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Abstract: Immobilized enzymes are a significant technological approach to retain enzyme activity
and reduce enzyme catalytic cost. In this work, trypsin-incorporated Zn3(PO4)2 hybrid nanoflowers
were prepared via mild precipitation and coordination reactions. The controllable preparation of
hybrid nanoflowers was achieved by systematically investigating the effects of the raw-material
ratio, material concentration and reaction temperature on product morphology and physicochemical
properties. The enzyme content of hybrid nanoflowers was about 6.5%, and the maximum specific
surface area reached 68.35 m2/g. The hybrid nanoflowers exhibit excellent catalytic activity and
environmental tolerance compared to free trypsin, which was attributed to the orderly accumulation
of nanosheets and proper anchoring formation. Further, the enzyme activity retention rate was still
higher than 80% after 12 repeated uses. Therefore, trypsin/Zn3(PO4)2 hybrid nanoflowers—which
combine functionalities of excellent heat resistance, storage stability and reusability—exhibit potential
industrial application prospects.

Keywords: hybrid materials; trypsin; nanoflowers; controlled synthesis; catalytic performance

1. Introduction

Protein–inorganic hybrid nanoflowers (PINFs), the integration of proteins and phos-
phate, a novel research field, have attracted great attention and have achieved rapid
development since they emerged in 2012 [1–5]. Generally, PINFs can be classified according
to the types of the inorganic component and the organic component [2,6,7]. A series of
inorganic phosphate, such as zinc [7,8], copper [9,10], calcium [11,12], manganese [13,14]
and cobalt [15,16] phosphate, have been employed to construct PINFs. Additionally, several
organic biological macromolecules, including enzymes [17,18], proteins [19,20] and nucleic
acids [21,22], have been reported for the synthesis of PINFs. PINFs are outstanding candi-
dates for catalytic degradation, catalytic synthesis, detection, sensing, water treatment and
other fields [1,23–25]. As a serine proteolytic enzyme, trypsin is the most specific protease
and has an indispensable role in the amino acid arrangement of proteins [26]. Trypsin
contains a large number of peptide bonds composed of basic amino acids, such as arginine
and lysine, and is widely used in anti-inflammatory detumescence, leather manufactur-
ing, raw silk processing and food processing. In general, free trypsin is stable in acidic
conditions but sensitive to alkaline conditions. In order to solve the problem of separation
and reuse of trypsin, several methods, including polymer composite microspheres [27],
nano-composite membrane [28], mesopore silicon oxide [29], magnetic particles [30], natu-
ral polymer microspheres/fibers [31], quantum dots [32] and other immobilized carriers,
have been selected to improve the stability of trypsin. Furthermore, the enzyme activity
also improves after immobilization.

For example, Esmaeil Aslani and coworkers reported the preparation of immobilized
trypsin by using Fe3O4@SiO2-NH2 [30]. The separation process of this material is simple
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and rapid and requires low energy consumption. Moreover, it has higher activity than
free enzyme in different organic solvents. After six uses, the hydrolysis capacity of casein
remained 85% of the initial activity. Chao Zhong and coworkers elegantly designed novel
trypsin–copper phosphate hybrid nanoflowers containing copper phosphate as an inorganic
compound and trypsin as the binding agent. As a micro-reactor for the hydrolysis of bovine
serum albumin (BSA), the immobilized trypsin can be stored at 4 ◦C for 20 days and still
maintain virtually undiminished catalytic activity [33].

