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Abstract

Cooperative behavior that increases the fitness of others at a cost to oneself can be promoted by natural selection only in
the presence of an additional mechanism. One such mechanism is based on population structure, which can lead to
clustering of cooperating agents. Recently, the focus has turned to complex dynamical population structures such as social
networks, where the nodes represent individuals and links represent social relationships. We investigate how the dynamics
of a social network can change the level of cooperation in the network. Individuals either update their strategies by
imitating their partners or adjust their social ties. For the dynamics of the network structure, a random link is selected and
breaks with a probability determined by the adjacent individuals. Once it is broken, a new one is established. This linking
dynamics can be conveniently characterized by a Markov chain in the configuration space of an ever-changing network of
interacting agents. Our model can be analytically solved provided the dynamics of links proceeds much faster than the
dynamics of strategies. This leads to a simple rule for the evolution of cooperation: The more fragile links between
cooperating players and non-cooperating players are (or the more robust links between cooperators are), the more likely
cooperation prevails. Our approach may pave the way for analytically investigating coevolution of strategy and structure.
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Introduction

Cooperation is ubiquitous in the real world ranging from genes

to multicellular organisms [1–4]. Most importantly, human society

is based upon cooperation. However this cooperative behavior

apparently contradicts natural selection [5]: Selfish behavior will

be rewarded during competition between individuals, because

selfish individuals enjoy the benefits from the cooperation of

others, but avoid the associated costs. Therefore, the puzzle how

natural selection can lead to cooperation has fascinated evolu-

tionary biologists since Darwin.

Evolutionary game theory is an intuitive and convenient

framework to study this puzzle. As a metaphor, the Prisoner’s

Dilemma (PD) has been widely used to investigate the origin of

cooperation. In this game, two players simultaneously decide

whether to cooperate (C) or to defect (D). They both receive R upon

mutual cooperation and P upon mutual defection. A defector

exploiting a cooperator receives T , and the exploited cooperator

gets S. This can be formalized in the form of a payoff matrix,

C D
C

D

R S

T P

� �
:

ð1Þ

The PD is characterized by the payoff ranking TwRwPwS. For

repeated games, the additional requirement 2RwTzS ensures

that alternating between strategies is less lucrative than repeated

mutual cooperation. In the one shot PD, it is best for a rational

individual never to cooperate irrespective of the co-player’s

decision. Thus, defection is the Nash Equilibrium [6]. However,

the two players would be better off if they both cooperated, hence

the dilemma. In an evolutionary setting, where payoff determines

reproductive fitness, defectors can reproduce faster based on their

higher payoff and cooperation diminishes - defection is evolutionary

stable [7,8]. Several mechanisms have been proposed to explain the

persistence of cooperative behavior, including kin selection [9],

direct [10,11] and indirect reciprocity [12,13], group selection

[14,15] as well as the network reciprocity [16–24]. Furthermore, the

relationship between these mechanisms receives an increasing

attention [25–28].

Both in animal and human societies, individuals interact with a

limited number of individuals. The interactions of individuals are

often captured based on the network of contacts. Therefore, there

has been an increasing interest in the influence of population

structure on the evolution of cooperation.

Nowak and May first studied the PD game on regular lattices

[16]. Subsequently, social dilemmas on regular graphs have been

investigated [19–21,29]. Many authors have also considered more

PLoS ONE | www.plosone.org 1 June 2010 | Volume 5 | Issue 6 | e11187



complex networks, such as scale-free and small-world afterwards

[17,18,24]. It has been well recognized that network topologies

can play a crucial role in the evolution of cooperation, in addition

to the payoff matrix and the update mechanism.

The network topology is assumed to be static in the above work.

However, social relationships between individuals are not eternal,

but are continuously changing in the real world. Therefore, the

coevolution of strategy and network receives increasing attention

[30–47].

