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Palaeoecological interpretations are based on our understanding of dietary
and habitat preferences of fossil taxa. While morphology provides approxi-
mations of diets, stable isotope proxies provide insights into the realized
diets of animals. We present a synthesis of the isotopic ecologies (δ13C
from tooth enamel) of North American mammalian herbivores since
approximately 7 Ma. We ask: (i) do morphological interpretations of dietary
behaviour agree with stable isotope proxy data? (ii) are grazing taxa special-
ists, or is grazing a means to broaden the dietary niche? and (iii) how is
dietary niche breadth attained in taxa at the local level? We demonstrate
that while brachydont taxa are specialized as browsers, hypsodont taxa
often have broader diets that included more browse consumption than
previously anticipated. It has long been accepted that morphology imposes
limits on the diet; this synthesis supports prior work that herbivores with
‘grazing’ adaptions, such as hypsodont teeth, have the ability to consume
grass but are also able to eat other foods. Notably, localized dietary breadth
of even generalist taxa can be narrow (approx. 30 to 60% of a taxon’s overall
breadth). This synthesis demonstrates that ‘grazing-adapted’ taxa are
varied in their diets across space and time, and this flexibility may reduce
competition among ancient herbivores.
1. Introduction
The appearance and expansion of grassland biomes in North America during the
Neogene coincided with suites of morphological adaptations and niche diversi-
fication among terrestrial mammalian herbivores [1–5]. Most notable is the
evolution of horses, from small forms with multiple digits during the Palaeo-
gene, to large taxa with broader muzzles, high-crowned teeth and increased
cursoriality [6–10]. This transition, in horses, is cited as one of evolution’s classic
examples of the ability of animals to adapt to their local environment—with
direct selection of features that affect an individual’s ability to consume grass.

While morphology can provide insight into an animal’s potential dietary be-
haviour [7,11], it is also evident that certain morphological forms do not
necessitate specific diets [12,13]. Once ungulates exhibit higher-crowned teeth,
this allows for the inclusion of grass and other abrasive food items into their
diet; however, mixed-feeders maintain their ability to consume browse. That
being said, browsers are often locked into their diets owing to their physical
inability to processes a significant amount of abrasive vegetative material—
with fossil tapirs, for example, exhibiting little to no craniodental changes over
millions of years [14]. The correlation between craniodental morphology and
diet among modern animals has been well established and applied to ecological
interpretations of fossil taxa [15,16], but morphology, which is shaped in evol-
utionary timescales, may not reveal complexities in behavioural or ecological
variation within taxa [13,17]. To better understand dietary flexibility and the
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degree towhich animals consume grass and browse, proxy data
from stable carbon isotopes and/or dental microwear are typi-
cally employed [18–22]. These data can help infer what an
individual animal consumed at a specific place and moment
in time, as opposed to its potential diet as inferred from mor-
phological features. However, many critical questions remain
unanswered. Specifically: (i) do morphological interpretations
of dietary behaviour agree with stable isotope proxy data?
(ii) are hypsodont or grazing-adapted taxa specialists, or is
hypsodonty a means to broaden the dietary niche? and
(iii) how is dietary niche breadth attained at the local level
within a taxon?