Although it is possible to immobilize trypsin in the form of hybrid nanoflowers,
the preparation generally takes a long time (1–3 days) when copper ions are used as
coordination primitives. It has been confirmed in previous work that the creation of
hybrid nanoflowers based on zinc phosphate is significantly faster than that of other
inorganic components. The preparation time of BSA/Zn3(PO4)2, papain/Zn3(PO4)2 and
lipase/Zn3(PO4)2 was about 3 h. Further, in contrast to free lipase, the catalytic activity
of lipase/Zn3(PO4)2 was increased by 47%, which obviously surpassed lipase/Cu3(PO4)2.
Thus, it is a great prospect to construct high-efficiency nano-flowers by selecting zinc
phosphate. In this work, original hybrid trypsin/Zn3(PO4)2 nanoflowers were prepared
quickly and efficiently. Meanwhile, we investigated the effects of reaction temperature and
feed amount on the morphology of the nanoflowers and clarified the formation mechanism
of the nanoflowers by tracking their morphology and composition changes. Using casein
as the substrate, the catalytic activity of the trypsin/Zn3(PO4)2 hybrid nanoflowers was
assessed, the catalytic conditions were optimized, and the stability of the nanoflowers for
reuse was also studied.

2. Result and Discussion
2.1. Structural Characteristics of Hybrid Nanoflowers

The structure of prepared trypsin/Zn3(PO4)2 hybrid nanoflowers was characterized
by Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), elemental analysis
and thermogravimetric analysis (TGA), employed as shown in Figures S1–S4. XRD was
performed on trypsin, Zn3(PO4)2 and trypsin/Zn3(PO4)2 (Figure S1). The XRD spectrum
of prepared Zn3(PO4) nanoparticles was in accordance with Zn3(PO4)2·4H2O (JCPDS, card
no. 33-1474). Meanwhile, the XRD spectrum of the trypsin/Zn3(PO4)2 hybrid nanoflowers
contained the diffraction peaks attributed to trypsin and Zn3(PO4)2 nanoparticles, cer-
tifying that Zn3(PO4)2 hybrid nanoflowers were synthesized successfully. Furthermore,
the structures of trypsin, Zn3(PO4)2 and trypsin/Zn3(PO4)2 were characterized by FTIR
(Figure S2). The typical characteristic peaks of trypsin stretching at 1400–1600 cm−1 for
-NH2, 2800–3000 cm−1 for -CH2 and -CH3 and the peaks for Zn3(PO4)2 were observed
in the FTIR spectrum of trypsin/Zn3(PO4)2. The results indicated the nanoflowers were
constructed by trypsin and Zn3(PO4)2·4H2O. As shown in Figures S3 and S4, elemental
analysis and thermal gravimetric analysis were used to characterize the trypsin/Zn3(PO4)2
to confirm the component contents of nanoflowers. The contents of C, H and N in hybrid
nanoflowers were 2.565%, 2.238% and 0.647%, respectively (Figure S3). The N element only
comes from trypsin, and the ratio of C and N elements in nanoflowers was consistent with
the ratio of the two elements in trypsin. The higher H content was due to bound water
in inorganic components. Furthermore, the results of TGA demonstrated that the organic
composition in the nanoflowers was completely thermally decomposed at 350 ◦C, and the
solid residue content was 93.42% under O2 atmosphere (Figure S4). Therefore, the content
of trypsin in the trypsin/Zn3(PO4)2 hybrid nanoflowers was about 6.5%.

2.2. Controlled Synthesis of Hybrid Nanoflowers

The transformation of nanoflower morphology by adding trypsin amounts from 0 g
to 0.25 g is shown in Figure 1. Without trypsin, Zn2+ reacted with PO4

