lacking CD163 expression, transfected with the PRRSV

attachment factor CD169 the virus was found to be internalized but not to undergo uncoating

[36]. This indicates that CD163, in a close interplay with attachment/internalization factors,

plays a major role in the fusion of PRRSV. To assess whether the infection process in ΔSRCR5

macrophages is arrested prior to replication we inoculated PAM cells with all three PRRSV

genotype 1 subtypes, represented by the strains described above, at MOI = 2. The inoculum

was removed 3 hpi and infection allowed to continue up to 22 hpi. Cells were fixed and stained

for the replication-transcription complexes (RTC) formed by PRRSV upon replication initia-

tion. PRRSV nsp2 protein, involved in the formation of double membrane vesicles (reviewed

in [59]) was chosen as a representative marker for the RTC. The cells were permeabilized and

stained for the presence of PRRSV nsp2. We found that macrophages from both the wild type

and the heterozygous animals infected with PRRSV formed RTCs, independent of the subtype.

However, in the macrophages from ΔSRCR5 animals no RTC formation was observed. Repre-

sentative for all strains the SU1-Bel infection is shown in Fig 7, a figure of all infections may be

found in S7 Fig This underlines the involvement of CD163 in the entry and uncoating process

of PRRSV infection. It also supports the deletion of SRCR5 as an effective method to abrogate

PRRSV infection before the virus or viral proteins are amplified.

ΔSRCR5 peripheral blood monocyte-derived macrophages still function

as CD163-dependent hemoglobin-haptoglobin scavengers

In addition to its contribution to PRRSV susceptibility, CD163 has been described to have a

variety of important biological functions. CD163 is an erythroblast binding factor, enhancing
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the survival, proliferation and differentiation of immature erythroblasts, through association

with SRCR domain 2 and CD163-expressing macrophages also clear senescent and malformed

erythroblasts. SRCR domain 3 plays a crucial role as a hemoglobin (Hb)-haptoglobin (Hp)

scavenger receptor. Free Hb is oxidative and toxic; once complexed with Hp it is cleared

through binding to SRCR3 on the surface of macrophages and subsequent endocytosis. This

prevents oxidative damage, maintains homeostasis, and aids the recycling of iron. Recently,

CD163 was also shown to interact with HMGB1-haptoglobin complexes and regulate the

inflammatory response in a heme-oxygenase 1 (HO-1) dependent manner [60]. CD163-

expressing macrophages were also found to be involved in the clearance of a cytokine named

Fig 6. ΔSRCR5 peripheral blood monocyte-derived macrophages (PMMs) are not susceptible to

infection with PRRSV genotype 2. Replication of PRRSV on PMMs in long-term infections with genotype 2,

A) highly virulent strain VR-2385, and B) highly pathogenic strain MN-184. PMMs from wild type (red, 628

filled circle, 633 open circle), heterozygous (blue, 627 filled square, 633 open square), and ΔSRCR5 (green,

629 triangle pointing down, 630 triangle pointing up) animals were inoculated at MOI = 0.1 of the respective

strain. Cell supernatant was collected at indicated time points to measure the released viral RNA by RT-

qPCR. Error bars represent SEM, n = 3*2.

doi:10.1371/journal.ppat.1006206.g006

Macrophages from pigs lacking CD163 SRCR5 domain are PRRSV resistant

PLOS Pathogens | DOI:10.1371/journal.ppat.1006206 February 23, 2017 12 / 28



TNF-like weak inducer of apoptosis (TWEAK), with all SRCRs apart from SRCR5 being

involved in this process [61]. Soluble CD163 can be found at a high concentration in blood

plasma but its function in this niche is still partially unknown (reviewed in [34,62]). However,

a recent publication by Akahori et al. showed the TWEAK interaction of CD163 to be involved

in ischaemic injury tissue regeneration [63]. Maintaining these biological functions is likely to

be crucial to the production of healthy, genetically edited animals. Interestingly, none of the

biological functions assigned to CD163 have yet been linked to SRCR5. In order to confirm

whether ΔSRCR5 macrophages were still able to take up Hb-Hp complexes we performed a

variety of in vitro experiments. Hb-Hp complex uptake in PMMs in vitro has been investigated

extensively in the past, with PMMs able to take up both Hb and Hb-Hp complexes in a

CD163-dependent manner and the inducible form of heme oxygenase, HO-1, being upregu-

lated upon Hb-Hp uptake [64,65].

PBMCs were differentiated into PMMs by CSF1-induction for seven days, following which

PMMs were incubated in the presence of Hb-Hp for 24 h to stimulate HO-1 upregulation. The

HO-1 mRNA upregulation, assessed by RT-qPCR, increased 2- to 6-fold in the PMMs from all

animals (Fig 8A) with no significant difference between the different genotypes. To assess HO-

1 levels by western blotting PMMs were incubated in the presence of Hb-Hp for 24 h, lysed

using reducing Laemmli sample buffer, and proteins separated by SDS-PAGE. The levels of

HO-1 were assessed using a monoclonal antibody against the protein, with a monoclonal

Fig 7. PRRSV infection ofΔSRCR5 pulmonary alveolar macrophages (PAMs) is halted prior to the formation of

the replication/transcription complex. PAMs from wild type (top two panels), heterozygous (middle two panels), and

ΔSRCR5 (bottom two panels) animals were inoculated at MOI = 2 with PRRSV genotype 1, subtype 3 (strain SU1-Bel). 22

hpi cells were fixed and stained with an anti PRRSV-nsp2 antibody, DAPI, and phalloidin. Scale bar represents 40 μm.

