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ABSTRACT
Background: Breast cancer remains a pressing global health concern, necessitating
accurate diagnostics for effective interventions. Deep learning models (AlexNet,
ResNet-50, VGG16, GoogLeNet) show remarkable microcalcification identification
(>90%). However, distinct architectures and methodologies pose challenges. We
propose an ensemble model, merging unique perspectives, enhancing precision, and
understanding critical factors for breast cancer intervention. Evaluation favors
GoogleNet and ResNet-50, driving their selection for combined functionalities,
ensuring improved precision, and dependability in microcalcification detection in
clinical settings.
Methods: This study presents a comprehensive mammogram preprocessing
framework using an optimized deep learning ensemble approach. The proposed
framework begins with artifact removal using Otsu Segmentation and morphological
operation. Subsequent steps include image resizing, adaptive median filtering, and
deep convolutional neural network (D-CNN) development via transfer learning with
ResNet-50 model. Hyperparameters are optimized, and ensemble optimization
(AlexNet, GoogLeNet, VGG16, ResNet-50) are constructed to identify the localized
area of microcalcification. Rigorous evaluation protocol validates the efficacy of
individual models, culminating in the ensemble model demonstrating superior
predictive accuracy.
Results: Based on our analysis, the proposed ensemble model exhibited exceptional
performance in the classification of microcalcifications. This was evidenced by the
model’s average confidence score, which indicated a high degree of dependability and
certainty in differentiating these critical characteristics. The proposed model
demonstrated a noteworthy average confidence level of 0.9305 in the classification of
microcalcification, outperforming alternative models and providing substantial
insights into the dependability of the model. The average confidence of the ensemble
model in classifying normal cases was 0.8859, which strengthened the model’s
consistent and dependable predictions. In addition, the ensemble models attained
remarkably high performances in terms of accuracy, precision, recall, F1-score, and
area under the curve (AUC).
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Conclusion: The proposed model’s thorough dataset integration and focus on
average confidence ratings within classes improve clinical diagnosis accuracy and
effectiveness for breast cancer. This study introduces a novel methodology that takes
advantage of an ensemble model and rigorous evaluation standards to substantially
improve the accuracy and dependability of breast cancer diagnostics, specifically in
the detection of microcalcifications.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Neural Networks
Keywords Breast cancer, Early diagnosis, Deep learning, Microcalcification, Ensemble

INTRODUCTION
Breast cancer is the world leading cancer for females caused by the uncontrolled
proliferation of cells in the breast and the accumulation of additional tissues known as a
tumor. It is most frequently diagnosed cancer and the primary contributor to cancer-
related deaths in the female population. The high incidence of breast cancer in Asia
presents a substantial public health concern. The region experiences a significant
prevalence of breast cancer cases, exhibiting varied patterns among its member countries.
Asia exhibits the lowest age-standardized mortality rate (ASMR) and age-standardized
incidence rate (ASIR) compared to other regions. However, the mortality-to-incidence
ratio (M/I) in Asia, with a value of 0.32, surpasses the global average of 0.28, positioning it
as the second-highest area worldwide in terms of M/I Yip, Taib & Mohamed (2006). The
breast cancer mortality rates in low- and middle-income countries are higher than in their
high-income counterparts.

In Malaysia, a middle-income country, there were 21,634 cases of breast cancer
discovered between 2012 and 2016, accounting for 34.1% of the cancers diagnosed in the
country (Azizah et al., 2019). Given the potential severity of breast cancer, early detection
and immediate implementation of appropriate treatment become essential in minimizing
its impact. This emphasizes the critical significance of identifying the disease at an early
stage and preventing its progression. Mammography screening is the most common and
practical method of detecting breast cancer as it reduced breast cancer mortality by around
20% in women aged 50 to 70 (Christiansen, Autier & Støvring, 2022). The cornerstone of
breast cancer diagnosis, mammography screening, plays a critical role in recognizing
microcalcifications—tiny calcium deposits inside breast tissue. Although frequently an
early indicator of breast abnormalities, these microcalcifications are not conspicuously
apparent through symptoms. Mammography, on the other hand, greatly assists in the
diagnosis of suspected early-stage breast cancers. With mammography lowering breast
cancer mortality by roughly 20% in women aged 50 to 70, the focus on early diagnosis is
directly related to identifying these microcalcifications.