− in PBS buffer
solution to form Zn3(PO4)2 precipitation with a size of about 15 µm, demonstrating flower-
like morphology assembled by lamellar (Figure 1a,b). With the increase of trypsin, the
morphology of nanoflowers changed significantly: the particle size of the nanoflowers
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decreased (5–7 µm), the nanosheets were thinner, more nanosheets were needed to assemble
nanoflowers and the interlayer spacing was reduced (Figure 1c–l). The mechanism for the
above phenomenon is that trypsin acts as a crystal inhibitor during nanoflower formation,
limiting nanosheet growth. Zn2+ interacted with the functional groups of the trypsin
by electrostatic interaction and metal coordination, which promoted assembly between
nanosheets. Further, as shown in Figure 1i–l, the morphological uniformity of nanoflowers
was destroyed when the amount of trypsin reached 0.25 g; it can be seen that the particle
size distribution becomes wider. This is due to fact that Zn2+ interacted with the functional
groups of trypsin easily when trypsin was added in excess, which resulted in in situ
formation of Zn3(PO4)2 on trypsin. Trypsin/Zn3(PO4)2 with larger freedom of movement
assembled randomly. Thus, the particle size of trypsin/Zn3(PO4)2 hybrid nanoflowers was
affected by the initial nucleation, and the secondary nucleation was more obvious.
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Figure 1. SEM images of trypsin/Zn3(PO4)2 hybrid nanoflowers prepared by adding the following
amounts of trypsin: (a,b) 0 g, (c,d) 0.01 g, (e,f) 0.025 g, (g,h) 0.05 g, (i,j) 0.1 g and (k,l) 0.25 g.
Zn(OAc)2·2H2O was 0.56 g.

Figure 2 demonstrates the N2 adsorption–desorption isotherms and pore size distribu-
tions of trypsin/Zn3(PO4)2 hybrid nanoflowers creating by adding 0 g to 0.25 g trypsin.
The N2 adsorption–desorption isotherms were all assigned to type IV adsorption isotherms
(isotherm with hysteresis loop) according to IUPAC with H3 hysteresis loop, indicating that
the pore channels of the hybrid nanoflowers were narrow-slit pores with conical structure,
which was consistent with the stacked morphology of lamellar structure observed by SEM.
Further, it can be seen from the pore size distribution curve that mesoporous (2–50 nm) and
macroporous (50–100 nm) structures were included in trypsin/Zn3(PO4)2 hybrid nanoflow-
ers. Mesoporous structures were constructed from the tightly packed lamellar interior, and
the macroporous structures were attributed to the dense accumulation of particles. Overall,
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increasing the amount of trypsin increased the number of mesopores and the specific
surface area of the hybrid nanoflowers, reducing the average pore diameter (Table S2).
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Figure 2. N2 absorption–desorption isotherm of trypsin/Zn3(PO4)2 hybrid nanoflowers prepared
by adding the following amounts of trypsin: (a) 0 g, (b) 0.01 g, (c) 0.025 g, (d) 0.05 g, (e) 0.1 g and
(f) 0.25 g. The inset is pore-size distribution curve.

The effects of Zn2+ dosage and system concentration on the morphology of trypsin/
Zn3(PO4)2 hybrid nanoflowers were further investigated, as shown in Figure 3. It can be
seen from the SEM images that hybrid nanoflowers with uniform morphology and nar-
row particle-size distribution were observed when the amount of Zn(OAc)2·2H2O was
decreased from 0.56 g to 0.14 g (Figure 3a–h). With the reduction of Zn2+, the number
of layers of the trypsin/Zn3(PO4)2 hybrid nanoflowers was increased, and the particle
size did not change evidently. The morphologies of the nanoflowers prepared with
different reactant concentrations were also observed. Multilayer trypsin/Zn3(PO4)2
hybrid nanoflowers prepared with high reactant concentration were formed at suitable
raw material ratios (Figure 3i–l).
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Zn(OAc)2·2H2O was (a,b) 0.56 g, (c,d) 0.42 g, (e,f) 0.28 g and (g,h) 0.14 g. Trypsin amount was 0.05 g.
The concentration of raw material is doubled (i,j) and halved (k,l).

Crystal growth and assembly are directly affected by the reaction temperature. Thus,
the morphology of trypsin/Zn3(PO4)2 hybrid nanoflowers prepared at different temper-
atures (30 ◦C, 40 ◦C and 50 ◦C) is shown in Figure S5. The particle size was not affected
by the reaction temperature. The number of nanoplate layers of nanoflowers increased
with temperature. However, the thickness of the nanoplates of nanoflowers decreased from
150 nm (30 ◦C) to 100 nm (50 ◦C). These results reveal that high temperature contributed
to the rapid formation and assembly of nanosheets, so the number of nanoplate layers
increased and the nanoplate layer thickness decreased.