doi:10.1371/journal.ppat.1006206.g007
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antibody against calmodulin as a loading control. HO-1 protein expression was found to be

upregulated in all animals, independent of CD163 genotype (Fig 8B). To evaluate the uptake of

Hb-Hp directly Hb was labelled with Alexa Fluor 488 (AF488). PMMs were incubated with

HbAF488-Hp for 30 min and followed by FACS analysis. Independent of the CD163 genotype,

HbAF488-Hp was taken up efficiently by the PMMs with medians of green fluorescence being

329, 305, 329, 366, 340, and 405 for animals 628, 633, 627, 634, 629, and 630, respectively,

whilst the background mock-treated cell medians ranged from 2.41–4.74 (Fig 8C). The uptake

of HbAF488-Hp into the PMMs was confirmed by confocal microscopy. In a further experiment

PMMs were incubated with HbAF488-Hp for 30 min, followed by fixation and staining for

CD163. The HbAF488-Hp was found in distinct spots, presumably endosomes, with no obvious

co-localization with CD163 (Representative animals wild type 628 and ΔSRCR5 630 shown in

Fig 8D, all animals shown in S8 Fig). This lack of co-localization is not surprising as the major-

ity of HbAF488-Hp complexes observed were likely already located in late endosomes and lyso-

somes. Overall, this data demonstrates that macrophages from ΔSRCR5 animals retain the

ability to perform their role as hemoglobin-haptoglobin scavengers.

Discussion

The results of this study show that live pigs carrying a CD163 SRCR5 deletion are healthy and

maintain the main biological functions of the protein, whilst the deletion renders target cells of

PRRSV resistant to infection with the virus. By using two sgRNAs flanking exon 7 of CD163 in

CRISPR/Cas9 editing in zygotes we achieved excision of this exon from the genome of pigs

yielding a CD163 ΔSRCR5 genotype. The expression of the truncated gene was confirmed by

PCR of cDNA, RT-qPCR and western blotting against CD163. Macrophages isolated from the

Fig 8. ΔSRCR peripheral blood monocyte-derived macrophages (PMMs) still function as hemoglobin-haptoglobin (Hb-Hp)

scavengers. A) Induction of HO-1 expression by Hb-Hp uptake. PMMs were incubated for 24 h in presence of 100 μg/ml Hb-Hp.

RNA was isolated from cells and levels of heme oxygenase 1 (HO-1) mRNA determined by RT-qPCR (outlined bars uninduced, filled

bars Hb-Hp uptake induced; red wild type, blue heterozygous, green ΔSRCR5). Expression levels were normalized using β-Actin

expression levels and to the level of unstimulated HO-1 mRNA expression of each animal. Uninduced versus induced levels of HO-1

expression were analyzed by an unpaired t-test. Error bars represent SEM, n = 3. B) PMMs were incubated for 24 h in presence of

100 μg/mol Hb-Hp. PMMs were lysed with reducing SDS sample buffer and HO-1 protein expression analyzed by western blot. C)

Quantification of Hb-Hp uptake. PMMs were incubated in presence of 10 μg/ml HbAF488-Hp for 30 min. Uptake of HbAF488-Hp was

measured by FACS analysis (colored contour plots; red wild type, blue heterozygous, green ΔSRCR5) relative to isotype controls

(grey). D) Visualization of Hb-Hp uptake. PMMs were incubated for 30 min with 10 μg/ml HbAF488-Hp. Cells were fixed, permeabilized

and stained against CD163 and with DAPI. Representatively shown are pig 628 as wild type and 630 as ΔSRCR5 animals. Scale bar

represents 40 μm.

doi:10.1371/journal.ppat.1006206.g008
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lungs of wild type CD163, heterozygous and ΔSRCR5 animals showed full differentiation and

expression of macrophage surface markers characteristic of macrophages isolated from the

pulmonary alveolar areas. Assessing infection of PAMs from the different genotype animals in

both high dose, single-round infections and low dose, multiple-round infections showed

PAMs from ΔSRCR5 pigs to be resistant to infection in vitro. The differentiation ability of cells

of the monocytes/macrophages lineage from genetically edited CD163 animals was further

confirmed by isolation and differentiation of PBMCs. PMMs from ΔSRCR5 pigs were also

shown to be resistant to PRRSV infection. PMMs have a crucial biological role, serving as scav-

engers for Hb-Hp complexes in the blood. Using uptake experiments of fluorescently labelled

Hb-Hp complexes as well as gene upregulation assays to monitor the increase of HO-1 upon

Hb-Hp stimulation we confirmed that this important biological function is maintained in

macrophages isolated from ΔSRCR5 animals.

Using CRISPR/Cas9 editing in zygotes we generated live pigs with exon 7 CD163 deletions.

Editing efficiency was highly variable, dependent on day of the procedure/surgery, in both in
vitro cultivated blastocysts as well as born animals. However, it needs to be considered that

overall numbers are low. The reagents used on the various surgery days were the same and

both insemination and surgery times were kept consistent. However, there are many elements

in the genome editing process that rely on highly skilled personnel and technical reproducibil-

ity. Recent developments in nucleic acid delivery methods for genome editing in zygotes may

offer possible solutions to standardize the genome editing process. Various groups recently

reported successful genome editing by in vitro electroporation of CRISPR/Cas9 regents into

zygotes isolated from mice and rats without the necessity to remove the zona pellucida [66–