Dynamical networks can significantly boost cooperation com-

pared to static networks. On the one hand, cooperation thrives if

individuals are able to promptly adjust their social ties, because

this allows cooperators to escape from defectors [38]. Similarly,

cooperation is more likely to occur if the favored relationships

between cooperators (CC links) tend to be less fragile than adverse

social ties (CD links) [37,43]. The latter result is consistent with our

empirical intuitions and is widely observed in the real world.

However, most of the works on this issue are investigated only by

numerical methods and not by analytical approaches. This is

mainly because it is difficult to describe the coevolution of strategy

and structure of a network analytically.

Pacheco et al. approximate their linking dynamics by ordinary

differential equations [39–41,43]. They found that fast linking

dynamics leads to a transformation of the payoff matrix, such that

e.g. cooperation in a Prisoner’s Dilemma can be stabilized. This

approach does not keep the total number of links constant.

Moreover, the analytical approach does not take stochastic effects

into account.

Here, we consider a linking dynamics described by a discrete

stochastic model. The evolution of links can be described as a

Markov chain, which is the starting point for our analytical

considerations. We specify the conditions required for the payoff

matrix to make cooperation stable. A simple rule is obtained when

the linking dynamics proceeds sufficiently fast, which reveals

quantitatively how the link breaking probabilities have to be

chosen such that cooperation may gain a foothold. Furthermore,

we show how our stochastic linking dynamics also results in a

transformation of the payoff matrix as in [39].

Analysis

We consider the coevolution of strategy and structure in the PD

game. Each player’s strategy s can either be cooperation (C) or

defection (D), denoted by (1,0)T and (0,1)T , respectively. Initially,

the whole population of size N are situated on vertices of a regular

graph with degree L, where nodes indicate individuals while edges

denote the pairwise partnerships between individuals. We consider

the case where the total number of agents N is much larger than

the average degree L. The payoff of each individual is obtained by

playing the PD game with all of its immediate neighbors:

Pi~
X
j[Ni

sT
i Msj ð2Þ

where Ni represents the neighborhood set of player i and M is the

payoff matrix. Instead of the general matrix of the Prisoner’s

Dilemma Eq. (1) with four parameters, we consider a simpler

payoff matrix,

M~
1 0

1zu u

� �
ð3Þ

where the parameter u, measuring how profitable unilateral

defection is, ranges from zero to one. Note that this payoff matrix

recovers the payoff ranking described above, TwRwPwS.

We emphasize that Eq.(3) describes a special case of general PD

games, but it is widely used in biology and sociology [1].

In each time step, an agent has the opportunity to change its

strategy with probability w. With probability 1{w, a link in the

network can be changed. For w~0, no strategy update takes

place, hence the cooperation level stays unchanged and only the

dynamical organization of cooperators and defectors can be

observed [45]. For w~1, this model degenerates to a PD game on

a static regular graph, which has been studied in great detail

[16,19,22,29,48].

Let us first consider the dynamics of links (which occurs with

probability 1{w). In each rewiring step, a link XY is selected

from the network at random (XY~CC,CD or DD). The link

remains intact with probability 1{kXY . With probability kXY , the

link is broken. In this case, one of the two adjacent players is

picked at random and switches to a random player who is not its

immediate neighbor in the population (see Fig. (1)). In this way,

link XY is broken and a new link XZ or YZ is introduced.

We consider the case of 0vkXY v1. In this case, linking

dynamics does not assume rationality of agents: Adverse CD links

may be kept and advantageous CC links may sometimes be

broken.

In contrast with previous analytical work focusing on a

dynamical number of links [39], here the total number of links

LN=2 is constant in the evolution process as in [33,38]. This

constraint can imply a limited resource and avoids that all

individuals are linked to all others (for generic parameter choices).

In the beginning, each link is assigned a name j, where

(j~1,2 � � � ,LN=2). In each time step, we choose a link it~i at

random, where the superscript denotes the time. If the selected

link it does not break, we have itz1~it. If the link breaks, a new

social tie is introduced, denoted as itz1. We denote the type of link

it by T(it), where T(it) can be CC, CD or DD. Herein, we

investigate how T(it) changes with time t.