2.3. Formation Mechanism of Trypsin/Zn3(PO4)2 Hybrid Nanoflowers

To explore in depth the morphological construction of trypsin/Zn3(PO4)2 hybrid
nanoflowers and the formation mechanism, SEM images of nanoflowers in the reaction
time range of 10 min to 120 min were observed serially, as shown in Figure 4. Nanoparticles
of Zn3(PO4)2 were formed at 10 min (Figure 4a). When the reaction was carried out for
20 min, monolayer nanosheets were observed (Figure 4b). With the prolonged reaction,
the monolayer nanosheets were assembled to the rudiment of hybrid nanoflowers with
multilayer nanosheets at 60 min (Figure 4c). Continuing the reaction to 120 min, the thick-
ness and particle size of the hybrid nanoflowers increased continuously, which exhibited
that the assembly process was still ongoing (Figure 4d). Overall, these results suggest the
mechanism for hybrid nanoflower self-assembly was crystal formation, nanosheet growth,
nanosheet assembly and epitaxial growth. These process is illustrated in Figure 5. Trypsin
molecules form complexes with Zn2+, predominantly through the coordination of amide
groups in the trypsin backbone. Meanwhile, precipitations of Zn3(PO4)2 formed in the
PBS buffer solution. During the growth process, large agglomerates of trypsin molecules
and monolayer nanosheets formed. In the assembly step, trypsin induced nucleation of
the Zn3(PO4)2 crystals to form multilayer nanosheets and act as an “adhesive” to bind the
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petals together. Due to the rapid precipitation reaction and the high content of inorganic
components, the generated nanocrystals and complexes assembled and grew on the crystal
surface according to the growth mode of inorganic compounds. As the reaction continued,
flower-like trypsin/Zn3(PO4)2 hybrid nanoparticles were obtained.
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2.4. Enzyme Activity of Trypsin/Zn3(PO4)2 Hybrid Nanoflowers

The catalytic activity of trypsin/Zn3(PO4)2 hybrid nanoflowers and free trypsin were
evaluated using casein as a substrate. Firstly, the effects of temperature and pH on enzyme
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activity of the nanoflower and free trypsin were examined, as show in Figure 6a,b. The
enzyme activity of trypsin/Zn3(PO4)2 hybrid nanoflowers and free trypsin was investigated
in the pH range of 7 to 10 (Figure 6a). The enzyme activity of trypsin/Zn3(PO4)2 was
consistently higher than that of the free trypsin at different pH values. In addition, the
relative enzyme activity of trypsin/Zn3(PO4)2 was more than 70% in the pH range of 7.5–10.
The effect of temperature on enzyme activity of trypsin/Zn3(PO4)2 hybrid nanoflowers
and free trypsin was determined in the temperature range of 33 ◦C to 55 ◦C (Figure 6b).
The enzyme activity of trypsin/Zn3(PO4)2 was also higher than that of the free trypsin
with increasing temperature, and optimal trypsin activity was at 45 ◦C. These results
indicate that trypsin/Zn3(PO4)2 hybrid nanoflowers exhibited better enzymatic activity
over wider pH and temperature ranges than free trypsin, which was attributed to the
limited three-dimensional conformational changes (flip, fold, etc.) of trypsin after being
immobilized as nanoflowers [1,34]. Enzyme immobilization by metal ion coordination can
effectively improve the catalytic activity of the enzyme, and metal ion coordination limits
its conformational changes, making it easier to maintain the structure than in free enzymes.
Further, a suitably conceived structure can make the active center more exposed, which
may be the main reason for its stable and high activity.
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The storage and operational stability of immobilized enzyme is an important feature
for its potential application in industry. Thus, the storage stability of trypsin/Zn3(PO4)2
hybrid nanoflowers at 45 ◦C and 4 ◦C in buffer solution was performed, as shown in
Figure 6c,d. The hybrid nanoflowers showed higher stability than free trypsin at 45 ◦C for
120 min (Figure 6c). The thermal stability of hybrid nanoflowers gradually became more
prominent after 30 min. Further, the storage stability of hybrid nanoflowers was evaluated
at 4 ◦C for a week (Figure 6d). The storage stability of the hybrid nanoflowers exhibited
better stability than trypsin, especially after 24 h.
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Reusability is an essential indicator to measure the industrial prospect of immobilized
enzymes, and it is also the performance to maximize its advantages. As shown in Figure
S6, the enzyme activity of trypsin/Zn3(PO4)2 hybrid nanoflowers was not significantly
weakened after 12 cycles, and the enzyme still retained 80.1% of its initial activity. The
reasons for the decrease of enzyme activity were the micro loss of trypsin in the repeated
process, and long-term operation at catalytic temperature.