68]. Using electroporation to deliver genome editing reagents in vivo Takahasi et al. showed

high success with this method in mouse embryos after 1.6 days of gestation [69]. Use of in
vitro electroporation could standardize the injection process and reduce the requirement for

highly trained personnel. As an alternative, in vivo electroporation would remove both the

requirement for donor animals and the long handling process of zygotes prior to re-implanta-

tion, however this procedure has currently only been developed for mice and may prove diffi-

cult to adapt to the porcine system (reviewed in [70]). Three out of four of the founder animals

were found to be edited in a mosaic pattern, although again caution in over interpretation is to

be advised due to the low numbers involved. In animal 310 the mosaicism seems to result

from a delayed activity of the CRISPR/Cas9 complex, resulting in an edit of one allele in a sin-

gle cell at the 4- or 8-cell stage. In animals 345 and 347 an initial editing event appears to occur

in one allele at the 1-cell stage and a second editing event, modifying the second allele in one

of the cells at the 2-cell stage, resulting in homozygous/heterozygous mosaic animals. Mosai-

cism has been observed in various studies employing injection of genome editors into porcine

zygotes [71–73]. Asymmetric spreading of introduced mRNA seems unlikely following results

of Sato et al., who performed in vitro EGFP mRNA injections using parthenogenetically acti-

vated porcine oocytes, whereby a relatively homogenous fluorescence pattern could be

observed [73]. Rather, mosaicism seems to result from Cas9 protein/sgRNA complexes

remaining active throughout several cell divisions or delayed mRNA expression possibly trig-

gered by cell division. The former theory is supported by the genotype of 345 and 347, which

very likely have developed from an initial editing step in one allele at the one cell stage and

editing of the second allele in one of the 2-cell or 4-cell stage cells. To generate more biallelic

animals by direct injection of zygotes, a more active reagent set is required. Recent studies

indicate that injection of Cas9/sgRNA ribonucleoproteins (RNPs) is more efficient than

mRNA injection. Also, RNP injection can be combined with in vitro electroporation [74].

The mating of the F0 generation animals 310 and 345 resulted in wild type, heterozygous

and biallelic edited animals. This showed that despite mosaicism both animals are germline

Macrophages from pigs lacking CD163 SRCR5 domain are PRRSV resistant

PLOS Pathogens | DOI:10.1371/journal.ppat.1006206 February 23, 2017 15 / 28



heterozygous. None of the offspring showed any adverse effect from the genome editing under

standard husbandry conditions. Interestingly, the genotype of one of the animals, 630, was

consistent with a gene conversion event at the edited CD163 locus. Based on the mechanism of

interallelic gene conversion we assume that a homologous recombination occurred in this ani-

mal between one allele showing the edited genotype of 345 and the other allele the edited geno-

type of 310. The gene conversion appears to have occurred at the zygote stage, rendering 630

homozygous for the genotype of 310 (reviewed in [75]).

PRRSV shows a very narrow host cell tropism, only infecting specific porcine macrophage

subsets. Isolating these cells from the F1 generation offspring of our genetically edited ani-

mals and their wild type siblings we showed that removal of the CD163 SRCR5 domain

results in complete resistance of the macrophages towards PRRSV infection. We further

demonstrated that macrophages from ΔSRCR5 animals are not only resistant to infection

with all European subtypes of genotype 1 but also highly pathogenic and highly virulent

strains of the Asian/American genotype 2. This shows that a targeted removal of SRCR5 is

sufficient to achieve complete resistance to PRRSV infection in vitro. PRRSV attachment fac-

tors CD151 and CD169 are still expressed on ΔSRCR5 macrophages underlining that these

proteins are not sufficient for PRRSV infection. PRRSV infection on macrophages from the

ΔSRCR5 animals was halted before the formation of replication transcription complexes

proving CD163 to be involved in the entry or uncoating stage of the PRRSV replication

cycle. The ΔSRCR5 macrophages will provide a new tool to study this process in detail in a

true-to-life system.

The ΔSRCR5 animals have several advantages over previously described genome edited

animals resistant to PRRSV infection. Whitworth et al. generated animals with a premature

stop codon in exon 3 of the CD163 gene, resulting in an ablation of CD163 expression [37].

In another recent publication the group replaced the SRCR5 of the porcine CD163 with the

human CD163-L1 (hCD163-L1) domain SRCR8, utilizing the strategy employed by van

Gorp et al. in their in vitro studies of the PRRSV-CD163 interaction [76,77]. However, when

replacing the SRCR5 with hCD163-L1 SRCR8 the resulting pigs were found to be susceptible

to PRRSV genotype 2 infection. In contrast to both approaches we have demonstrated that

specific application of genome editing tools in vivo can be used to efficiently generate

PRRSV genotype 1 and genotype 2 resistant animals with precise deletion of exon 7 of

CD163, and that these animals retain expression of the remainder of the CD163 protein on

the surface of specific differentiated macrophages in a native confirmation. We further

showed that the macrophages from these ΔSRCR5 animals retain full differentiation poten-

tial, both in PAMs as well as PBMCs stimulated to differentiate by CSF-1 addition, and that

macrophages from edited animals retain the ability to perform crucial biological functions

associated with CD163 expression, such as hemoglobin-haptoglobin uptake. Furthermore,

SRCR5 animals are not transgenic in contrast to hCD163-L1 SRCR8 replacement animals.

The hCD163-L1 SRCR8 animals or any variation thereof, which would render the animals

resistant to PRRSV genotype 2 as well as genotype 1, bear another risk, which is the adapta-

tion of the virus to the new amino acid sequence of the replacement SRCR domain, thereby

turning into a potential human pathogen due to the human sequence used. A removal of

SRCR5 has the advantage of removing the virus’s target interaction sequence all together,

thereby making it more difficult for the virus to adapt. Overall, this study demonstrates that

it is possible to utilize a targeted genome editing approach to render livestock resistant to

viral infection, whilst retaining biological function of the targeted gene. Introduction of

CD163 SRCR5 deletion animals in pig breeding could significantly reduce the economic

losses associated with PRRSV infection.
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Materials and methods

All animal work was approved by The Roslin Institute’s and the University of Edinburgh’s Pro-

tocols and Ethics Committees. The experiments were carried out under the authority of U.K.