By looking for microcalcification in the mammography images, breast cancer in its
initial stages can be discovered. Microcalcification, a calcium deposit in the breast, appears
as a scattering of white dots on a mammogram. They come in sizes ranging 0.1 to 1 mm
(Cai et al., 2019). According to Hakim, Prajitno & Soejoko (2021), microcalcification is an
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indication of breast cancer occurring in between 12.7% and 41.2% of women who
completed mammography screening. Brahimetaj et al. (2022) estimated that between 85%
and 95% of cases of ductal carcinoma in situ (DCIS) were detected due to the existence of
microcalcifications in roughly 55% of non-palpable breast cancers. Additionally, there is a
strong correlation between a cluster of microcalcification as well as an increased
probability of breast cancer (Azam et al., 2021). Invasive disease can be prevented by
recognizing microcalcifications given that they are associated with premalignant and
developing breast disease (Logullo et al., 2022). Therefore, the early intervention to detect
breast cancer is identifying signs of microcalcification.

Yet it can be difficult and challenging to detect microcalcification because their
distribution in the breast is unpredictable and their shapes are uncertain. Radiologists
often missed or misdiagnosed microcalcification, therefore many healthcare professionals
have had trouble spotting it. The microcalcifications can be observed as a cluster of several
white dots and they can be identified in common benign lesions including fibrocystic
alterations, inflammatory lesions, and breast abnormalities (Brahimetaj et al., 2022).

When considering a middle-income country such as Malaysia, where financial
resources are limited, the incorporation of deep learning models into the healthcare
infrastructure can offer a substantial enhancement to mammography screening. Through
the effective detection of microcalcifications that might otherwise evade detection, these
models make a valuable contribution to the timely detection of potential breast
abnormalities. This is in line with the overarching goal of minimizing the detrimental
effects of breast cancer through early detection. The potential for significant improvement
in the diagnosis of breast cancer, especially during the critical early phases, could be
realized through the synergistic collaboration of deep learning and mammography
screening. This would enable the implementation of targeted and timely intervention
strategies.

ResNet, a novel deep learning (DL) framework unveiled in 2015, addresses complexities
inherent in deep networks through the utilization of skip connections within residual
blocks. ResNet-50, an instance of the ResNet architecture, has garnered considerable
attention in domains such as mammogram analysis. Studies by Shiri Kahnouei et al. (2022)
and Leong et al. (2022) demonstrated the effectiveness of ResNet-50 in mammogram-based
calcification detection and segmentation, achieving impressive accuracies of 96.7% and
97.58%, respectively. This showcases ResNet-50’s potential for advancing medical
diagnosis and intervention through precise image analysis.Montaha et al. (2021) have built
upon VGG16, developing models like BreastNet18 for early-stage breast cancer
identification. GoogLeNet, a 22-layer architecture created by Google researchers, achieved
high accuracy rates of 93.3% on the ImageNet dataset. Jhang (2018) explored the use of
GoogLeNet with class activation mapping for detecting suspicious microcalcification
regions in mammogram images. Sharma & Mukherjee (2020) also compared the
classification performance of GoogLeNet and AlexNet in microcalcification detection.

The application of these deep learning models to the detection and segmentation of
microcalcifications has been the primary focus of recent research. However, there remains
a need for comprehensive comparative analyses to better understand the strengths and
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limitations of these models, as well as their practical implementation in clinical settings. In
this context, ensemble learning emerges as a promising approach to enhance the
performance of deep learning model in breast cancer detection. Ensemble learning is a
method that combines multiple base models to produce a more powerful model. There are
several advantages in utilizing ensemble learning. First of all, ensemble models combine
outcomes from multiple base models and produce higher performance outcomes. This is
achieved by the ensemble methods in leveraging the strength of different algorithms
resulting in a better overall outcome performance compared to individual models. In
addition, ensemble models help in reducing the risk of overfitting by capturing irrelevant
patterns from training data. Ensemble methods can reduce the model biases and variance
and improved the generalization performance of the ensemble models (Mohammed &
Kora, 2023). In our study, we aim to improve the detection of microcalcifications in
mammogram images by developing an optimized ensemble model. Specifically, we utilize
an averaging technique to combine two baseline deep learning models and form an
optimized ensemble model, thereby enhancing the reliability and effectiveness of breast
cancer detection.