The dynamics of T(it) can be captured by a Markov chain with

transition matrix Q(XY )(ZW ), which is the probability that an XY

Figure 1. Linking dynamics. If the dashed link is selected in the
topological evolution, it will be broken off with probability kCD. If the
dashed link is broken, then either A or B is selected to establish a new
link. If A is chosen, then he switches to a random individual of the
population who is not his current neighbors (B, D, E, F, G or J).
Otherwise, B is chosen, then he also switches to a random individual of
the population who is not his current neighbors (A, F, G, H, I or J).
doi:10.1371/journal.pone.0011187.g001
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link transforms to a ZW link in one time step. According to the

linking dynamics, the probability of moving between CC and DD
is zero. So, we only have to calculate Q(XY )(XW ) or Q(XY )(ZY ).

For instance, Q(CC)(CC) is the probability that it of type CC
transforms to itz1 of type CC. This occurs in the following cases:

(1) When it is not selected in the linking dynamics (with

probability (LN{2)=(LN));

(2) When it is selected (with probability 2=(LN)), this happens

either when the original CC link is not broken off (with

probability 1{kCC ) or when the selected player of the original

link switches to another cooperator provided the link is broken

(with probability kCCxC where xC is the frequency of

cooperators). Hence,

Q(CC)(CC)~
LN{2

LN
z

2

LN
(1{kCC)zkCCxCð Þ ð4Þ

Similar considerations for other links lead to the transition

probability matrix

Q~
LN{2

LN
I3z

2

LN
V , ð5Þ

where I3 is the identity matrix and the matrix V is given by

CC CD DD

V~

CC

CD

DD

kCCxC z (1{kCC) kCCxD 0

kCDxC=2 1{ (kCD=2) kCDxD=2

0 kDDxC kDDxDz (1{kDD)

0
BB@

1
CCA
ð6Þ

and xD~1{xC is the frequency of defectors. We emphasize

that the transition matrix is only an approximation, because it

does not exclude the case that a player establishes a second

link with one of its immediate neighbors. However, the

approximation is very good when the degree of all links is

much smaller than the population size.

Note that this Markov chain is irreducible and aperiodic when

kCCkCDkDDxC=0, hence there exists a unique stationary

distribution w~(wCC ,wCD,wDD) determined by equation wQ~w
[49]. We find that

w~N (xC) 1,
2kCCxD

kCDxC

,
kCCx2

D

kDDx2
C

� �
ð7Þ

where N (xC)~(1z(2kCCxD=kCDxC)z(kCCx2
D=kDDx2

C)){1 is a

normalization factor. Here, wXY represents the probability that a

link it is of type XY in the stationary regime. Therefore, the

average number of XY links NXY is given by:

E(NXY )~
LN

2
wXY : ð8Þ

Thus, wXY also represents the average fraction of XY links in the

whole population in the stationary regime of the linking dynamics.

Let us now consider the dynamics of strategies (which occurs

with probability w). A player i with strategy si is selected at

random, subsequently player j with strategy sj is randomly selected

among i’s current neighbors. Player i compares the payoff with

that of player j and takes strategy sj with probability [48,50]

1

1z exp½b(Pi{Pj)�
ð9Þ

where Pi and Pj are the accumulated payoffs for i and j,

respectively. The parameter b denotes the intensity of selection.

For b%1, selection is weak and strategy changes are almost

random. For b??, selection is strong and strategies of more

successful agents are always adopted, whereas less successful agents

are never imitated. In large, well mixed populations the dynamics

can be approximated by [51]

_xxC~xC(1{xC) tanh b
fC{fD

2

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xC(1{xC)

N

r
j, ð10Þ

where j is the Gaussian white noise with variance 1, fC and fD

denote the average fitness of a cooperator and a defector,

respectively. For large population size N, the stochastic term

vanishes [51] and we obtain

_xxC~xC(1{xC) tanh b
fC{fD

2

� �
: ð11Þ

Note that this equation has the same equilibrium properties as the

usual replicator dynamics [8]

