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With the availability of COVID-19-related clinical data, healthcare researchers can
now explore the potential of computational technologies such as artificial intelligence
(AI) and machine learning (ML) to discover biomarkers for accurate detection, early
diagnosis, and prognosis for the management of COVID-19. However, the identification
of biomarkers associated with survival and deaths remains a major challenge for early
prognosis. In the present study, we have evaluated and developed AI-based prediction
algorithms for predicting a COVID-19 patient’s survival or death based on a publicly
available dataset consisting of clinical parameters and protein profile data of hospital-
admitted COVID-19 patients. The best classification model based on clinical parameters
achieved a maximum accuracy of 89.47% for predicting survival or death of COVID-
19 patients, with a sensitivity and specificity of 85.71 and 92.45%, respectively. The
classification model based on normalized protein expression values of 45 proteins
achieved a maximum accuracy of 89.01% for predicting the survival or death, with a
sensitivity and specificity of 92.68 and 86%, respectively. Interestingly, we identified 9
clinical and 45 protein-based putative biomarkers associated with the survival/death of
COVID-19 patients. Based on our findings, few clinical features and proteins correlate
significantly with the literature and reaffirm their role in the COVID-19 disease progression
at the molecular level. The machine learning–based models developed in the present
study have the potential to predict the survival chances of COVID-19 positive patients
in the early stages of the disease or at the time of hospitalization. However, this has to
be verified on a larger cohort of patients before it can be put to actual clinical practice.
We have also developed a webserver CovidPrognosis, where clinical information can
be uploaded to predict the survival chances of a COVID-19 patient. The webserver is
available at http://14.139.62.220/covidprognosis/.
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INTRODUCTION

In December 2019, the COVID-19 disease initiated as an
outbreak caused by SARS-CoV-2, which quickly snowballed into
a catastrophic worldwide healthcare crisis (Srivastava et al., 2020).
On March 11, 2020, the World Health Organization (WHO)
declared COVID-19 a global pandemic with more than 118,000
cases in 114 countries and over 4,000 deaths, much more than the
morbidity and mortality caused by related viruses such as SARS
and MERS. As of March 14, 2021, the pandemic has caused more
than 119 million confirmed COVID-19 cases and ∼2.64 million
deaths worldwide1.

Compared to other respiratory diseases such as influenza, the
COVID-19 human-to-human transmission is facilitated through
respiratory droplets (particles > 5–10 nm in diameter) from
coughing and sneezing. The clinical symptoms associated with
COVID-19 patients vary from asymptomatic or symptomatic
forms (Cascella et al., 2020). A study published in JAMA
consists of data from 72,314 cases, including records from
confirmed, suspected, diagnosed, and asymptomatic COVID-
19 patients, shared by the Chinese Center for Disease
Control and Prevention (China CDC), demonstrating the
epidemiologic curve of the Chinese outbreak. As per this
report, the mortality of critically ill patients was 49.0%
in contrast to 2.3% for the overall COVID-19 patients.
The mortality was also higher for patients with various
comorbidities such as cardiovascular disease, diabetes, chronic
respiratory disease, and oncological diseases, whereas patients
with the age of 9 or younger did not have any fatal cases
(Wu and McGoogan, 2020).

At present, no SARS-CoV-2 specific drug or reliable
prognostic biomarker is available for COVID-19 treatment
(González-Pacheco et al., 2020; Pandey et al., 2020). Various
therapeutic measures to enhance the immune systems by
immune modulators have been proposed (Zhong et al., 2020).
Recommended preventive measures include social distancing,
proper health, and hygiene management (Al-Rohaimi and Al
Otaibi, 2020). It is also known that the severity of COVID-19
largely depends on the host and viral factors. The latter highlights
the importance of identifying the host features associated
with the disease severity at the molecular level (Zhang et al.,
2020). Given the facts enumerated above, it is desirable to
have the correct prognostic assessment of patients for proper
clinical management.

Artificial intelligence (AI) is being employed to meet
new healthcare requirements, in view of the pandemic,
for example, tracking the SARS-CoV-2 virus spread and
quickly identifying high-risk patients (Sharma et al., 2020).
Machine learning (ML) methods have been exploited
to analyze various kinds of biological datasets such as
proteomics data, NGS data, and metabolomics data to
predict the biomarkers for classification of samples and
genes associated with a particular disease state (Dumancas
et al., 2017; Cambiaghi et al., 2018). The mitigation potential
of AI technology has been extensively demonstrated for

1https://covid19.who.int/

various pandemics and infectious diseases, for example, SARS,
Ebola, HIV, and COVID-19 (Lalmuanawma et al., 2020;
Overmyer et al., 2020).