MATERIALS AND METHODS
Our study proposes the implementation of an ensemble model that integrates the
advantageous features of individual pre-trained convolutional neural network models to
efficiently tackle the issue of detecting microcalcification. In order to address the existing
research gap, this study undertakes an exhaustive comparative analysis to ascertain the
merits, drawbacks, and particular suitability of each model in detecting these nuanced yet
critical indicators of breast abnormalities in their early stages. Furthermore, the objective
of the project is to investigate the viability and practical execution of incorporating these
models into clinical environments to improve the precision of breast cancer detection and
their practical implications in the healthcare sector.

Data description
The datasets utilized in this study were acquired from mini-MIAS mammography,
INBreast, and CBIS-DDSM. The Mammographic Image Analysis Society supplied Mini-
MIAS mammography, whereas the Breast Research Group, INSEC Porto from Portugal
supplied INBreast, as detailed in Table 1. For the classification procedure, normal images
were excluded from the Mini-MIAS and INBreast datasets via a filtration process. This
study utilized 1,511 abnormal cases of breast cancers exhibiting calcification that were
obtained from the aforementioned database. Every single image extracted from the
mentioned database was a cranial caudal (CC) or mediolateral oblique (MLO)
mammogram. The data was subsequently separated into their respective classes and
labelled. Subsequently, the accumulated datasets were arbitrarily partitioned 70% for
training purposes and 30% for testing. Specifically, the training dataset comprised 700
images of the normal class and 1,096 images of microcalcification. In the testing dataset,
there were 450 microcalcification images and 300 images of normal class. The training
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dataset was used for real training, whereas the testing dataset was used for evaluating the
performance of the model.

Data preprocessing
Preparing the input dataset for the DL algorithms was a critical step in the pipeline. It
involved a series of preprocessing steps to ensure the mammogram images are in optimal
condition for further analysis. These steps encompassed various techniques and
transformations aimed at enhancing the quality and suitability of the data. The process of
preprocessing mammogram images played a vital role in facilitating accurate and effective
analysis using DL algorithms.

(a) Artifact removal

In Fig. 1, the dataset of normal images from mini-MIAS and INBreast underwent two
crucial processes: the Otsu segmentation method and MorphologicalEx method. The Otsu
segmentation method played a vital role in automatically identifying the optimal threshold
value for segmenting the mammogram images. This segmentation process helped in
separating the desired regions from the background noise. Subsequently, the
MorphologicalEx method, also known as Morphological Erosion, was employed to
effectively eliminate the labeled regions from the images. This meticulous step ensured that
the presence of free labeling does not interfere with the subsequent image cropping
process. By implementing these techniques, the dataset was prepared for further
preprocessing steps.

(b) Image cropping and resizing

After the removal of artifacts, the images underwent cropping and resizing. This crucial
step ensured that the images were appropriately sized at 224 × 224, aligning them with the
requirements of the DL algorithms for efficient classification. By standardizing the image
size, the DL algorithms could effectively perform their classification operations with
optimal accuracy and efficiency.

(c) Image filtering

Then, an adaptive median filter was employed to enhance the quality of the mini-MIAS
and INBreast cropped images, as well as the ROI images containing microcalcification
from CBIS-DDSM. This filter effectively mitigated noise, resulting in improved

Table 1 Dataset used in this study.

Database Features

Mini-
MIAS

Obtained from: https://www.kaggle.com/datasets/kmader/mias-mammography. Consisted of total number of 161 cases (322 images) of
normal and abnormal images. The abnormal images consisted of benign and malignant with different features such as calcification,
masses, architectural distortion etc.

INBreast Obtained from: https://www.kaggle.com/datasets/ramanathansp20/inbreast-dataset. The database comprised a total of 115 cases,
consisting of 412 images. The dataset encompassed various types of mammograms, including normal cases, mammograms with
masses, mammograms with calcifications, architectural distortions, asymmetries, and images with multiple findings.

CBIS-
DDSM

Obtained from: https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22516629. The database consisted of 1,566 cases
(6,671 of scanned film mammograms). It only contained abnormal images of masses and calcification.
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mammography image quality. The application of the adaptive median filter demonstrated
its efficacy in reducing noise and enhancing image clarity.