This paper provides a synthesis of the dietary behaviour
and specialization of herbivorous mammals since the expan-
sion of C4 grasslands in North America (the late Neogene).
Here, we examined the isotopic record of Perissodactyla, Artio-
dactyla and Proboscidea occurring at low latitudes (less than
37°) in North America since the late Miocene, approximately
7 Ma (i.e. when and where C4 grasses are favoured, and δ13C
values can more reliably differentiate between the con-
sumption of C4 grass and C3 browse ([18,23,24]; electronic
supplementary material). Specifically, we test the following
hypotheses of notable relevance to the evolution and palaeo-
biology of mammalian herbivores through time, focusing on
hypsodonty: (i) morphological dietary interpretations largely
agree with isotopic proxy data; (ii) the ability to graze does
not necessitate a specialized diet of grass; and (iii) the localized
isotopic breadth of hypsodont taxa is more variable and
flexible than in brachydont taxa.
2. Methods
(a) Materials
Isotopic data include all published stable isotope analyses (SIAs) of
carbon from the carbonate portion of tooth enamel hydroxylapa-
tite (δ13C) from herbivorous mammals (i.e. Perissodactyla,
Artiodactyla and Proboscidea) since the late Miocene (approx.
7 Ma) that occur in the contiguous United States below 37° lati-
tude. Bulk data (one sample taken parallel to a tooth’s growth
axis, per individual, typically less than 1 cm in length) and average
values from serially sampled teeth (i.e. a series of samples taken
perpendicular to a tooth’s growth axis) were gathered via a Web
of Science search using keywords that included isotope, fossil,
teeth and other iterations of these words. Publications where
only summary statistics were provided without the raw data are
noted in summary tables, but not included in statistical analyses.
These data were supplemented with a targeted bulk sampling
of under-sampled taxa in poorly sampled regions (n = 92; elec-
tronic supplementary material, dataset S1). Each occurrence was
assigned to a North American land mammal age (NALMA), if
known. Each taxon was categorized by hypsodonty index (HI)
[15,25] as brachydont (low-crowned), mesodont (moderate-
crowned), hypsodont (high-crowned) or highly hypsodont based
on published morphological descriptions (gathered from the
literature, personal communication with C. Janis, 2020; electronic
supplementary material, table S1). All comparisons between taxa
occurred at the genus level, owing to concerns over the validity
and stability of species-level identifications [26,27]. Presenting
results at the genus level also provides taxonomic consistency
with many of the original references (electronic supplementary
material, dataset S1) and allows for comparisons over deeper
time than possible at the species level. This approach is further
justified through a hierarchical analysis of variance (taxonomi-
cally nested ANOVAS; electronic supplementary material) that
supports the hypothesis that individuals within a genus are conge-
ners with similar diets. Hierarchical analysis of variance was
conducted in R using the package ‘ape’ [28,29].

(b) Statistical analyses
To assess whether morphological interpretations of dietary behav-
iour agree with stable isotope proxy data, the isotopic diet was
characterized for each taxon. Typical diets of taxa were character-
ized by calculating the median and interquartile range from
available δ13C values measured from individual specimens. Taxa
with median values greater than −2‰were classified as primarily
grazing, values less than −9‰were classified as primarily brows-
ing, and intermediate values were classified as mixed-feeding [30].
Taxawere secondarily classified by the breadth of the interquartile
range. Taxa with median diets where the third quartile was less
than −9‰ were classified as ‘browsers’, while ‘browsing/mixed-
feeders’ had median values less than −9‰, but a third quartile
that exceeded this threshold. Taxa were identified as ‘grazers’
where the third quartile was greater than −2‰ and ‘mixed-fee-
ders’ were classified for those taxa where the first and third
quartiles were between −9‰ and −2‰ or, as was the case with
Camelops, the interquartile range fully spanned −9‰ to −2‰.

In addition to classifying the overall median diet and breadth
of taxa, dietary breadth and specialization were analysed at the
local, or site, level within a NALMA. Local breadth is naturally
expected to be a fraction of a taxon’s overall breadth. To assess
whether average local breadth is indeed narrower, or more
specialized, than would be expected from a random sampling
of the taxon pool, the standardized mean effect size (Cohen’s
d) between a taxon’s observed mean site range and the
expected mean range was calculated from a set of randomizations
(electronic supplementary material).

To assess how generalist taxa acquire their overall breadth and
quantify how representative localized samples are of a taxon’s
overall diet, the local δ13C range at a site was calculated as a frac-
tion of the overall taxon δ13C range. The average site fraction
was compared by taxon to assess whether generalists with broad
diets tended to also be generalists at the local level. If a site was
composed of assemblages of differing NALMAs, fractions were
calculated for each, separately. Only assemblages with five or
more individuals of that taxon were included in this analysis,
and a mean fraction was calculated if it was found within greater
than or equal to three assemblages.