To date, there are several reports on clinical biomarkers
associated with the disease prognosis. However, there are only
a few published articles on protein-based biomarkers, and
hence, further research is required to confirm the existing
findings (Graziani et al., 2020; Kaur et al., 2020; Kermali
et al., 2020). Integrated data analysis on COVID-19 genomes
has been performed to identify several crucial factors involved
in host–pathogen interaction. However, limited attempts have
been made to integrate high throughput datasets (Sardar et al.,
2020). Yan et al. (2020b) developed a machine learning model
with more than 90% accuracy on 485 COVID positive patients
to predict the clinical biomarkers associated with individual
patients’ mortality. Another study by Yao H. et al. (2020)
aimed to predict the disease severity among the patients by
utilizing the data on 137 COVID-19 infected patients using
an ML-based model on the blood and urine examination
parameters. However, these methods are not free from errors,
limitations, and challenges, rendering them unfit to be used in
real-world problems.

Motivated by the availability of appropriate clinical datasets,
we used such a dataset for training ML algorithms to exploit
its potential for the prognosis of COVID-19 positive patients.
We designed a pipeline to predict features, namely proteins
and clinical parameters, associated with the disease severity
and survival of the COVID-19 patients. Interestingly, we have
identified 9 clinical features and 45 proteins related to the
survival/death of COVID-19 patients. Few of the identified
clinical features and proteins correlate well with the literature
and reaffirm their role in the COVID-19 disease progression
at the molecular level (Shen et al., 2020; Wynants et al., 2020;
Yan et al., 2020a). The potential role of identified proteins
in various pathways, their native functions, potential to be a
drug target, etc., are described in the subsequent sections. The
ML-based models developed in the present study possess an
immense potential to predict the survival chances of COVID-19
positive patients in the early stages of the disease or at the time
of hospitalization.

MATERIALS AND METHODS

Data Source
We downloaded the clinical and normalized protein
expression profile data for 306 COVID-19 patients and
78 other patients (control subjects) from the Olink
website (Filbin et al.). We downloaded three files, namely
"MGH_COVID_OLINK_NPX.txt," "MGH_COVID_Clinical_
Info.txt," and "variable_descriptions.xlsx," containing protein
data (with relative quantification values given in Olink’s
proprietary Normalized Protein expression (NPX) units),
essential clinical data (associated with each sample), and a
worksheet (with a description of the clinical variables presented),
respectively. Although clinical and protein data were present in
two different files, the data were linked based on the subject IDs.
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Data Preprocessing
Data preprocessing is essential for a machine learning study.
Hence, we checked the data for any experimental impurities
through semiautomated ways. As depicted in Figure 1, clinical
and proteomic data were missing for a few patients. In the case
of clinical data, we replaced missing values with "-1." Thus, we
used the clinical data of 42 dead and 264 survivors (Whole dataset
I) for training the "Clinical Information" based classification
models for days 0–7. However, in the proteomics data, the protein
expression values were missing for 165 and 248 patients for days
3 and 7, respectively. Therefore, we used only proteomics data
for the Day 0 proteomics information-based classification model
generation. For only one COVID-19 positive patient (who died
within 28 days of hospitalization), protein expression values (for
few of the 1,428 proteins) were missing, while protein expression
values were missing for 15 patients among the survivors (for few
of the 1,428 proteins); hence, we excluded these records from
the study (Figure 1). Thus, we used the proteomics data (Whole
dataset II) of 41 dead and 249 survivors to train and validate the
machine learning–based models.

As evident from the downloaded data, the number of
survivors and deaths in clinical as well as proteomics data were
imbalanced. The survivor’s data (for both clinical and proteomics
data) were split into five, almost equal-sized, divisions (P1–
P5). Furthermore, we trained and validated the models using
each of the five divisions and the dataset of dead patients. The
tools, techniques, and statistical measures used to evaluate the
model performances and the retrieved results are given in the
subsequent sections.