Classification model development using deep learning approach
A deep convolutional neural network (D-CNN) model is developed by finely tuning its
hyperparameters to accurately detect microcalcifications in mammogram images. Instead
of training the CNN model from scratch, transfer learning is applied, utilizing pre-trained
CNN models such as ResNet-50, GoogLeNet, VGG16 and AlexNet architecture from the
torchvision library. To achieve optimal results, critical hyperparameters such as the
number of epochs, learning rate, batch size, and step size are carefully adjusted. The input
images underwent normalization to the standard normalization parameters specified by
ImageNet ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]). This normalization was performed
because the transfer learning model employed was pre-trained using the ImageNet
database. Normalization is necessary to restore the original color of the input cell regions
that have been stained.

A comprehensive summary of each deep learning architecture can be found in Table 2.
Upon completion of the training process, the model’s performance is evaluated using
performance metrics (accuracy, precision, recall, F1-score, area under curve from true
positive rate vs false positive rate graph) and confusion matrix as summarized in Table 3.
The confusion matrix considers true positives (accurate microcalcification detection), true
negatives (correct classification of negative cases), false positives (incorrectly labeled as

Figure 1 Before and after applying Otsu segmentation method and MorphologicalEx method where
the image labelled were removed. Image source credit: (C) The mini-MIAS database of mammograms,
http://peipa.essex.ac.uk/info/mias.html. Full-size DOI: 10.7717/peerj-cs.2082/fig-1
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positive), and false negatives (missed microcalcification detection). Analyzing these
metrics allows for a robust evaluation of the model’s overall accuracy.

The classification model optimization through ensemble model
The classification model was refined through the development of an ensemble architecture.
Through a thorough evaluation, the two top-performing models distinguished by their
high accuracy and minimal computational requirements, were selected. These models are

Table 2 Overview of deep learning models in this study.

Model Descriptions

ResNet-50 ResNet-50 is a variant of the ResNet model, which has 48 convolution layers along with 1 MaxPool and 1 Average Pool layer. ResNet-50
is an artificial neural network (ANN) that forms networks by stacking residual blocks. Identity connections take the input directly to the
end of each residual block and learn the features to be classified as the desired output.

GoogLeNet The GoogLeNet network is an impressive deep convolutional neural network comprising 22 layers. The GoogLeNet architecture is
designed to handle input images with a resolution of 224 × 224 pixels. It was specifically engineered to be a computational powerhouse,
surpassing or competing with existing networks at the time of its creation.

VGG16 VGG-16 is a convolutional neural network architecture with convolutional layers of 3 × 3 filters with stride 1 and constant padding and
maxpool layers of 2 × 2 filters with stride 2 used. This arrangement of convolutional and max pool layers is followed uniformly
throughout the entire architecture. The end has 2 F.C. (fully connected layers) followed by a softmax for output. The number 16 in
VGG16 indicates that it has 16 layers with weights.

AlexNet AlexNet is made up of five convolutional layers, three max-pooling layers, two normalization layers, two fully connected layers, and one
softmax layer. Convolutional filters and a nonlinear activation function ReLU are used in each convolutional layer. The pooling layers
are used for maximum pooling. Because of the presence of fully connected layers, the input size is fixed.
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then integrated into the ensemble architecture, employing a weighted averaging approach
to combine their outputs. This process ensures a more resilient and accurate final
classification outcome as illustrated in Fig. 2.

The developed DL models of AlexNet, GoogLeNet, VGG16, and ResNet-50 were
constructed and tested for their capability to detect microcalcifications in mammogram
images. The process of individual testing was initiated by training and evaluating each
model on their accuracy and proficiency in discerning these subtle yet vital characteristics.
Specifically, the following models were subjected to comprehensive evaluation underwent
rigorous testing. The AlexNet model was chosen due to its innovative contributions to
image classification, whileVGG16, was compared due to its ability to be distinguished by
its depth and resilient performance. GoogLeNet, which is renowned for its inception

Figure 2 The development of final ensemble models for microcalcification identification. Image source credit: (C) The mini-MIAS database of
mammograms, http://peipa.essex.ac.uk/info/mias.html. Full-size DOI: 10.7717/peerj-cs.2082/fig-2

Table 3 Model evaluation metrics.

Metrics Formula Description

Accuracy TP þ TN
TP þ TN þ FP þ FN

A fraction of correctly classified cases over the total samples.

Precision TP
TP þ FP

A proportion of positive classes were correctly classified.

Recall TP
TP þ FN

A ratio of all positive samples correctly predicted as positive.