The localized dietary breadth of adaptable taxa may be
impacted by biotic interactions, such as competition and resource
availability. If hypsodonty affords species greater flexibility in
their diets, then hypsodont taxa are predicted to obtain greater
breadth at the local level through the consumption of alternative
(non-grass) resources, while brachydont taxa are not. Local dietary
breadth (the range of δ13C values) of each taxon was fit as a linear
function of its site minimum and maximum. If a site was com-
posed of assemblages of differing NALMAs, each assemblage
was treated separately. Only assemblages with five or more
individuals of that taxon were included in this analysis, and a
regression was fit if it was found at greater than equal to three
assemblages. Relationships were assessed by taxa, by HI
categories, and by isotopically determined dietary categories
(browser, browsing/mixed-feeder, mixed-feeder, grazer). Statisti-
cal analyses and data visualizations were conducted in ‘R’ using
the packages ‘plyr’ and ‘ggplot2’ [28,31,32].
3. Results
(a) Dietary consensus and specialization
All compiled data of stable carbon isotope values from
fossil mammals (n = 1312; 1161 when excluding California;
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Figure 1. Comparison of diets across 28 fossil mammal taxa (n = 1161) showing the medians and interquartile ranges (boxes) of δ13C values from fossil tooth
enamel. These individuals are from localities below 37° latitude and outside of the state of California. Taxa are arranged from bottom to top in order of increasing
median δ13C values. Box-colour indicates relative hypsodonty: brachydont indicated by dark blue bars with open circles, mesodont indicated by tan bars with open
triangles, hypsodont indicated by light green bars with plus symbols and highly hypsodont indicated in grey with x’s. The 11 taxa that are best represented in the
dataset (at least three distinct assemblages with at least five individuals) are labelled in bold, with their total number of sites indicated as a superscript. Values less
than -9‰ (dashed blue line) are diets of primarily C3 resources (browse, at low latitudes), while values greater than -2‰ (dashed green line) are diets of primarily
C4 resources (grass, at low latitudes). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210121

3

electronic supplementary material, dataset S1, [33]) are
summarized in figures 1 and 2 and table 1 (electronic sup-
plementary material, figures S6 and S7, and tables S2 and
S3). Out of the 30 taxa with published δ13C values in the litera-
ture (electronic supplementary material, table S1), 29 occur
outside of California (figures 1 and 2; electronic supplementary
material table S3), and 11 are well represented (found at n≥ 3
sites with n≥ 5 individuals; n = 658 individuals samples,
across the best-sampled localities, table 1). Of these, HI indi-
cates that Bison and Equus are highly hypsodont; Mammuthus
is hypsodont; Hemiauchenia and Palaeolama are mesodont;
and Mylohyus, Platygonus, Tapirus, Cuvieronius, Mammut, and
Odocoileus are brachydont (electronic supplementary material,
table S1). There is an agreement between SIA data and most
brachydont taxa (figure 1 and table 1), and the narrow breadth
of their typical diets (interquartile range) indicates that these
taxa are specialized on C3 vegetation (i.e. browse, at sites less
than 37° latitude). Curvieronius is an exception, as it has a
median δ13C value greater than −9‰ but less than −2‰.
Mylohyus and Platygonus have median diets that are less than
−9‰, but they are distinguished from other brachydont taxa
in the broad interquartile breadth of their δ13C values, indicat-
ing they are browsers/mixed-feeders. Among hypsodont
taxa, Bison is the only one with a median δ13C value greater
than −2‰, indicating a primarily grazing diet; however, the
breadth of its interquartile range indicates that Bison often
consume C3 vegetation (i.e. potentially browse; figure 1 and
table 1).Mammuthus and Equus (hypsodont and highly hypso-
dont, respectively) havemedian values≤−2‰, but the breadth
of their diets does indicate significant consumption of C4

resources (figure 1 and table 1). Palaeolama and Hemiauchenia
are both mesodont and are browsing and browsing/mixed-
feeding, respectively. Although not well-sampled outside
of California (electronic supplementary material, table S2),
Camelops, Cormohipparion (both hypsodont), Tetramaryx and
Nannipus (both highly hypsodont) are, isotopically, mixed-
feeders, and Stockoceros, which is primarily sampled within
California, is a highly hypsodont browser (figure 1; electronic
supplementary material, figures S6 and S7). Among well-
sampled taxa (n = 11) there are significant, positive, linear
relationships between both a taxon’s median δ13C value
(R2 = 0.3046, p = 0.0455) and mean δ13C value (R2 = 0.3916,
p = 0.0233), and their total δ13C range. There is a significant
positive relationship between a taxon’s dietary range and
their third quartile value (R2 = 0.5011, p = 0.0089) and a
highly significant relationship with a taxon’s maximum δ13C
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Table 1. Comparison between hypsodonty index (HI) and diets inferred through SIA of δ13C values from fossil herbivore tooth enamel. (HI categories are
brachydont (B), mesodont (M), hypsodont (H) and highly hypsodont (HH). SIA diet categories are grazer (G), mixed-feeder (MF), browser/mixed-feeder (BMF)
and browser (B). The total number of specimens and sites (‘n(n sites)’) are provided in addition to the sample sizes from sites that have at least five individuals
present (n of best). Summary statistics for each taxon are provided, including the median, mean with standard deviation, total range and interquartile range
(IQR). SIA diet is primarily determined by the median and is modified by the breadth indicated from the IQR. Taxa are indicated in bold if the primary,
median, diet differs from what is expected from the HI.)