Home Office Project Licenses PPL60/4518 and PPL60/4482 under the regulations of the Ani-

mal (Scientific Procedures) Act 1986.

Cells and viruses

Primary pulmonary alveolar macrophages (PAMs) for the propagation of PRRSV genotype 1,

subtype 1 strain H2 (PRRSV H2) [54], subtype 2 strain DAI (PRRSV DAI) [55], and subtype 3

strain SU1-Bel (PRRSV SU1-Bel)[56] were harvested from wild type surplus research animals

aged 6–9 weeks as previously described [46]. Briefly, animals were euthanized according to a

schedule I method. Lungs were removed and transferred on ice to a sterile environment.

PAMs were extracted from lungs by washing the lungs twice with warm PBS, massaging to

release macrophages. Cells were collected by centrifugation for 10 min at 400 x g. When neces-

sary red cells were removed using red cell lysis buffer (10 mM KHCO3, 155 mM NH4Cl, 0.1

mM EDTA, pH 8.0) for 5 min before washing again with PBS. Cells were collected by centrifu-

gation as before and frozen in 90% FBS (HI, GE Healthcare), 10% DMSO (Sigma). Cells were

frozen gradually at 1˚C/min in a -80˚C freezer before being transferred to -150˚C. Genotype

2 PRRSV strains VR-2385, isolated in Iowa in 1992 [57] and MN184, isolated in Minnesota in

2001 [58], (both kindly provided by Prof. Tanja Opriessnig [78]) were assessed for infectivity

on PAM cells prior to use in infection experiments.

PAMs from the animals 627, 628, 629, 630, 633, and 634 were collected at 8 weeks of age.

For this the piglets were sedated using a Ketamine/Azaperone pre-medication mix and anaes-

thetized with Ketamine/Midazolam. Anesthesia throughout the procedure was maintained

using Sevoflurane. PAMs were collected by bronchoalveolar lavage (BAL) through an intuba-

tion with an air flow access. Three lung segments were flushed in each animal using 2 x 20 ml

PBS. Fluid recovery was between 60–80%. Cells were collected by centrifugation for 10min at

400g from the BAL fluid and frozen as above.

Peripheral blood monocytes (PBMCs) were isolated as described previously [46]. Briefly,

blood was collected using EDTA coated vacuum tubes from the jugular vein of the piglets at 10

weeks of age. Blood was centrifuged at 1200 x g for 15 min and buffy coat transferred to PBS.

Lymphoprep (Axis-Shield) was overlaid with an equal volume of buffy coat/PBS and centri-

fuged for 45 min at 400 x g. The mononuclear cell fraction was washed with PBS, cells collected

and frozen as described above.

PAM cells were cultivated in RPMI-1640, Glutamax (Invitrogen), 10% FBS (HI, GE Health-

care), 100IU/ml penicillin and 100μg/ml streptomycin (Invitrogen) (cRPMI). PBMCs were

cultivated in cRPMI supplemented with rhCSF1 (1×104 units/ml; a gift from Chiron) for 6

days prior to infection.

PK15 cells were cultured in DMEM supplemented with Glutamax (Invitrogen), 10% FBS

(HI, GE Healthcare), 100IU/ml penicillin and 100μg/ml streptomycin (Invitrogen).

Design and in vitro cutting efficiency assessment of guide RNAs

Three potential guide RNA sequences were selected in the 200 bp of intron 6 and one in the 97

bp long intron 7. Oligomers (Invitrogen) were ordered, hybridized as previously described

[79] then ligated into the BbsI sites of plasmid pSL66 (a derivative of px458 with modifications

to the sgRNA scaffold as described by [42]). The generated plasmids contain a hU6 promoter

driving expression of the guide RNA sequence and a CBA promoter driving Cas9-2A-GFP

with an SV40 nuclear localization signal (NLS) at the N-terminus and a nucleoplasmin NLS at
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the C-terminus of Cas9. Cutting efficiency of each guide was assessed by transfection of the

plasmids into pig PK15 cells using a Neon transfection system (Invitrogen) set at 1400 mV

with 2 pulses of 20 mS. 48 hours post-transfection GFP positive cells were collected using a

FACS Aria III cell sorter (Becton Dickinson) and cultured for a further 4 days prior to prepara-

tion of genomic DNA (DNeasy Blood & Tissues Kit, Qiagen). PCR across the target sites was

with oSL46 (ACCTTGATGATTGCGCTCTT) and oSL47 (TGTCCCAGTGAGAGTTGCAG)

using AccuPrime Taq DNA polymerase HiFi (Life Technologies) to produce a product of 940

bp. A CelI assay (Transgenomic; Surveyor Mutation Detection Kit) was performed as previ-

ously described [80]. Co-transfection of PK15 cells with pairs of plasmids encoding guides

flanking exon 7 were carried out as described above with the exception that cells were har-

vested at 40 hours post-transfection without enrichment for GFP expression. In this instance a

truncated PCR product was observed in addition to the 940 bp fragment, indicating deletion

of exon 7.

Based on both single and double cutting efficiencies guide RNAs SL26 (GAATCGGC-

TAAGCCCACTGT), located 121 bp upstream of exon 7, and SL28 (CCCATGCCATGAA-

GAGGGTA), located 30 bp downstream of exon 7 were selected for in vivo experiments.