F1-score
2 x

Recall x Precision
Recallþ Precision

A combination of precision and recall as their harmonic mean.
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modules; and ResNet-50, which utilizes skip connections to ensure robust training. The
Pseudocode of the optimization through development of ensemble model as shown in
Fig. 3.

RESULTS
As shown in Table 4, the performance of each DL algorithm can be evaluated using the
following performance metrics: accuracy, precision, recall, F1-score, AUC, and training
time. These metrics offer valuable insights regarding the quality and effectiveness of the
models utilized for microcalcification detection in mammogram images. The best results of
each performance metric were made bold.

In overall, ResNet-50 was preferred in this study as it has high detection accuracy in
detecting microcalcifications in mammogram images. The remarkable performance of

Figure 3 Pseudocode of ensemble model development. Full-size DOI: 10.7717/peerj-cs.2082/fig-3
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ResNet-50 in detecting microcalcifications in mammogram images can be attributed to its
distinctive architecture, specifically the integration of skip connections. By establishing
connections in this way, the model can effectively learn to preserve important information
from the input layers through to the deeper layers. This prevents the loss of crucial details
during training, which can happen in traditional deep neural networks due to the
vanishing gradient problem. ResNet-50 tackles this issue by ensuring that gradients can
flow smoothly through the network, allowing it to identify subtle patterns, such as those
indicating microcalcifications, more accurately.

The particular benefit of ResNet-50 in mitigating the vanishing gradient issue has
significant importance in the context of microcalcification detection. In mammography
pictures, the identification of these indications typically presents as subtle, necessitating the
model’s ability to distinguish detailed patterns across several layers. The skip connections
in ResNet-50 enable the preservation and transmission of important information, allowing
for the effective collection and learning of small but significant traits associated with
microcalcifications, even in the deeper levels of the network. The preservation of complex
features is crucial for achieving precise detection, resulting in improved precision for
recognizing small but diagnostically important abnormalities seen in mammography
images.

The architectural superiority of ResNet-50 lies in its ability to preserve the accuracy of
characteristics that are crucial for detecting microcalcifications across its network layers.
This attribute plays a pivotal role in the exceptional performance of ResNet-50 in this task.
Additional investigation aimed at maximizing the efficiency of the training period while
maintaining the remarkable performance of this method has the potential to significantly
improve its practical applicability in clinical environments. This would facilitate the
detection process by reducing the time required, while ensuring that accuracy is not
compromised.

The presentation of the confusion matrix for the DL models in Fig. 4 produced
significant insights regarding their performance. A comparative analysis was undertaken
to assess and contrast the performance of every deep learning algorithm with the objective
of determining which model is superior to the others. The confusion matrix was of the
utmost importance in providing a thorough comprehension of the performance of the

Table 4 Performance metrics and training time for each DL algorithm. The best results are shown in
bold.

ResNet-50 GoogLeNet VGG16 AlexNet

Accuracy 0.9827 0.9560 0.9587 0.9507

Precision 0.9828 0.9586 0.9586 0.9524

Recall 0.9827 0.9560 0.9587 0.9507

F1-score 0.9826 0.9555 0.9586 0.9502

AUC 0.9800 0.9456 0.9556 0.9411

Training time 76 m 31 s 58 m 46 s 158 m 48 s 33 m 16 s
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models. The information it furnished was crucial and can be utilized to assess the precision
and efficacy of the models in detecting microcalcifications.

Figure 4 illustrates that GoogLeNet exhibited the highest percentage value of TP,
suggesting that it is the most effective model for accurately identifying microcalcifications
in mammogram images. AlexNet and ResNet-50 both had comparable percentage values
of TP; however, ResNet-50 exhibited a smaller FP value in comparison to AlexNet. This
suggested that AlexNet exhibited a propensity to incorrectly classify non-
microcalcifications as microcalcifications on a more frequent basis. In addition, ResNet-50
acquired a greater value of TN and a lesser value of FN in comparison to VGG16. The
findings of this study demonstrated that ResNet-50 exhibited a high degree of accuracy in

Figure 4 Confusion matrix for each DL algorithm. Full-size DOI: 10.7717/peerj-cs.2082/fig-4
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identifying mammogram images devoid of microcalcifications, with no instances of
misclassification involving the microcalcifications themselves. Overall, ResNet-50
performed the best in the confusion matrix, as its proportion of TN was the highest and its
proportion of FN was the lowest.