taxon HI SIA n(n sites) n of best med. (‰) �x+s:d: (‰) range (‰) IQR (‰)

Cuvieronius B MF 69(20) 45(4) −4.1 −4.5 ± 2.3 −11.9 to −0.5 −5.1 to −2.8
Mammut B B 84(20) 62(7) −11.3 −11.2 ± 1.1 −13.4 to −6.3 −11.9 to −10.6
Mylohyus B BMF 50(15) 33(3) −10.4 −9.8 ± 2.5 −14.3 to −2.3 −11.4 to −8.1
Odocoileus B B 57(14) 43(6) −13.3 −13.2 ± 1.4 −15.9 to −10 −14.1 to −12.4
Platygonus B BMF 74(18) 42(4) −10.2 −9.6 ± 2.8 −14 to −1.4 −11.6 to −7.9
Tapirus B B 40(14) 25(4) −12.3 −12.4 ± 1 −13.9 to −10.1 −13.2 to −11.7
Hemiauchenia M BMF 72(18) 50(5) −9.2 −8.3 ± 4 −14.1 to 3.1 −11.2 to −5.7
Palaeolama M B 37(6) 31(3) −12.3 −12.4 ± 1.4 −15.7 to −8.1 −13.1 to −11.9
Mammuthus H G 196(47) 135(13) −2.3 −2.7 ± 2.1 −9.8 to 1.4 −3.5 to −1.2
Bison HH G 98(32) 54(7) −0.8 −1.4 ± 2.7 −11.4 to 3.2 −2.9 to 0.6
Equus HH G 237(66) 138(13) −3.3 −3.6 ± 2.7 −12.5 to 1.6 −5.3 to −1.6
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value (R2 = 0.8794, p < 0.0001). Collectively, these data indicate
a positive relationship between grass consumption and overall
dietary breadth.
Across time, diets are constrained among brachydont
Artiodactyls and Perissodactyls, while more flexible diets are
associated with hypsodonty (figure 2). Although there is
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six localities). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210121

5

variation over space (electronic supplementary material, figure
S8), the overall pattern is similar.Median grazing values greater
than −2‰ are achieved by highly hypsodont Artiodactyls by
the Rancholabrean and hypsodont Proboscideans in the
Latest Quaternary. This is true even if a geographical region is
considered (electronic supplementary material, figure S8).
With the exception of some southwestern Irvingtonian occur-
rences (electronic supplementary material, figure S8), median
diets of Perissodactyls remain less than −2‰ since throughout
the Pleistocene and Latest Quaternary. Mesodont taxa have
median diets reflective of browsing (< −9‰) since the Blancan.
The median diets of brachydont Artiodactyls and Perissodac-
tyls are reflective of browsing, while this morphology is
associated with mixed-feeding among Proboscideans until the
Latest Quaternary, when Cuvieronius goes extinct.