_xxC~xC(1{xC)(fC{fD): ð12Þ

If w is sufficiently small, the structure of the system is close to the

stationary state when strategies change. In this case, the stationary

distribution of linking dynamics determines the average fitness of

individuals [39]. Then, we can employ the strategy dynamics from

well mixed populations for our structured system. The average

payoff of cooperators is given by

fC~2E(NCC)=(NxC)~LwCC=xC ð13Þ

The average payoff of defectors is

fD~((1zu)E(NCD)z2uE(NDD))=(NxD)

~L((1zu)wCDz2uwDD)=2xD

ð14Þ

Equating fC and fD or, equivalently, substituting them into Eq.

(12), we find that an unstable equilibrium x�C [ (0,1) emerges when

uv(kCD{kCC)=kCC : ð15Þ

It is located at

x�C~
kCCkCDu

kCDkDD{kCCkDD(1zu)zkCCkCDu
ð16Þ

This critical value x�C determines the attraction basin of cooperation

(x�C ,1�: Cooperators take over when their initial frequency xC(0) is

larger than this critical value, whereas defectors take over when

xC(0) is less than this critical value. In other words, the evolutionary

PD game with linking dynamics is similar to that of the coordination

game in well mixed population where both cooperation and

defection are best replies to themselves.

Stochastic Linking
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Let us show how the PD game transforms into a coordination

game under linking dynamics. Substituting Eqs. (13)(14) into Eq.

(12) yields

_xxC~N(xC)
LxD

kCDkDDxC

(f
0

C{f
0

D), ð17Þ

where the first factors are always positive and f
0

C~kCDkDDxC and

f
0

D~(1zu)kCCkDDxCzukCCkCDxD are the payoffs of coopera-

tors and defectors in a modified game with payoff matrix

M
0
~

kCDkDD 0

kCCkDD(1zu) kCCkCDu

� �
: ð18Þ

In other words, the coevolution of strategy and structure

transforms the original PD game into another one. In particular,

M
0

turns to a coordination game when M
0
11wM

0
21, i.e.,

uv(kCD{kCC)=kCC . Thus, the PD game with linking dynamics

corresponds to a coordination game in a well mixed population

[39,40]. Cooperation is stable only when

uvr, ð19Þ

where r~(kCD{kCC)=kCC .

The quantity r measures the propensity for cooperators to form

clusters that supports cooperation [16]. Indeed, remembering that

kXY indicates the probability with which an XY link breaks,

(kCD=kCC)~rz1 characterizes the fragility ratio between CD
and CC link. In particular, CD link are more fragile than CC links

if r exceeds zero. In other words, a cooperator is more likely to

play with cooperators than defectors and to sustain the social

relationship when r is greater than zero. Therefore r also illustrates

how likely a cooperator is to interact with a cooperator. The

greater r, the more likely it is for cooperators to form clusters.

Increasing r allows cooperators to spread more effectively and

can allow them to invade from initially small clusters [52]. The

quantity r characterizes the propensity of cooperators to form

clusters. Cooperation gains a foothold when r is sufficiently large.

Precisely, r is sufficiently large when uvr by Eq. (19). In this case,

cooperator clusters expand and take over the whole population.

We have explained intuitively how r enhances cooperation level.

In addition, we can also show analytically that large r leads to

cooperation by enlarging the cooperation attraction basin:

Substituting kCD~(rz1)kCC to Eq. (16), we obtain:

x�C(r)~
kCCu(1zr)

((kCC{kCD)uz(kCCuzkDD)r)
ð20Þ

The quantity
d

dr
x�C(r)~{kCCkDDu(1zu)=((kCC{kCD)uz

(kCCuzkDD)r)2 is always negative for all permitted parameters.

Hence, x�C(r) is a decreasing function of r. Since (x�C ,1� is the

attraction basin of cooperation. Accordingly, increasing r enlarges

the attraction basin of cooperation. In other words, it requires

fewer cooperators to take over the whole population with larger r.