Tools Used for the Development of
Classification Models
WEKA (Frank et al., 2016), a popular and widely used data
mining and machine learning tool, was used for training and
validation of the various machine learning–based classification
models developed in this study. All the techniques available
with the WEKA (v3.8.2) were used to train and validate the
classification models. For clinical data, five types of models are
generated, i.e., the models based on (1) Day 0 clinical parameters,
(2) Day 3 clinical parameters, (3) Day 7 clinical parameters, (4)
Days 0–7 clinical parameters, and (5) Selected clinical parameters
(out of Days 0–7 clinical parameters). On the other hand, for
proteomic data, two types of models are generated, i.e., (1) Day
0, all 1428 protein parameters, and (2) Day 0 protein parameters
based on feature selection.

We trained and evaluated 44 different types of ML
classification algorithms available in WEKA (v3.8.2). However,
several combinations of various parameters for these algorithms
and the number of input parameters used (for the training
and validation of classification models) resulted in thousands of
models (for details, check http://14.139.62.220/covidprognosis/
supple.php). For example, in the case of Day 0 clinical
parameters-based model (using the P1 dataset), a total of 85
models were trained and evaluated using Day 0 all 33 clinical
parameters. Thus, for P1–P5 splits, a total of 425 models (85 ×
5) were developed to determine the best classification models.

Feature Selection
In different machine learning–based classification studies, all
the input features do not play an equally significant role in
classification (Sharma et al., 2016; Jablonka et al., 2020; Kumar
et al., 2020). Therefore, to identify the most significant clinical
and proteomics features, all the feature selection techniques
available with WEKA were applied to the Days 0–3 clinical
features dataset (consisting of 33 clinical parameters) and Day 0
proteomics data (for the 1,428 proteins).

Cross-Validation Techniques Used
The availability of enormous data is essential for preparing
training and validation datasets during a machine learning–based
study. However, due to limited patients’ records, it was impossible
to prepare separate training and validation datasets. Therefore,
the leave-one-out cross-validation (LOOCV) technique was used
to utilize the available information optimally. In the LOOCV
technique, the models are trained and validated so that each
record is used for training and testing. The LOOCV technique has
widely been used to solve several classification problems (Mete
et al., 2016; Nath and Subbiah, 2016; Jiang et al., 2019).

Formulae Used to Evaluate Performance
of the Models
The performance of the models was evaluated using statistical
measures such as sensitivity, specificity, accuracy, and Mathew’s
correlation coefficient (MCC). The formulae used are given
below:

Sensitivity =
TP

TP+ FN
× 100

Specificity =
TN

TN+ FP
× 100

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
× 100

MCC =
(TP)(TN)− (FP)(FN)

√
[TP+ FP][TP+ FN][TN+ FP][TN+ FN]

× 100

where TP and TN are correctly predicted positive and negative
examples, respectively. Similarly, FP and FN are wrongly
predicted positive and negative examples, respectively. The
models with the highest MCC value and almost equal sensitivity
and specificity values are considered best prediction models.

Pathway Analysis and Identification of
Drug Targets
To understand the biological functions of the shortlisted proteins,
pathway analysis was performed using the DAVID tool (Jiao
et al., 2012). Targeting host proteins appears to be a promising
approach in antiviral research. To identify the drugs against the
selected proteins, all the drug target information was downloaded
from the TTD database, and only validated and clinically proven
drugs were used for the analysis (Wang et al., 2020). The drugs
that have been withdrawn or not in use were removed from the
drug-targets based analysis.
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FIGURE 1 | ML-based pipeline to identify key features associated with survival based on clinical and proteomics data. (The figure images were generated using
biorender.com).

Webserver Development
The CovidPrognosis webserver has been developed using efficient
and open-source Linux-Apache-MySQL-PHP/ Perl/Python
(LAMP) server technologies. The user interface (UI) or web
interface is developed using HTML, CSS, PHP (v7.1.28), and
AJAX. Moreover, the predictions are performed using the
WEKA-based machine learning models, trained and validated on
clinical parameters.