Specialization at the locality level varies across taxa
(figure 3) and average site breadth is provided in table 2.
Equus, Hemiauchenia and Tapirus have average site breadths
that are more constrained than expected from random
(table 2; electronic supplementary material, table S4), as indi-
cated by standardized mean effect sizes that are large (d >
0.8). The average fraction of the total taxon breadth ranges
from 0.32 ± 0.16 s.d., for the least locally representative taxon
(Equus) relative to its overall breadth, to themost representative
(Platygonus) at 0.65 ± 0.31 (figure 3a and table 2). Among the
best-represented taxa, there is no significant linear relationship
between a median δ13C diet and the average fraction of the
overall breadth that is represented locally at a site ( p =
0.1574). Site fractions for Odocoileus (a brachydont browser)
are significantly higher than Equus ( p = 0.0295; a highly hypso-
dont grazer; figure 3b). The fraction of overall breadth that is
locally represented by Platygonus and Mylohyus (brachydont
browsers/mixed-feeders) are also significantly higher than
Equus ( p = 0.0485 and p = 0.0426, respectively; figure 3b).
(b) Dietary breadth
The relationships between localized dietary breadth and mini-
mum and maximum δ13C values are summarized in figure 4.
Among Cuvieronius (p = 0.0157), Mammuthus (p< 0.0001) and
Bison (p = 0.0029), there is a significant relationship between
greater dietary breadth and lower (depleted) δ13C values
(greater consumption of C3 resources; figure 4a and table 2).
The localized breadth of Mammut (p= 0.0056), Platygonus (p=
0.0052) and Mylohyus (p= 0.0265) are significantly broader
with higher (enriched) δ13C values (figure 4b and table 2).
Collectively, hypsodont taxa increase their breadth with greater
consumption of C3 resources (p< 0.0001; figure 4a; electronic
supplementary material, table S5) and brachydont taxa increase
their breadth with greater consumption of resources with
enriched δ13C values (p < 0.0001; figure 4b). If we consider the
categorization of taxa based on their median isotopic values
and breadth, browsers significantly increase their local dietary
breadth with greater consumption of resources with enriched
δ13C values (p = 0.0026; figure 4d; electronic supplementary
material, table S5). There is no significant relationship between
local dietary breadth and the maximum or minimum local
value for browsing/mixed-feeders. By contrast, mixed-feeders



Table 2. Locality parameters pertaining to the breadth of each taxon. (The average assemblage range and the standard deviation were calculated where there
were at least five individuals present (n of best) with the number of sites given in parentheses. The standard mean effect size (Cohen’s d) between the mean
assemblage range and the mean expected from randomizations was calculated, and large effect sizes (d≥ 0.80) indicated in bold. The local breadth (δ13C
range) of a taxon divided by its total range (table 1), presented as the fraction ratio across all sites ± s.d. Significance values between a taxon’s local breadth
and its local maximum and minimum are also given. ‘—‘indicates that fewer than three sites were available to calculate a relationship, and values in bold are
significant linear relationships.)

taxon n of best range+ s:d: (‰) d fraction+ s:d: (‰)

p-values, relationship local
breadth

taxon min taxon max

Bison 54(7) 5.5 ± 3.1 0.33 0.38 ± 0.21 0.0029 0.8484

Mammuthus 135(13) 4.2 ± 2.3 0.27 0.37 ± 0.20 0.0001 0.2168

Equus 138(13) 4.5 ± 2.2 0.85 0.32 ± 0.16 0.0919 0.2414

Cuvieronius 45(4) 3.8 ± 3.1 0.28 0.33 ± 0.28 0.0157 0.2874

Hemiauchenia 50(5) 6.9 ± 2.6 0.91 0.40 ± 0.15 0.2447 0.7213

Mammut 62(7) 2.6 ± 1.7 0.08 0.37 ± 0.24 0.4217 0.0056

Mylohyus 33(3) 7.1 ± 2.8 0.66 0.59 ± 0.23 0.5122 0.0265

Odocoileus 43(6) 3.1 ± 1.1 0.03 0.53 ± 0.18 0.5814 0.1799

Palaeolama 31(3) 2.8 ± 1.3 0.75 0.37 ± 0.18 0.5202 0.2128

Platygonus 42(4) 8.2 ± 4.2 0.14 0.65 ± 0.31 0.5158 0.0052

Tapirus 25(4) 1.5 ± 0.2 0.83 0.38 ± 0.05 0.7874 0.9605

Tetrameryx 7(1) 7.3 ±— — — — —

Camelops 15(2) 8.4 ± 6.6 0.00 0.64 ± 0.51 — —

Cormohipparion 33(1) 13.1 ±— — — — —

Stockoceros 6(1) 3.4 ±— — — — —

Nannipus 6(1) 4.8 ±— — — — —
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(p= 0.0072) and grazers (p< 0.0001) increase their local dietary
breadth by individuals in the population consuming more C3