So far, it has been shown that the simple rule gives us an insight

on how cooperation comes into being with linking dynamics.

Furthermore, it can also be revealed that CC links should be less

fragile [39] while CD ones should be easy to break in order to

promote cooperation. Since r~kCD=kCC{1, the larger kCD or

the smaller kCC , the greater r is. Thus cooperation is promoted

when the probability to break CD links kCD is large or the

probability to break CC links kCC is small. This is in line with

previous numerical consideration [37,38]. However, r is indepen-

dent of kDD. Does this mean that kDD has no impact on

cooperation? In fact, it is not the case. On the contrary, kDD plays

an important role in promoting cooperation when uvr holds.

Actually, this simple rule only guarantees that the equilibrium x�C
of Eq. (16) lies between zero and one, where it is defined. However

it is not sufficient to make cooperation advantageous. Besides, the

initial frequency of cooperators should lie in the attraction basin of

cooperation (x�C ,1� to make cooperators gain a foothold in the

population. Nevertheless, notice that Eq. (16) can be rewritten as:

x�C(kDD)~
kCCkCDu

kDD(kCD{kCC(1zu))zkCCkCDu
ð21Þ

hence, x�C is a decreasing function of kDD provided

kCD{kCC(1zu)w0, i.e. the simple rule holds. In this way,

increasing kDD augments the attraction basin of cooperation

(x�C ,1� (See Fig. (2)). Thus it is easier for cooperators to gain a

foothold when kDD is larger.

In Fig. (3), we show that the simulation results are in agreement

with our analytical predictions when the selection pressure is high,

while the simulations deviate from the analytical results when the

selection pressure is low. For strong selection, we find above the

line kCC~(1=(1zu))kCD, the cooperation level is low, which is

consistent with our theoretical predictions. For weak selection,

however, the cooperation level is almost 100% for the parameter

region closely above the line for kCC between 0 and 0:6, where the

cooperation level should be low based on our the simple rule.

These deviations are due to both the finite population effect and

the approximation of linking dynamics by Eq. (5). On the one

Figure 2. Final fraction of cooperators as a function of initial
fraction of cooperators. The symbols indicate the simulation while
the arrows represent the analytical results. Both simulation and the
analytical results show that fewer cooperators can invade a population
of defectors when the DD ties are more fragile, which validates the
analytical prediction. w~0:01, b~10:0, u~0:5, kCC~0:35, kCD~0:6,
L~4 and N~100 for all the three lines in the plot. In addition, each
data point for all the plots from Fig. (2) to Fig. (6) is averaged over 30
independent runs. And in each run, we set the mean value over time
window of 103 generations to be the final fraction of cooperators, after
a transient time of 106 generations.
doi:10.1371/journal.pone.0011187.g002
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hand, as mentioned above, the transition matrix Eq. (6) is only an

approximation based on the global frequency of cooperators, while

they are also influenced by local frequencies in the simulations. On

the other hand, we use the replicator equation to describe the

strategy evolution. But the replicator equation is only an

approximation of the strategy evolution when the population size

is sufficiently large, which implies that small fitness differences can

influence the dynamics. This explains why our theoretical

predictions are less accurate for weak selection. Therefore, we

focus on strong selection in the following.

We first investigate how u affects the evolution of cooperation.

For each plot in Fig. (4), above the line kCC~(1=(1zu))kCD,

there is nearly no cooperation, while below the line, cooperation is

possible. This is consistent with our simple rule. Furthermore,

compared with the three plots in Fig. (4), we observe a decrease of

the parameter region to sustain the cooperation when u increases.

It indicates that only a small temptation to defect can sustain

cooperation.

Let us further examine the role of kDD in the evolution of

cooperation by simulation. It is observed clearly in Fig. (5) that the

more fragile DD ties are, the easier it is for cooperators to wipe out

defectors. Intuitively, for greater kDD, DD links are more likely to

break and defectors are no longer trapped in their fruitless

interactions and can instead seek new cooperators to exploit.

Thus, it seems less likely to promote cooperation for large kDD.