RESULTS

Models Based on Whole Clinical
Parameters
The classification models were developed using clinical
information, as given in Supplementary Table 1. A total of five
types of models (thousands in number; based on all available
techniques in the WEKA package) were developed using the
Day 0 (Sr. No. 3-21), Day 3 (Sr. No. 3-14 and 22-28), Day
7 (Sr. No. 3-14 and Sr. No. 29-35), and Days 0–7 (Sr. No.
3-35) clinical parameter values (Supplementary Table 1).
However, two models achieved the highest performance using
Day 0 and Days 0–7 information, while “Whole dataset I”
based models showed a large difference between sensitivity

and specificity values. This difference may be attributed to
the imbalance between the number of records for survived
and died patients. The Day 0 clinical parameters-based model
(using the "IterativeClassifierOptimizer" technique) achieved a
maximum accuracy of 87.37% with the highest sensitivity (%),
specificity (%), MCC, and ROC values of 88.10, 86.79, 0.75,
and 0.863, respectively (Table 1). Using "RandomForest" as the
classification technique and Days 0–7 clinical parameters (33)
as input features, a maximum accuracy of 89.47% was achieved
with the highest sensitivity (%), specificity (%), MCC, and ROC
values of 85.71, 92.45, 0.79, and 0.921, respectively (Table 1).

Feature Selection for Clinical Parameters
For the clinical data, three clinical parameters, namely, age,
absolute lymphocyte count (Day 0), and creatinine level (Day 0),
and nine clinical parameters, i.e., age, absolute lymphocyte count
(Day 0), creatinine level (Day 0), preexisting heart disease(s),
preexisting hypertension, preexisting kidney disease(s), D-dimer
level (Day 0), any GI-related symptoms at the time of hospital
presentation, and cardiac event-Trop_72 (hs-cTn = > 100 within
the first 72 h of presentation) clinical parameters or features
were selected by the majority of the techniques2. Therefore,

2http://14.139.62.220/covidprognosis/supple.php
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TABLE 1 | Performance of best models based on whole clinical parameters.

Dataset (no. of clinical parameters used) Day(s) Sensitivity (%) Specificity (%) Accuracy (%) MCC ROC WEKA technique used

Whole dataset I (19) 0 50 94.7 88.56 0.48 0.806 AttributeSelectedClassifier

P1 (19) 0 88.1 86.79 87.37 0.75 0.863 IterativeClassifierOptimizer

Average of P1–P5 splits (19) 0 81.90 82.94 82.48 0.65 0.808 IterativeClassifierOptimizer

Whole dataset I (33) 0, 3, 7 47.62 96.21 89.54 0.51 0.739 J48

P2 (33) 0, 3, 7 85.71 92.45 89.47 0.79 0.921 RandomForest (with -K 4)

Average of P1–P5 splits (33) 0, 3, 7 75.24 81.43 78.68 0.57 0.868 RandomForest (with -K 4)

these three clinical parameters (selected by CfsSubsetEval as
“Attribute Evaluator” with BestFirst as “Search Method”) and
nine clinical parameters [selected by “InfoGainAttributeEval”
as “Attribute Evaluator” with Ranker algorithm (attributes
with ranking value > 0 were selected)] have been used
for the training and evaluation of the machine learning–
based models.

Models Based on Selected Clinical
Parameters
From the analysis of the clinical data, it is found that the
patients from the age group of 65–80+ years, with lower elevated
lymphocyte count at Day 0 (<1.00), D-dimer ≥ 1,000 (units),
are at a higher risk of death during hospitalization and require
immediate treatment (Figure 2).

The “Whole dataset I”–based models showed a large difference
between sensitivity and specificity values. A maximum accuracy
of 87.37% was achieved with sensitivity (%), specificity (%),
MCC, and ROC values of 85.71, 88.68, 0.74, and 0.845, from
the three selected clinical features, respectively. While from
the nine selected clinical parameters, a maximum accuracy
of 86.32% was achieved with sensitivity (%), specificity (%),
and MCC, and ROC values of 83.33, 88.68, 0.72, and 0.81,
respectively, as shown in Table 2. The identified clinical
features such as serum creatinine (Day 0), age, absolute
lymphocyte count (Day 0), and D-dimer (Day 0) along with
comorbidities such as preexisting heart disease(s), preexisting
kidney disease(s), preexisting hypertension, GI symptoms
at presentation, and Trop-72 can be highly useful in the
classification of patients with survival or dying probabilities.
These identified features can be evaluated as biomarkers
that can help identify the patients who require immediate
medical attention.

Models Based on Whole NPX Proteomics
Data
To understand the role of the protein expression profile in the
classification of COVID-19 patients who survived vs. are dead,
the expression values of 1428 proteins were used to develop
machine learning–based classification models. The “Whole
dataset II”–based models showed a large difference between
sensitivity and specificity values. It is evident from Table 3 that
an accuracy of 83.52% was achieved (using the dataset P4) with
a sensitivity (%), specificity (%), MCC, and ROC values of 82.93,
84, 0.67, and 0.868, respectively.