resources (figure 4c; electronic supplementarymaterial, table S5.
4. Discussion
(a) Dietary consensus and specialization
Palaeoecological interpretations that are based on faunal com-
position rely on a precise understanding of the dietary and
habitat preferences of fossil taxa. The degree of hypsodonty
was compared to δ13C values of enamel, an isotopic proxy
for diet.Many brachydont taxa, as expected, have diets categor-
ized by δ13C values as browsers (figures 1 and 2). However, SIA
refines the diets of mesodont–hypsodont taxa and provides
greater insight regarding their dietary breadth (figure 1), and
variability over time (figure 2) and space (figures 3 and 4).
Notably, δ13C values indicate some degree of mixed-feeding
behaviour, or C3 consumption, across mesodont to highly
hypsodont taxa (figures 1 and 2 and table 1). Hypsodonty
and the ability to consume C4 resources are associated with
greater isotopic breadth (figure 1) and the ability to consume
C3 resources over time (figure 4). Although dietary breadth at
the local level represents a fraction of the overall dietary breadth
of a taxon, that fraction is most representative of the overall diet
for taxa such as Odocoileus (a brachydont browser) and Mylo-
hyus (a brachydont browser/mixed-feeder) than Equus (a
highly hypsodont grazer). Although the fraction of their overall
dietary breadth represented at the local level is not significantly
different from other taxa, Tapirus and Hemiauchenia have aver-
age site ranges that are specialized (narrower than expected
from random; table 2).

These data suggest that the brachydont tooth morphology
‘locks’ most taxa into specialized browsing behaviour, while
hypsodonty and the ability to graze allows many taxa to be
more generalized and flexible—increasing dietary plasticity.
Notable exceptions are the brachydont peccaries, Mylohyus
and Platygonus, which take advantage of resources with
enriched δ13C values, and the largest brachydont taxon in
this study, Cuvieronius, which is a mixed-feeder. The common
representation of Pleistocene Mammuthus, Equus and Bison as
‘grazing specialists’ in the literature [2,35–37] stands in contrast
with their broad breadth of δ13C values presented here.

While it is possible that a portion of the breadth observed
among grazers is owing to the consumption of C3 grass, we
sought to mitigate the confounding effects of C3 grasses by
restricting our analyses to occurrences found in regions
where C4 grasses are the dominate grass species (<37° latitude)
[18,23,24,35,38] (electronic supplementary material). Despite
this constraint, many of the taxa in our study are large and
probably had large home ranges. Additionally, some of the
late Hemphillian records may reflect a greater abundance of
C3 grasses that were present before the development of C4-
dominated grassland ecosystems [17]. Slightly depleted δ13C
values could result from an animal moving between C4-
grass- and C3-grass-dominated environments. However, to
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Figure 4. A taxon’s local dietary breadth as a function of consuming varied resources. Taxa are categorized by hypsodonty (a,b) and their isotopically determined
diets (c,d ). (a) The local dietary breadth of hypsodont taxa increases when individuals consume more C3 resources (n = 39, p = 3.80 × 10−0.6), while (b) the local
dietary breadth of brachydont taxa increases when individuals consume more C4 resources (n = 28, p = 7.12 × 10−05). Among different dietary guilds, (c) browsers
(n = 21, p = 0.0026) exhibit greater dietary breadth when more C4 is consumed, and (d ) mixed-feeders (n = 8) and grazers (n = 34) exhibit greater dietary breadth
with greater consumption of C3 resources ( p = 0.0072, p = 4.88 × 10−06, respectively). When both categories of mixed-feeders are combined, local dietary breadth
is significantly associated with greater consumption of C3 resources (n = 20, p = 0.0036). (Online version in colour.)
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obtain some of the lower first quartile δ13C values observed for
Equus (−5.4‰), large quantities of C3 grasses would need to be
consumedviamigrations to C3-grass-dominated environments
(electronic supplementary material). Under such a scenario,
isotopic values would show large variation over seasons and
could be revealed by serially sampling teeth along their
growth axis. However, a supplementary analysis on a subset
of serially sampled individuals from low-latitudeNorth Amer-
ica since 5 Ma does not support this alternative (electronic
supplementary material, figure S9). The abundance of C3-
grass is controlled by precipitation and temperature; therefore,
a low-latitude longitudinal environmental gradient would
tend to favour C4 over C3 grasses in eastern versus western
sites [38,39]. As a result, grass consumed from western sites
may result in enamel with lower δ13C values. However, the
data in our study tend to be temporally and spatially biased
to Quaternary sites in the southeastern United States. Within
this region, and during this time, grazers would have to
engage in suboptimal, selective grazing of relatively rare C3

grass, to the exclusion of more readily abundant C4 resources.
Furthermore, when analysed in isolation, eastern sites result in
similar dietary characterizations across taxa (electronic sup-
plementary material, figures S6 and S7, tables S2 and S3) and
over time (electronic supplementary material, figure S8).
Thus, we interpret the observed breadth of δ13C values of
grazing-adapted taxa as a true, mixed-feeding signal.