However, both analytical and simulation results show that high

kDD promotes cooperation (See Eq. (21) and Fig. (2)). This is

counter-intuitive. In fact, in this case, the quick partner-switching

Figure 3. Results for the final fraction of cooperators for different selection pressure b. It shows how the selection pressure affects the
analytical prediction. The black line is our analytical condition kCC~(1=(1zu))kCD. Initially, all the individuals are situated on a regular graph of
degree L~4 and size N~100. Each individual is assigned to be a cooperator or a defector with the same probability. All plots from Fig. (3) to Fig. (6)
share the same color code and initial condition. Analytical results predict that higher cooperation level can emerge only below the black line.
Simulation results show that the analytical result is more accurate for strong selection than weak selection as expected. The error is induced by the
finite population size effect. (other parameters w~0:01, u~0:3, and kDD~0:7).
doi:10.1371/journal.pone.0011187.g003

Figure 4. Results for the final fraction of cooperators for different values of the payoff parameter u. The slope of the critical line is
increasing when u is decreasing, indicating that cooperators are more likely to emerge when the parameter u is small. (w~0:01, b~10 and kDD~0:7. )
doi:10.1371/journal.pone.0011187.g004

Stochastic Linking
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between defectors induces the heterogeneity of the population,

which results in cooperation. Similar results have been reported in

[43].

Finally, we turn to investigate the role of w on the coevolution.

Fig. (6) shows that for small w, the result is in good agreement with

the theoretical prediction, while deviates from the simple rule for

large w, as expected. Similar results have been reported in the

analytical approach of Pacheco et al. [39]. Both analytical

approaches are based on the time scale separation, i.e., all the

links are almost in the stationary states when the strategy update

occurs.

Results and Discussion

To sum up, we have established a discrete model to describe the

stochastic linking dynamics analytically in terms of a Markov

chain. Based on this linking dynamics, we have studied the

coevolution of strategy and network structure. A simple condition

for the evolution of cooperation is obtained analytically that

becomes more accurate when selection is stronger. The rule shows

that the less fragile CC links are, the easier cooperation emerges.

The more fragile CD links are, the easier cooperation prevails.

Compared to Pacheco et al.’s work, time scales separation also

plays an important part in our analysis. In Pacheco et al.’s work,

time separation is used to ensure that the linking dynamics is in the

stationary regime when the strategy evolution happens. But in

contrast to Pacheco et al.’s work, our analytical approach explicitly

considers stochastic effects in the linking dynamics. Further, when

the population size is sufficiently large, this Markov chain

describing the linking dynamics can be approximated by a

different system of differential equations. Since the total number of

links is constant in our approach, there are only two independent

Figure 5. Results for the final fraction of cooperators for different values of kDD. It shows that quick partner switching between defectors,
i.e., high kDD, promotes cooperation. (w~0:01, b~10 and u~0:3.)
doi:10.1371/journal.pone.0011187.g005

Figure 6. Results for the final fraction of cooperators for different values of w. Our analytical results are only valid under time scale
separation, as shown in this plot. (u~0:9, b~10 and kDD~0:7)
doi:10.1371/journal.pone.0011187.g006
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variables describing the different kinds of links. In Pacheco et al.’s

method, however, all the three variables are independent. In

general, both methods lead to very similar qualitative results.

Regarding the coevolution of strategy and network, previous

numerical work with constant number of links has assumed that

dissatisfied ties are more likely to break off than satisfied ones. In

this case, cooperation is more likely to be sustained. However, it

has not been shown analytically that to what extent satisfied links

are more stable than adverse ones to make cooperation gain a

foothold. The simple rule uv(kCD{kCC)=kCC reveals such a

relation between the payoff matrix and the parameters of the

linking dynamics. It shows under which conditions cooperation

may prevail, provided the linking dynamics is sufficiently fast.

Furthermore, we have provided a series of numerical results to

validate the analytical results. We find that numerical results are in

agreement with the analytical results for strong selection, yet may

deviate from the analytical results for weak selection.
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