DISCUSSION
The proposed ensemble model performance comparison
The exceptional performance shown by several deep learning models, including ResNet-
50, VGG16, GoogLeNet, and AlexNet, is evident in their ability to accurately identify
microcalcifications in mammography images, with accuracies over 90%. Nevertheless,
these models exhibit unique architectural structures and training procedures, effectively
reflecting many aspects of the characteristics that are indicative of microcalcifications.
Therefore, an ensemble model is a smart combination of the different and complex points
of perspective of the individual models. When considering the detection of
microcalcifications, this methodology presents the potential for enhanced precision,
heightened resilience and a more holistic comprehension of the complex characteristics
that are vital for the timely identification and intervention of breast cancer.

Nevertheless, following an extensive battery of tests, the ensemble model’s final selection
was reached upon GoogLeNet and ResNet-50. Not only did these two models demonstrate
exceptional accuracy, but they also possessed unique nuances and strengths in their
respective methodologies. Their selection was significantly influenced by the
implementation of skip connections in ResNet-50 and the inception modules of
GoogleNet. In addition to displaying exceptional performance on an individual basis, these
models also implemented a variety of techniques to capture the intricate patterns that are
essential for the detection of microcalcification. Although AlexNet achieved higher
accuracy than GoogLeNet, it needed longer training period. Thus, GoogLeNet is chosen as
it has a shorter training period and lower computational cost.

The deliberate incorporation of GoogLeNet and ResNet-50 into the ensemble model
signifies the synthesis of varied capabilities and methodologies to produce a solution that is
more all-encompassing and resilient. By capitalizing on their distinct capabilities and
perspectives, they combined their predictive prowess in a manner that ensured greater
precision and dependability, thereby ultimately improving the clinical detection and
diagnosis of microcalcifications in mammogram images.

The performance comparison of the developed predictive models prior to and
subsequent to the construction of the ensemble model is presented in Table 5. The
ensemble model under consideration was constructed by selecting the model with the
highest performance among two previously developed models, GoogleNet and ResNet-50.
To ensure the best performance was achieved and generalizability of the developed model,
the hyperparameters were tuned and tested. We compare the performance of the proposed
ensemble model with the individual developed model in terms of average confidence score
in normal and microcalcification classifications. The term “average confidence” pertains to
the degree of surety or reliance that a model has on its predictions regarding the detection
of microcalcifications in mammogram images. It signifies the degree of confidence the
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model possesses in its prognostications, specifying whether microcalcifications are present
or absent in a given image. A high confidence score on average across predictions indicates
that the model identifies these features with consistent certainty and confidence.

Regarding the classification of normal cases, AlexNet attained the highest average
confidence score of 0.9358. In contrast, the ensemble model comprising ResNet-50 and
GoogleNet (Ensemble model 3) achieved the highest average confidence value of 0.9305,
indicating its superior performance in the classification of microcalcification. Given that
the primary objective of this study is to detect microcalcifications, we have opted for the
ensemble model comprising ResNet-50 and GoogleNet over the alternative models. This
model achieved an average confidence level of 0.8859, which is notably high even for the

Table 5 Performance comparison of the ensemble model and the developed pre-trained models.

Tested models Average confidence

Normal Microcalcification

Ensemble model 1: ResNet-50 + GoogleNet
Batch size = 20
Learning rate = 0.00001
Epoch = 100
Step size = 100

0.8322 0.9176

Ensemble model 2: ResNet-50 + GoogleNet
Batch size = 7
Learning rate = 0.00001
Epoch = 100
Step size = 100

0.8852 0.9179

Ensemble model 3: ResNet-50 + GoogleNet
Batch size = 7
Learning rate = 0.00001
Epoch = 150
Step size = 100

0.8859 0.9305

Resnet-50
Batch size = 7
Learning rate = 0.000001
Epoch = 200
Step size = 200

0.8433 0.8097

GoogleNet
Batch size = 21
Learning rate = 0.00001
Epoch = 300
Step size = 200

0.9058 0.7590

VGG-16
Batch size = 6
Learning rate = 0.000001
Epoch = 200
Step size = 200

0.8621 0.8296

AlexNet
Batch size = 12
Learning rate = 0.000001
Epoch = 200
Step size = 200

0.9358 0.9062
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Table 6 Table of comparisons with other published works.