Identification of Proteins Associated
With Survival vs. Deaths
The feature selection technique was applied to determine the
most significant proteins that are helpful for the classification
of patients who survived COVID-19 vs. those who died.
Therefore, for proteomics data, different feature selection
techniques resulted in the selection of a different set of proteomic
features (see text footnote 2). Thus, a total of 45 proteins
were identified through WEKA using CfsSubsetEval as the
“Attribute Evaluator” with BestFirst as the “Search Method”
(Supplementary Tables 2, 3).

As evident from Table 4, an accuracy of 89.01% was achieved
(using the dataset P2) with sensitivity (%), specificity (%), MCC,
and ROC values of 92.68, 86, 0.78, and 0.953, respectively. On
the other hand, “Whole dataset II”–based models showed a large
difference between sensitivity and specificity values.

Expression and Pathway Analysis of the
Shortlisted Proteins
The shortlisted proteins include lipid metabolism proteins
(APOM), a protease inhibitor (FETUB), serine protease
(FA7, GGH), growth factors (EGFR, PDGFB, TGFA, and
GDF8), chemokines, interleukins (IL8, IL17C), and others
(Supplementary Table 2). Recent studies have shown that APOM
is downregulated in severe COVID-19 patients (Shen et al., 2020).
The dysregulation of APOM is also associated with hepatitis
B virus (HBV) infected patients (Gu et al., 2011). Another
important protein associated with survival is angiopoietin
(AGP), which is recently reported to cause inflammatory
intussusceptive angiogenesis and diffuse alveolar damage in
COVID-19, and the progression of carcinogenetic events in
cancer patients (Saha and Anirvan, 2020). Q96PL1_SG3A2 is
highly expressed and shows antifibrotic activity in the lungs
(Cai et al., 2014).

These shortlisted proteins were further analyzed to
understand their role in human physiology and COVID-19
prognosis. From the pathway analysis, we found that the selected
45 proteins are associated with pathways such as the IFN-gamma
pathway, IL5 and IL3 mediating signaling events, cytokine,
chemokine, and VEGF signaling, as shown in Figure 3.

Identification of Potential Drug Targets
Among the Shortlisted Proteins
To date, no reliable drug has been approved to treat COVID-19.
From the drug target database (Supplementary Table 4), we were
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FIGURE 2 | Selected features from clinical data to classify COVID-19 patients who survived vs. those who died.

TABLE 2 | Performance of best models based on selected clinical parameter values.

Dataset (no. of clinical parameters used) Day(s) Sensitivity (%) Specificity (%) Accuracy (%) MCC ROC WEKA technique used

Whole dataset I (3) 0 50 94.7 88.56 0.48 0.806 J48

P2 (3) 0 85.71 88.68 87.37 0.74 0.845 RandomSubSpace

Average of P1–P5 splits (3) 0 83.33 80.31 81.64 0.63 0.831 RandomSubSpace

Whole dataset I (9) 0 50 94.7 88.56 0.48 0.806 AttributeSelectedClassifier

P2 (9) 0, 3 83.33 88.68 86.32 0.72 0.81 IterativeClassifierOptimizer

Average of P1–P5 splits (9) 0, 3 81.43 78.02 79.54 0.59 0.823 IterativeClassifierOptimizer

TABLE 3 | Performance of best models based on all 1428 proteins NPX values.

Dataset (no. of proteins used) Day(s) Sensitivity (%) Specificity (%) Accuracy (%) MCC ROC WEKA technique used

Whole Dataset II (1428) 0 39.02 95.18 87.24 0.4 0.791 AdaBoostM1

P4 (1428) 0 82.93 84 83.52 0.67 0.868 LogitBoost

Average of P1–P5 splits (1428) 0 69.76 71.90 70.94 0.42 0.755 LogitBoost

TABLE 4 | Performance of best models based on selected 45 protein NPX values.