SIA helps to confirm dietary flexibility observed among
herbivorous taxa, as suggested via other proxies. The δ13C
values of Platygonus and Mylohyus verify their primary diet
as that of a browser, as would be expected from their
dental and cranial morphology [40,41], yet their broad diets
include mixed-feeding, consistent with dental microwear
analyses [42,43]. Further, evidence from dental microwear
analysis indicates that even grazing-adapted taxa, such as
Mammuthus [44] and Bison [19,45], exhibit varied diets that
include forbs and shrubs. While dental microwear texture
analysis (DMTA) is often cited as recording the most recent
meals an animal consumes [46], sampling of multiple indi-
viduals that died at disparate periods of time and across
disparate age classes demonstrates the overwhelming
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consumption of browse among grazing-adapted taxa in fossil
assemblages. The high median δ13C values (e.g. −3.3‰ for
Equus) and broad interquartile ranges (e.g. 3.6‰ for Bison)
we report here would suggest that the variation in dietary
textures observed through DMTA is not merely capturing
the consumption of fallback resources or the ‘last supper’ of
a taxon before its death, but prolonged mixed-feeding behav-
iour at the time teeth was mineralizing (as well as shortly
before death).

Although many taxa exhibit a wide range of δ13C values,
there is evidence of site specialization among some taxa
(figure 3 and table 2). These findings are consistent with
other studies addressing intraspecific variation over space
[13,17]. Just as specialization among individuals within a
population can have important ecological implications [34],
specialization across populations within a taxon may reveal
important insights into resource use and competition within
communities over broader scales [17]. Among three of the
11 well-represented taxa in our study, the average local
breadth is lower than expected from random (table 2,
d > 0.8). Of these, Hemiauchenia has the broadest overall diet-
ary breadths (interquartile range = 5.5‰, table 1) of the best-
represented taxa in our study, but the average fraction of its
dietary breadth is low, 0.40 ± 0.15 (table 2). Hemiauchenia
therefore represents a taxon that is overall a generalist, but
rather than adopting a jack-of-all-trades strategy at all sites,
it is often fairly specialized at a given locality.

Across most taxa, local dietary breadth accounts for less
than half of a taxon’s overall dietary breadth (average local
fraction <0.5; figure 3a). There is no significant relationship
between median diet and the average fraction of dietary
breadth represented at the local level. However, apparent
differences in the localized ratios of some grazers (i.e.
Equus) compared to some browsers and browser/mixed-fee-
ders (i.e. Odocoileus, Platygonus and Mylohyus, figure 3b), hint
that dietary partitioning at the local level may be influenced
by dietary strategy. Somewhat surprisingly, localized special-
ization is also evident among comparatively specialized
browsers (e.g. Tapirus; d > 0.8, table 2). The two extinct pecc-
aries (Mylohyus and Platygonus) have broad diets and appear
to be the most representative of their greater breadth at the
local level. This contrasts with modern observations of
Tayassu pecari, which are narrowly dependent (−28.7‰ to
−26.9‰, δ13C) on closed-environment C3 resources across
Brazilian biomes [47]—suggesting that the study of extinct
taxa can alter our understanding of dietary plasticity
among herbivorous mammals.

(b) Grazing morphology as a means to broaden the
niche

Given evolutionary adaptations that allow for grass con-
sumption, it was predicted that greater localized dietary
breadth among hypsodont taxa, mixed-feeders and grazers
would be associated with more consumption of C4 resources.
We found that, as a guild, hypsodont taxa significantly
increase their localized dietary breadth when they consume
more C3 resources (figure 4a and table 2). Similarly, among
grazers and mixed-feeders, greater breadth was associated
with lower δ13C values, or greater C3 consumption (figure 4c
and table 2). This suggests that morphological adaptations
associated with grazing (e.g. hypsodont and loxodont tooth
morphologies or high post-canine tooth volume) do not
exclude opportunistic expansions of the dietary niche to con-
sume forbs and shrubs [12,13,35,48,49], as opposed to
mandating grazing. The observed amount of browse con-
sumption among highly hypsodont taxa raises the question
of what importance grit may play with extinct grazers,
especially Equus. Given that inadequate consumption of abra-
sives in the diets of modern horses can result in pathological
uneven tooth wear [50], future directions of the dietary niches
of extinct Equus might evaluate minimum required grit.