Generation of guide RNA and quality assessment

A DNA oligomer fragment containing the entire guide RNA scaffold and a T7 promoter was

generated by PCR from the respective plasmid template as follows; a forward primer contain-

ing the T7 promoter followed by the first 18 bp of the respective guide RNA and the reverse

primers oSL6 (AAAAGCACCGACTCGGTGCC) were used in combination with the Phusion

polymerase (NEB). DNA fragments were purified on a 1.5% agarose gel using the MinElute

Gel Extraction Kit (Qiagen) according to the manufacturer’s instructions. DNA eluate was fur-

ther treated with 200 μg/ml Proteinase K (Qiagen) in 10 mM Tris-HCl pH 8.0, 0.5% SDS for

30 min at 50˚C followed by phenol/chloroform extraction. Guide RNAs were generated from

the resultant DNA fragment using the MEGAshortscript Kit (Thermo Fisher) according to the

manufacturer’s instructions. RNA was purified using phenol/chloroform extraction followed

by ethanol precipitation and resuspended in EmbryoMax Injection Buffer (Millipore). Purity

and concentration of the RNA was assessed using an RNA Screen Tape (Agilent) on an Agilent

TapeStation according to the manufacturer’s instructions.

Zygote injection and transfers

Embryos were produced from Large-White gilts as described previously [80]. Briefly, gilts

were superovulated using a regumate/PMSG/Chorulon regime between day 11 and 15 follow-

ing estrus. Following heat, the donor gilts were inseminated twice in a 6 hour interval. Zygotes

were surgically recovered from mated donors into NCSU-23 HEPES base medium, then sub-

jected to a single 2–5 pl cytoplasmic injection with an injection mix containing 50 ng/μl of

each guide (SL26 and SL28) and 100 ng/μl Cas9 mRNA (PNA Bio or Tri-Link) in EmbryoMax

Injection buffer (Millipore). Recipient females were treated identically to donor gilts but

remained unmated. During surgery, the reproductive tract was exposed and 24–39 zygotes

were transferred into the oviduct of recipients using a 3.5 French gauge tomcat catheter. Litter

sizes ranged from 5–12 piglets.

In vitro assessment genome editing in blastocyst

Uninjected control zygotes and injected surplus zygotes are cultivated in NCSU-23 HEPES

base medium, supplemented with cysteine and BSA at 38.5˚C for 5–7 days. Blastocysts were

harvested at day 7 post cultivation and the genome amplified using the REPLI-g Mini Kit
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(Qiagen), according to the manufacturer’s instructions. Genotyping was performed as

described below.

Genotyping

Genomic DNA was extracted from ear biopsy or tail clippings taken from piglets at 2 days

postpartum using the DNeasy Blood and Tissue Kit (Qiagen). The region spanning intron 6 to

exon 8 was amplified using primers oSL46 (ACCTTGATGATTGCGCTCTT) and oSL47

(TGTCCCAGTGAGAGTTGCAG), generating a 904 bp product from the intact allele and a

454 bp product if complete deletion of exon 7 had occurred. PCR products were analyzed by

separation on a 1% agarose gel and subsequent Sanger sequencing of all truncated fragments.

Fragments corresponding to the wild type length were further analyzed by T7 endonuclease I

(NEB) digestion according to the manufacturer’s instructions.

RNA phenotyping

RNA was isolated from 1E6 PAM cells, isolated by BAL as described above, using the RNeasy

Mini Kit (Qiagen), according to the manufacturer’s instructions, including an on-column

DNase digestion. First-strand cDNA was synthesized using an Oligo-dT primer in combina-

tion with SuperScript II reverse transcriptase (Invitrogen), according to the manufacturer’s

instructions. The cDNA was used to assess the RNA phenotype across exons 4 to 9 using

primers P0083 (ATGGATCTGATTTAGAGATGAGGC) and P0084 (CTATGCAGGCAA

CACCATTTTCT), resulting in a PCR product of 1686 bp length for the intact allele and

1371 bp following precise deletion of exon 7. PCR products were analyzed by separation on a

1% agarose gel and subsequent Sanger sequencing of deletion fragments.

Protein phenotype analysis by western blotting

4E5 PAM cells isolated by BAL were collected by centrifugation at 300 rcf for 10 min. The pel-

let was resuspended in Laemmli sample buffer containing 100 mM DTT, boiled for 10 min at

95˚C and subjected to electrophoresis on 7.5% acrylamide (Bio-Rad) gels. After transfer to a

nitrocellulose membrane (Amersham), the presence of cellular proteins was probed with anti-

bodies against CD163 (rabbit pAb, abcam, ab87099) at 1 μg/ml, and β-actin (HRP-tagged,

mouse mAb, Sigma, A3854) at 1:2000. For CD163 the blot was subsequently incubated with

HRP-labelled rabbit anti-mouse antibody (DAKO, P0260) at 1:5000. Binding of HRP-labelled

antibodies was visualized using the Pierce ECL Western Blotting Substrate (Thermo Fisher),

according to the manufacturer’s instructions.

Quantification of CD163 mRNA by RT-qPCR

RNA was isolated from 1E6 PAMs using the RNeasy Mini Kit (Qiagen), according to the man-

ufacturer’s instructions, including an on-column DNase digestion. RNA levels were measured

using the GoTaq 1-Step RT-qPCR system (Promega) according to the manufacturers’ instruc-

tions on a LightCycler 480 (Roche). mRNA levels of CD163 were quantified using primers

P0074 (CATGGACACGAGTCTGCTCT) and P0075 (GCTGCCTCCACCTTTAAGTC) and

reference mRNA levels of β-actin using primers P0081 (CCCTGGAGAAGAGCTACGAG)

and P0082 (AAGGTAGTTTCGTGGATGCC).