Dataset (No. of proteins used) Day(s) Sensitivity (%) Specificity (%) Accuracy (%) MCC ROC WEKA technique used

Whole dataset II (45) 0 80.49 92.77 91.03 0.67 0.948 BayesNet

P2 (45) 0 92.68 86 89.01 0.78 0.953 BayesNet

Average of P1–P5 splits (45) 0 82.44 82.72 82.59 0.65 0.902 BayesNet

P5 (45) 0 85.37 91.84 88.89 0.78 0.886 SMO; NormalizedPolyKernel

Average of P1–P5 splits (45) 0 83.42 79.97 81.51 0.63 0.817 SMO; NormalizedPolyKernel
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FIGURE 3 | Pathway analysis of the selected 45 proteins.

able to identify clinically used drugs that target 18 proteins among
the shortlisted 45 proteins. The maximum number of drugs was
found to target growth factor associated proteins, i.e., VGFR2 and
EGFR, followed by FA7 and ANGP2 (Supplementary Figure 1).
It is observed that during viral infection through respiratory
viruses, EGFR gets activated via the NADPH oxidase signaling
pathway in the airway epithelium. The activation of EGFR
causes suppression of IFN regulatory factor (IRF) 1-dependent
CXCL10 production showing their role in antiviral defense
(Kalinowski et al., 2014).

The Development and Utility of the
CovidPrognosis Webserver
The utility of a machine learning–based method relies upon
its ease of use. Therefore, to enhance the real-life usage of the
developed prediction models by researchers or clinicians, we
have developed the webserver CovidPrognosis. The webserver
is freely available for scientific use and clinical validation at
http://14.139.62.220/covidprognosis/. In the current version, the
users can input three parameters for Day 0 or 33 parameters
for Days 0, 3, and 7. The survival chances of the patient,
represented by the input parameters, are predicted based on
the user-supplied values. A detailed description of the clinical
parameters is available on the CovidPrognosis webserver’s
website at http://14.139.62.220/covidprognosis/help.php. Day
0 denotes the day on which the patient was admitted to
a hospital, while Days 3 and 7 represent the third and
seventh day after hospitalization, respectively. The Day 0–
based model helps in the early estimation of the seriousness
of the case, while the days 0–7-based model may prove
useful while monitoring the patient’s health status at the
time of hospital stay. Figure 4 shows the prediction results
by the CovidPrognosis webserver’s three clinical parameters-
based model using Day 0 clinical information of a COVID-19
patient. The webserver may prove to be a valuable resource
for researchers and clinicians for independent validation and
further improvement.

DISCUSSION

COVID-19 is caused by the novel coronavirus SARS-CoV-2 that
belongs to the SARS-CoV and MERS family of viruses. To date,
the disease has led to millions of deaths worldwide. COVID-
19 can be diagnosed by real-time PCR (RT-PCR), chest X-ray
images, CT scan images, and serological blood tests (Augustine
et al., 2020, p. 19). However, these diagnostic methods have low
accuracy with a high false-positive rate of prediction (Surkova
et al., 2020; To et al., 2020) and cannot help distinguish patients
with different severity of illness. In addition to the respiratory
illness, COVID-19 can cause many other illnesses such as kidney
failure, heart disease, and venous thromboembolism and may
damage the CNS leading to mortality (Kollias et al., 2020; Larsen
et al., 2020; Shi et al., 2020; Wu et al., 2020).

The most common clinical abnormalities observed in
COVID-19 positive patients are lymphopenia, leukopenia,
thrombocytopenia, elevated CRP and inflammatory markers,
elevated cardiac biomarkers, decreased albumin, and abnormal
renal and liver function (Paranjpe et al., 2020; Zhu et al., 2020).
The increase in SARS-CoV-2 spread and mortality has motivated
researchers to develop vaccines or antiviral drugs. Similarly,
clinicians too are trying different treatment strategies to improve
prognosis, reduce treatment period, and alleviate the suffering
of COVID-19 patients. Therefore, it is necessary to identify
factors/biomarkers associated with the patients’ mortality and
survival on available patient datasets to reduce the mortality rate.