Brachydont and browsing taxa exhibited greater dietary
breadth in association with higher δ13C values than was pre-
dicted (figure 4b,d). Although it is clear that these animals
are not consuming large quantities of grass (figure 1), these
relationships do suggest that they are partitioning C3 resources,
which are more isotopically variable than C4 resources, to
exploit more C3 vegetationwith enriched δ13C values, possibly
inmore open habitats [18]. The ability for a taxon to broaden its
niche, or to engage in variable dietary behaviour, may allow a
buffer against extinction. As Janis et al. [1] point out, there is a
large decline of browsers with the expansion of grassland
biomes in North America, but not a one-for-one replacement
of grazers over browsers since the late Miocene. This shift
in dietary strategy probably permitted grazing-adapted or
mixed-feeding taxa to now eat a broader range of resources
depending on climatic conditions, the presence of competitors
and other biotic and/or abiotic factors. Given this apparent
flexibility, we suggest a re-phrasing of dietary categorizations
from grazing to ‘grazing-adapted’ and mixed-feeding to
‘mixed-feeding-adapted’ moving forward.

(c) Lost ecological functions, biodiversity loss and
underlying interactions within communities

Any interpretation of the past using modern analogues relies
on the principle of uniformitarianism: that the processes
occurring in the present day have always occurred. When
inferring diets of long-extinct species, we often rely on mor-
phological comparisons of features that have evolved over
millennia and their correlations with observed dietary behav-
iour [7,11]. We also assume that what an animal does today, it
probably did so in the past and will also do so in the future
(i.e. niche conservatism [51]). We know, however, from separ-
ate lines of evidence, that ecological interactions and realized
niches are not uniform through space or time. Notably, the
study of non-analogous mammalian communities has
revealed that taxa respond individualistically in response to
environmental change [52–55], and populations within taxa
are also known to behave individualistically and respond
locally to the environment [56–59].

Mismatch between diets inferred via δ13C values and
from extant morphological comparisons may also reveal fun-
damental differences between ecological communities of the
prehistoric past and the present. Our results suggest that
community interactions might be driving niche breadth and
partitioning within sites, which would be expected among
diverse communities with many types of herbivores. How-
ever, modern systems are significantly less diverse than
those of the past, and many niches that were filled as recently
as ca 13 000 yr B.P. (such as grazing-adapted megafauna) are
now absent, or nearly absent, from most ecosystems, includ-
ing in North America. The extinction of megafauna has been
linked to the complete reorganization of interactions between
organisms, such that species with strong community
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associations in the past are now significantly disassociated in
modern communities [60–63]. Therefore, our observations of
modern communities, and perceptions of specialization
across taxa in these environments, may not serve as suitable
analogues for past communities.

It has long been accepted that morphology provides a first
approximation of diet. While morphology may limit what an
animal can and cannot eat (i.e. brachydont taxa do not exten-
sively graze, and carnivores with gracile jaws do not
regularly crush bone), morphology does not necessarily pre-
scribe a specialized diet [12,13,35,49]. The use of proxy data
such as stable isotopes and dental microwear arose because
of the need to understand what individual animals actually
ate at a given location and point in time [18,21,46]. Collec-
tively, this synthesis of stable carbon isotope data helps
provide an informed estimate of the dietary behaviour of
30 taxa, and detailed analyses of those best represented in
the literature permit an assessment of dietary breadth,
specialization and variation across localities. This synthesis
collectively supports the idea [25,48] that herbivores with
‘grazing’ adaptions have exactly that—the ability to consume
grass but are also able to eat browse and/or other foods
depending on local factors. A re-framing of terms such as
grazers and mixed-feeders to ‘grazing-adapted’ and ‘mixed-
feeding adapted’, respectively, may help clarify the palaeo-
biology and evolutionary history of ancient herbivorous
mammals in North America.
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