Characterization of macrophages by flow cytometry

PAMs were seeded one day prior to analysis. PBMCs were seeded seven days prior to analysis

and differentiated by CSF1 stimulation to yield PBMC-derived macrophages (PMMs). Cells
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were harvested by scraping with a rubber policeman and fixed in 4% formaldehyde/PBS for 15

min at room temperature. Cells were incubated with blocking solution (PBS, 3% BSA) for 45

min before staining with antibodies. Cells were stained with antibodies targeting either mouse

anti pig CD14 (AbD Serotec, MGA1273F, 1:50) and mouse anti pig CD16 (AbD Serotec,

MCA2311PE, 1:200), mouse anti pig CD169 (AbD Serotec, MCA2316F, 1:50) and mouse anti

pig CD172a (SoutherBiotech, 4525–09, 1:400), mouse anti human CD151 (AbD Serotec,

MCA1856PE, 1:50) and mouse anti pig SWC9(CD203a) (AbD Serotec, MCA1973F, 1:50),

mouse anti pig CD163 (AbD Serotec, MCA2311PE, 1:50), or mouse IgG1 or an IgG2b negative

control (AbD Serotec, MCA928PE,MCA691F, or Sigma, F6397; same concentration as pri-

mary Ab). The cells were washed three times with PBS and resuspended in FACS buffer (2%

FBS, 0.05M EDTA, 0.2% NaN3 in PBS). Gene expression determined by antibody labelling was

assessed by FACS analysis on a FACS Calibur (Becton Dickinson) using FlowJo software.

High MOI single-round infection assay

PAMs were seeded one day prior to infection. PBMCs were seeded seven days prior to infec-

tion and differentiated by CSF1 stimulation to yield PBMC-derived macrophages PMMs. Cells

were inoculated at MOI = 1 of the respective virus strain (PRRSV H2, DAI, or SU1-Bel) in

cRPMI for 3 h at 37˚C. The inoculum was replaced by warm cRPMI. At 19 hpi cells were

detached by using a cell scraper. Cells were fixed in 4% Formaldehyde (Sigma-Aldrich) in PBS

(Gibco) for 15 min at RT, washed with PBS, and subsequently permeabilized in PBS contain-

ing 0.1% Triton-X-100 (Alfa Aesar) for 10 min. Cells were incubated with antibody against

PRRSV-N (SDOW17-F, RTI, KSL0607, 1:200) and CD163 (AbD Serotec, MCA2311PE, 1:50)

or mouse IgG1 negative controls, as described above, in 3% BSA in PBS. The cells were washed

three times with PBS and resuspended in FACS buffer. Infection levels, determined by anti-

body labelling, were assessed by FACS analysis on a FACS Calibur (Benson Dickson) using

FlowJo software.

Low MOI multiple-round infection assay

PAMs were seeded one day prior to infection. PBMCs were seeded seven days prior to infec-

tion and differentiated by CSF1 stimulation to yield PMMs. Cells were inoculated at

MOI = 0.1 with the respective virus strain (PRRSV H2, DAI, or SU1-Bel) in cRPMI for 3 h at

37˚C. Inoculum was removed, cells washed 1x with PBS, and infection continued. At the indi-

cated times post inoculation samples were harvested to be assessed. All samples were frozen

and processed once all samples from a time course had been collected.

Viral RNA (vRNA) was extracted from the supernatant samples using the QIAmp Viral

RNA Mini Kit according to the manufacturer’s instructions. The viral RNA levels were quanti-

fied by RT-qPCR using the GoTaq Probe 1-Step RT-qPCR system (Promega) for PRRSV H2

and SU1-Bel and the GoTaq 1-Step RT-qPCR system (Promega) for PRRSV DAI, VR-2385,

and MN184, according to the manufacturer’s instructions. For this the following primers and

probes were used: H2 fwd (GATGACRTCCGGCAYC), H2 rev (CAGTTCCTGCGCCTT

GAT), H2 probe (6-FAM-TGCAATCGATCCAGACGGCTT-TAMRA), (optimal H2 primer/

probe sequences obtained from JP Frossard, AHVLA), SU1-Bel fwd (TCTTTGTTTGCAATC

GATCC), SU1-Bel rev (GGCGCACTGTATGACTGACT), SU1-Bel probe (6-FAM-CCGGAA

CTGCGCTTTCA-TAMRA), DAI fwd (GGATACTATCACGGGCGGTA), DAI rev

(GGCACGCCATACAATTCTTA), VR-2385 fwd (CTGGGTAAGATCATCGCTCA), VR-

2385 rev (CAGTCGCTAGAGGGAAATGG), MN184 fwd (CTCTCGCGACTGAAGAT

GAC), MN184 rev (GCCTTGGTTAAAGGCAGTCT). RNA levels were measured on a Light-

Cycler 480 (Roche) using a standard curve generated from vRNA isolates of high titer stocks.
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Infectivity of the virus produced was assessed using a TCID50 assay of selected time points

on PAMs isolated from wild type surplus research animals.

mRNA and protein levels of heme oxygenase 1 upon Hb-Hp stimulation

of PMMs

PBMCs were seeded seven days prior to analysis and differentiated by CSF1 stimulation to

yield PMMs. Hemoglobin (Hb, Sigma-Aldrich, A0, H0267) and Haptoglobin (Hp, Sigma

Aldrich, Phenotype 2–2, H9762) were mixed in a 1:1 wt/wt ratio in PBS for 15 min on a verti-

cal roller before experimentation. PMMs were incubated with 100 μg/ml Hb-Hp in cRPMI for