Based on clinical parameters, researchers have identified
several biomarkers (using an ML-based approach) like using
a multivariable logistic regression model. Yao Y. et al. (2020)
showed that the value of D-dimer > 2mg/L was associated
with mortality among COVID-19 patients. The group has
observed a significant correlation between D-dimer levels and
disease severity measured by the CT, oxygenation index, and
clinical staging. Another group, Yan et al. (2020a), identified
lactic dehydrogenase (LDH), lymphocyte, and high-sensitivity
C-reactive protein (hs-CRP) that were associated with the
survival of individual patients. Similarly, in the present study, we
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FIGURE 4 | A screenshot showing the functionality of the CovidPrognosis webserver with three clinical parameters for Day 0.

have applied ML-based prediction on a cohort of 306 COVID
positive patients with 33 clinical parameters and 1,428 protein
expression values. From the number of WEKA models on clinical
data, RandomSubSpace and IterativeClassifierOptimizer perform
best with the accuracy of 87.37 and 84.32%, respectively. These
models identified nine shortlisted features from among 33 clinical
parameters, namely, age category, absolute lymphocyte count
(Day 0), creatinine level (Day 0), preexisting heart disease(s),
preexisting hypertension, preexisting kidney disease(s), D-dimer
level (Day 0), GI symptoms, and cardiac event-troponin level
72 h (hs-cTn = > 100 within the first 72 h of presentation).
Of the nine shortlisted clinical parameters, D-dimer, lymphocyte
count, and kidney disease are reported to play an important
role in the survival prediction of COVID-19 patients, thus
validating the findings of the present study (Cheng et al.,
2020; Pan et al., 2020; Yan et al., 2020a). Moreover, some
previously not identified clinical parameters such as creatinine,
age, and cardiac troponin, along with GI symptoms, heart disease,
and hypertension, could predict the COVID-19 prognosis and
disease severity.

While employing LogitBoost on 1428 protein expression data,
survival prediction models were able to achieve an accuracy of
83.52% with sensitivity (%), specificity (%), MCC, and ROC
values of 82.93, 84, 0.67, and 0.868, respectively. However,
the accuracy was further improved after applying the feature
selection algorithms (available in WEKA), and the highest
accuracy of 89.01% (with the balanced dataset) was achieved
with sensitivity (%), specificity (%), MCC, and ROC values of

92.68, 86, 0.78, and 0.953, respectively. Thus, the model led
to identifying 45 proteins enriched in various pathways such
as angiogenesis, interleukin, cytokine, chemokine, and VEGF
signaling. The enrichment of host immune system pathways
suggested that SARS-CoV-2 uses the host immune system defense
mechanism to hijack the body’s mucous membrane cells.

Shen et al. have identified 93 proteins associated with the
severity of COVID-19 disease based on the data of 46 COVID-
positive patients using machine learning models (Bojkova et al.,
2020; Qiu et al., 2020; Shen et al., 2020). Interestingly, some of
the shortlisted 45 proteins, such as PROC, IL16, EGFR, ANGP2,
APOP1, coagulation factor VII, and FEUTB (identified in the
present study), are already well reported in the literature for their
role in the disease prognosis and severity, thus validating the
current findings (Bojkova et al., 2020; Qiu et al., 2020; Shen et al.,
2020; Shu et al., 2020; Yin et al., 2020). In our analysis, other
protein classes such as different growth factors and phospholipase
factors are newly discovered, which can be explored further for
their role in disease severity. The role of phospholipase A2 in
the inhibition of coronavirus replication is well established by
EM and confocal microscopy, which can also be confirmed for
SARS-CoV-2 (Müller et al., 2017).

From the drug-target network construction, it is observed that
FDA-approved drugs target growth factor associated proteins,
i.e., VGFR2 and EGFR, followed by FA7 and ANGP2, suggesting
their potential implication in drug repurposing.

From the present study, we show that the ML-based
prediction/classification models can efficiently help in the
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prognosis of COVID-19 patients based upon identified
clinical and protein biomarkers associated with COVID-19
severity/survival. The clinicians and researchers can test new
COVID-19 cases to predict the patients who are likely to survive
within 28 days after hospitalization. The results obtained from the
ML-based techniques may also lead to the biomarker discovery
for COVID-19 for early prognosis, potentially reducing mortality
rate and may also serve as useful drug targets.

To increase the utility of the present work, we have developed
an easy-to-use CovidPrognosis webserver to assist researchers
and clinicians in quickly evaluating the machine learning model
or identifying the prognostic biomarkers associated with the
survival or death of COVID-19 patients. The webserver is
available at http://14.139.62.220/covidprognosis/. The current
version of the model is a proof of concept that machine learning–
based prognostic tools can be developed. The CovidPrognosis
webserver will be regularly updated with the latest COVID-19
datasets in order to increase its efficiency, reliability, and utility.
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