Author//
year

Image
dataset

Algorithms Performance metrics Main findings

Leong et al.
(2022)

CBIS-
DDSM

VGG16, ResNet34, AlexNet and
ResNet50

Accuracy The study reviewed the performance of four difference DL
techniques for detecting benign and malignant
microcalcifications. ResNet50 had the highest accuracy of
97.58%, subsequently followed by ResNet34 with 97.35%,
VGG16 with 96.97%, and AlexNet with 83.06%.

Kumar Singh
et al. (2022)

CBIS-
DDSM

InceptionResNetV2 model Sensitivity, specificity,
accuracy, and area
under the curve
(AUC)

The author utilized a pretrained model of
InceptionResNetV2 model and compared with different
optimizers to compare their performance on
microcalcification categorization. The study revealed
remarkable results with the ADADelta optimizer,
showcasing an impressive training rate of 98% and a
validation accuracy of 94% while AUC and sensitivity are
96% and 97% respectively.

Hossain
(2022)

CBIS-
DDSM

U-Net F-measure, Dice score,
Jaccard index,
accuracy, sensitivity,
and precision

U-Net is used to segment the microcalcification region
from mammogram images. The performance of U-Net is
indicated by the value achieved in its sensitivity,
precision, accuracy, F-measure, Dice score, and Jaccard
index. The average value of each category that U-Net
achieved are 98.4%, 94.7%, 98.2%, 98.5%, 97.8%, and
97.4% respectively.

Rehman
et al. (2021)

CBIS-
DDSM

computer-vision-based FC-DSCNN
along with the DCNN

Sensitivity, specificity,
recall, F1-score, and
AUC curve

The FC-DSCNN model was evaluated using two distinct
datasets, and their performances were meticulously
compared. DDSM dataset yielded specificity, accuracy,
F1-score, precision, and recall values of 0.82, 0.90, 0.85,
0.89, and 0.82, respectively while the PINUM dataset
exhibited specificity, accuracy, F1-score, precision, and
recall values of 0.79, 0.84, 0.80, 0.86, and 0.79,
respectively.

Sharma &
Mukherjee
(2020)

CBIS-
DDSM

AlexNet, GoogleNet Sensitivity, specificity,
accuracy, and area
under the curve
(AUC)

Another author compared two DL transfer learning
techniques to develop an automated segmentation and
classification model for microcalcification of
mammogram on CC and MLO views.

Hakim,
Prajitno &
Soejoko
(2021)

INBreast U-Net Accuracy,
Sensitivity, precision,
dice score, Mean
Squared Logarithmic
Error
(MSLE)

The U-Net model that was used in this study gave the best
MSLE loss value of 0.05 followed by sensitivity of 88.14%,
precision of 91.6%, dice score of 90% and accuracy of
90.3%.

Jakhar,
Gupta &
Mrityunjay
(2022)

BreakHis,
WBCD

Extra tree classifier, random forest,
adaboost, gradient boosting and
9-nearest neighbor (KNN9)

Accuracy, precision,
sensitivity, specificity,
F1-score, ROC, MCC

The author proposed a stacked-based ensemble learning
framework called SELF model. Five base learners are
chosen to form ensemble model which are extra tree
classifier, random forest, adaboost, gradient boosting and
KNN9. The proposed model achieved high accuracy,
precision, sensitivity, F1-score, ROC and MCC of
94.35%, 92.45%, 95.96%, 82.87%, 94.17%, 89.41%, and
80.81% respectively in BreakHis dataset. For the other
dataset of WBCD, the proposed model achieved high
accuracy of 98.8%, AUC of 99.06%, MCC of 97.45%,
sensitivity, precision, and F1-score of 99.09%.
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classification of normal cases. The microcalcification class, which possesses the highest
average confidence metric, offers significant insights into the reliability and surety of the
model’s predictions.

When the performance of the ensemble models with different hyperparameters is
examined, some parameters are critical to obtaining better outcomes in identifying cases of
normal and microcalcification. Particularly, the number of training epochs and batch size
have obvious impacts on the performance of the model. Models with smaller batch sizes,
such as Ensemble Model 2 and Ensemble Model 3, tend to yield slightly higher average
confidence scores for both normal and microcalcification cases compared to those with
larger batch sizes, as seen in Ensemble Model 1. This suggests that reducing the batch size
can potentially enhance the model’s discriminative capabilities. In addition, Ensemble
Model 3, which has been trained with 150 epochs, has shown a slight improvement in
performance with respect to those models trained for 100 epochs. This demonstrates the
critical need for intensive training during which the model will be capable of better
understanding the underlying patterns within the data.