24 h at 37˚C. Cells were harvested by scraping with a rubber policeman. RNA was isolated

from 1E6 cells using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s instruc-

tions, including an on-column DNase digestion. RNA levels were measured using the GoTaq

1-Step RT-qPCR system (Promega) according to the manufacturers’ instructions on a Light-

Cycler 480 (Roche). mRNA levels of heme oxygenase 1 (HO-1) were quantified using primers

P0239 (TACATGGGTGACCTGTCTGG) and P0240 (ACAGCTGCTTGAACTTGGTG) and

reference mRNA levels of β-actin using primers P0081 and P0082. For analysis of protein lev-

els of HO-1 cells were collected by centrifugation at 300 rcf for 10 min. The pellet was resus-

pended in Laemmli sample buffer containing 100 mM DTT, boiled for 10 min at 95˚C and

subjected to electrophoresis on 12% acrylamide (Bio-Rad) gels. After transfer to a nitrocellu-

lose membrane (Amersham), the presence of cellular proteins was probed with antibodies

against HO-1 (mouse mAb, abcam, ab13248, 1:250), and calmodulin (rabbit mAb, abcam,

ab45689, 1:1000). The blot was subsequently incubated with HRP-labelled goat anti-rabbit

antibody (DAKO, PI-1000) at 1:5000. Binding of HRP-labelled antibodies was visualized using

the Pierce ECL Western Blotting Substrate (Thermo Fisher), according to the manufacturer’s

instructions.

Quantification and visualization of hemoglobin-haptoglobin uptake

PBMCs were seeded seven days prior to analysis and differentiated by CSF1 stimulation to

yield PMMs. For fluorescence microscopy, cells were seeded on glass cover slips. Hemoglobin

(Sigma-Aldrich, A0, H0267) was labeled with Alexa Fluor 488 (AF-488) using a protein label-

ling kit (Molecular Probes) according to the manufacturer’s instructions. HbAF488 and Hp

were mixed in a 1:1 wt/wt ratio in PBS for 15 min on a vertical roller before experimentation.

PMMs were incubated with 10 μg/ml HbAF488-Hp in cRPMI for 30 min at 37˚C.

For quantification by FACS the cells were collected with a rubber policeman and washed

three times with Ca2+/Mg2+-free PBS to remove surface bound HbAF488-Hp as described previ-

ously [65]. Cells were fixed in 4% (wt/v) formaldehyde (Sigma-Aldrich) in PBS (Gibco) for 15

min at RT, washed with PBS, and subsequently permeabilized in PBS containing 0.1% Triton-

X-100 (Alfa Aesar) for 10 min. Cells were stained with mouse anti pig CD163 antibody (AbD

Serotec, MCA2311PE, 1:50) as described above then washed three times with PBS and resus-

pended in FACS buffer. Gene expression determined by antibody labelling was assessed by

analysis on a FACS Calibur (Becton Dickinson) using FlowJo software.

For immunofluorescence imaging cells were washed three times with Ca2+/Mg2+-free PBS

and fixed in 4% formaldehyde (Sigma-Aldrich) in PBS (Gibco) for 15 min at RT, washed with

PBS, then permeabilized in PBS containing 0.1% Triton-X-100 (Alfa Aesar) for 10min. Cells

were washed with PBS and incubated with antibody against CD163 (rabbit pAb, abcam,

ab87099, 5 μg/ml) in blocking buffer (PBS, 3% FBS) for 1 h, washed, and incubated with sec-

ondary goat anti-rabbit AF594 antibody (A11037, 1:100), AF647 phalloidin (A22287, 1:100),
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and DAPI (1:10,000; all Life Technologies). The samples were analyzed using a confocal laser-

scanning microscope (Zeiss LSM-710).

Immunofluorescence analysis of RTC formation in infected PAMs

PAMs were seeded onto coverslips one day prior to infection. Cells were inoculated at

MOI = 2 of the respective virus strain (PRRSV H2, DAI, or SU1-Bel) in cRPMI for 3 h at 37˚C.

The inoculum was replaced by warm cRPMI. At 19 hpi cells were fixed in 4% formaldehyde

(Sigma-Aldrich) in PBS (Gibco) for 15 min at RT, washed with PBS, and permeabilized as

described above. Cells were washed with PBS and incubated with antibody against PRRSV

nsp2 (A gift from Ying Fang, Kansas State University, [81], 1:400) in blocking buffer for 1 h,

washed, and incubated with secondary goat anti-mouse AF488 antibody (A11029, 1:100),

AF568 phalloidin (A12380, 1:100), and DAPI (1:10,000; all Life Technologies). The samples

were analyzed using a confocal laser-scanning microscope (Zeiss LSM-710).

Supporting information

S1 Fig. Genotypes of blastocyst cultured in vitro following zygote injection. A) Blastocyst

genotype assessed by PCR. The genome from blastocysts was amplified by whole genome

amplification and the genotype of the CD163 gene assessed by PCR across intron 6 to exon 8.

The unmodified genome PCR is predicted to result in a 900 bp product, whilst exon 7 deletion

should result in a 450 bp PCR product. B) Specific genotype of blastocysts B2 and B14 assessed

by Sanger sequencing of the PCR product.

(TIF)

S2 Fig. Genotypes of founder animals. A) Genotype of founder animal 310 (f). The genotype

of 310 was assessed by PCR across intron 6 to exon 8. DNA template was extracted from two

ear biopsies, a tail clipping and from a buffy coat. The unmodified genome PCR is predicted to

result in a 900 bp product, whilst the exon 7 deletion should result in a 450 bp PCR product.