Comparative performance analysis with the other published works
Additionally, we conducted a comparative analysis of the performance of the ensemble
model we proposed with that of other recently published works that utilized a similar
dataset (Table 6). We select seven most significant works that were published from 2020 to
2022. Among the seven published works, only one study proposed an ensemble learning
model using five base-learners in breast cancer classification (Jakhar, Gupta & Singh,
2023). Their method involved stacking Extra Tree, Random Forest, Adaboost, Gradient
Boosting, and KNN9 models to create an ensemble model. In contrast, our approach
distinguishes itself by focusing on mammogram images for breast cancer classification.
Although both studies employ ensemble learning techniques, the datasets utilized, and the
imaging modalities differ significantly. Our study’s emphasis on mammogram images
underscores the unique challenges and considerations inherent in this imaging modality
for breast cancer detection.

In addition, our research made use of a comprehensive dataset, which consisted of three
different datasets: CBIS-DDSM, INBreast, and mini-MIAS. By means of this
comprehensive combination, our predictive model was able to acquire information
regarding a wide range of patterns and variations, thereby augmenting its capability to

Table 6 (continued)

Author//
year

Image
dataset

Algorithms Performance metrics Main findings

Our
proposed
model

CBIS-
DDSM
INBreast
Mini-
MIAS

Ensemble model
ResNet-50 + GoogleNet

Accuracy, precision,
recall, F1-score, AUC,
Average confidence

In our study, we proposed ensemble model by using
ResNet-50 with GoogleNet. The model achieved high
accuracy, recall, and F1-score of 99.07%, and precision of
99.08% and AUC of 99.06%. The average confidence of
our proposed model is 88.59% for normal class and
93.05% for microcalcification class.
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handle practical clinical situations. In addition to guaranteeing a thorough training
process, the larger and more varied dataset enhanced our model’s ability to capture
variations that are commonly encountered in clinical environments.

Furthermore, in contrast to the results compiled in Table 6 of related studies, our
research prioritized the crucial parameter of average confidence scores. In these earlier
works, the explicit classification of normal and microcalcification classes was not
addressed. This focal point examines the model’s fundamental dependability in
differentiating microcalcifications from healthy tissues. Comprehending this difference is
critical in the field of medical diagnosis and indispensable in facilitating well-informed
clinical judgement.

By employing a distinctive methodology that involves a careful examination of the mean
confidence scores within these classes, we enhance the comprehensiveness of our research.
This provides a more subtle understanding of the model’s dependability and effectiveness
in crucial classification, thereby ultimately bolstering the model’s accuracy and practicality
in the field of medicine.

CONCLUSIONS
Our research represents a significant progression in the accurate detection and
classification of microcalcifications in mammogram images via the construction and
implementation of the proposed ensemble model comprising optimized GoogLeNet and
ResNet-50. The model’s precision and dependability were enhanced due to their
outstanding individual performances and distinctive architectural details, which led to this
decision. The integration of these models into an ensemble not only combined a wide
range of capabilities but also facilitated increased resilience and a more comprehensive
comprehension of the complex attributes that are crucial for prompt intervention in breast
cancer. Moreover, our research is distinguished by its focus on average confidence scores,
specifically in the classification of normal and microcalcification cases. The proposed
model attained the average confidence scores of 0.9305 and 0.8859 in classifying
microcalcification and normal cases respectively. This particular aspect enhances the
comprehension of the model’s dependability, thereby making a substantial contribution to
its precision and applicability in the field of clinical diagnosis. Our research is
distinguished by the thorough integration of datasets and the in-depth analysis of average
confidence scores within classes. This establishes a standard for future models in the
critical field of breast cancer detection, which can be more refined and dependable. In
comparison to microcalcification images from CBIS-DDSM, the datasets for normal
images from mini-MIAS and INBreast are comparatively limited, which is the primary
limitation of this study. The resultant distribution of the datasets for each class is
imbalanced. By incorporating a broader range of datasets, one can obtain a more
substantial and representative sample, which may enhance the performance and
generalizability of deep learning algorithms, ultimately leading to more dependable and
superior model performance. Further research could investigate automated approaches to
cropping mammogram images in order to facilitate the development of an end-to-end
classification system.
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