Displayed as well is the PCR result from one of her unmodified siblings (311) as a control. B)

Specific genotype of 310 as assessed by Sanger sequencing of the PCR product across intron 6

to exon 8. C) Genotype of founder animals 345 (m), 346 (f), and 347 (f). The genotype of the

animals was assessed by PCR across intron 6 to exon 8. DNA template was extracted from two

ear biopsies, one of them only containing ear tip (epidermis and dermis), buffy coat and pul-

monary alveolar macrophages. Genotypes from the different tissue samples reveal a mosaicism

of heterozygous and homozygous tissues. Displayed as well are the PCR result from unmodi-

fied sibling control animals 342, 343 and 344. B) Specific genotype of 345, 346, and 347 as

assessed by Sanger sequencing of the PCR product.

(TIF)

S3 Fig. Genotypes of litter from 310x345 mating. A) The genotype of piglets 627–635 and

overlaid/still born piglets was assessed by PCR across intron 6 to exon 8. DNA template was

extracted from ear biopsy. The unmodified genome PCR is predicted to result in a 900 bp

product, whilst the exon 7 deletion should result in a 450 bp PCR product. B) Family tree with

indicated genotype. The specific genotypes of 310 and 345 are described in S1 fig On the image

the genotype of 310 is represented in red, the one of 345 in blue, grey indicates unmodified

(alleles). 310 and 345 are represented as heterozygous despite mosaicisms found in both ani-

mals as this represents the genotype found in the germline.

(TIF)

S4 Fig. ΔSRCR5 pulmonary alveolar macrophages (PAMs) are fully differentiated and

express macrophage-specific markers. PAMs isolated by bronchoalveolar lavage were
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assessed by staining with various macrophage markers and FACS analysis. A) Co-staining

with CD14-FITC and CD16-PE antibodies recognizing the native structure of the proteins

(colored contour plots; red wild type, blue heterozygous, green ΔSRCR5) relative to isotype

controls (grey). B) Co-staining with CD169-FITC and CD172a-PE antibodies recognizing the

native structure of the proteins (colored contour plots) relative to isotype controls (grey). C)

Staining against the native structure of surface expressed CD163 (colored) relative to an iso-

type control staining (grey).

(TIF)

S5 Fig. ΔSRCR5 peripheral blood monocyte-derived macrophages (PMMs) are not suscep-

tible to infection with PRRSV genotype 1. A-C) PMMs from wild-type (red), heterozygous

(blue), and ΔSRCR5 (green) animals were inoculated at MOI = 1 of PRRSV genotype 1, sub-

type 1 (strain H2, A), subtype 2 (strain DAI, B), and subtype 3 (strain SU1-Bel, C). 19 hpi cells

were detached, fixed and stained with anti PRRSV-N protein and CD163 antibodies. Infection

was quantified by FACS analysis. Infection levels were statistically analyzed using an unpaired

t-test of all wild type against all heterozygous or all ΔSRCR5. Error bars represent SEM, n = 3.

D-F) Replication of PRRSV on PMMs in long-term infections with genotype 1, subtype 1

(strain H2, C), subtype 2 (strain DAI, D), and subtype 3 (strain SU1-Bel, F). PMMs from wild-

type (red, 628 filled circle, 633 open circle), heterozygous (blue, 627 filled square, 633 open

square), and ΔSRCR5 (green, 629 triangle pointing down, 630 triangle pointing up) animals

were inoculated at MOI = 0.1 of the respective strain. Cell supernatant was collected at indi-

cated time points to measure the released viral RNA by RT-qPCR. Error bars represent SEM,

n = 3�2.

(TIF)

S6 Fig. Infection of warthog PMMs. Peripheral blood monocytes were isolated from the

blood of a warthog. Following cultivation in the presence of rhCSF1 for seven days PMMs

were infected or analyzed by FACS. A-C) In vitro differentiated PMMs from warthog were

inoculated at MOI = 0.1 of the respective PRRSV strain. Cell supernatant was collected at indi-

cated time points to measure the released viral RNA by RT-qPCR. Error bars represent SEM,

n = 3�2. D) Left; Co-staining with CD14-FITC and CD16-PE antibodies recognizing the native

structure of the proteins (purple) relative to isotype controls (grey). Middle; Co-staining with

CD169-FITC and CD172a-PE antibodies recognizing the native structure of the proteins (pur-

ple) relative to isotype controls (grey). Right; Staining against the native structure of surface

expressed CD163 (purple) relative to an isotype control staining (grey).

(TIF)

S7 Fig. PRRSV infection of ΔSRCR5 pulmonary alveolar macrophages (PAMs) is halted

prior to the formation of the replication/transcription complex. PAMs from wild-type (top

panels), heterozygous (middle panels), and ΔSRCR5 (bottom panels) animals were inoculated

at MOI = 2 with PRRSV genotype 1, subtype 1 (strain H2, top row), subtype 2 (strain DAI,

middle row), and subtype 3 (strain SU1-Bel, bottom row). 22 hpi cells were fixed and stained

with an anti PRRSV-nsp2 antibody, DAPI, and phalloidin. Scale bar represents 40 μm.

(TIF)

S8 Fig. ΔSRCR peripheral blood monocyte-derived macrophages (PMMs) still function as

hemoglobin-haptoglobin (Hb-Hp) scavengers. Visualization of Hb-Hp uptake. PMMs were

incubated for 30 min with 10 μg/ml HbAF488-Hp. Cells were fixed, permeabilized and stained

against CD163 and with DAPI. Scale bar represents 40 μm.

(TIF)
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S1 Table. Whole blood counts from different genotype animals with reference values.

(XLSX)

S1 File. CD163 genome locus.

(PDF)
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