3. Methods and Materials
3.1. Materials

Sodium chloride (NaCl, 99.5%), sodium phosphate dibasic dodecahydrate (Na2HPO4·12H2O,
99%), potassium chloride (KCl, 99.5%), potassium phosphate dibasic anhydrous (KH2PO4,
99%) and zinc acetate dihydrate were purchased from Sinopharm Chemical Reagent Co.,
Ltd., Xi’an, China. Trichloroacetic acid (TCA), tyrosine, casein, N,N-Dimethylformamide
(DMF) and tetrahydrofuran (THF), 1,4-dioxane were purchased from Aladdin Reagent Co.,
Ltd., Shanghai, China. Trypsin was purchased from Tci Reagent Co., Ltd., Shanghai, China.
Deionized (DI) water was used for all aqueous solutions and tests.

3.2. Preparation of the PBS Buffer

NaCl (8.00 g), Na2HPO4 (1.44 g), KCl (0.20 g) and KH2PO4 (0.24 g) were dissolved
in 1 L deionized water and cooled to room temperature. The concentration of the buffer
solution was 0.01 M.

3.3. Synthesis of Trypsin/Zn3(PO4)2 Hybrid Nanoflowers

Trypsin (0.05 g) was dissolved in 20 mL of PBS Buffer and stirred at 30 ◦C. Under
mechanical stirring, 24 mL (2.5 wt%) zinc acetate solution was added into the solution
and continually stirred for 2 h. After that, a white suspension was obtained and sepa-
rated by centrifugation. Then, the white solid was washed three times with water. Fi-
nally, the trypsin/Zn3(PO4)2 hybrid nanoflowers were obtained by removing water with a
freeze dryer.

The reaction temperatures were 30 ◦C, 40 ◦C and 50 ◦C, respectively. The amounts of
trypsin and Zn(OAc)2·2H2O are shown in Table S1, and the parallel experiments were all
single-variable.

3.4. Activity Assays of Free Trypsin and Trypsin/Zn3(PO4)2

Enzyme activity of free trypsin was determined with casein as substrate. The mea-
surement was developed by Esmaeil with some minor modifications. The typical process
was as follows: 1% (w/v) casein and trypsin (50 µg/mL) were dissolved in 500 µL PBS
buffer (pH = 7.5). After incubation at 25 ◦C for 10 min, the reaction was terminated with
500 µL 10% trichloroacetic acid (TCA), and the mixture was separated by centrifugation
at 20,000 rpm for 10 min. The absorbance of the supernatant was measured at 280 nm.
One unit of enzymatic activity was defined as the amount of enzyme hydrolyzing 1 µmol
tyrosine per minute at 25 ◦C. The enzyme activity of free trypsin was calculated by the
concentration of tyrosine.

In the case of trypsin/Zn3(PO4)2, the activity measurements and conditions were
similar to those of free trypsin, and trypsin/Zn3(PO4)2 was prepared by reacting 0.05 g
trypsin and 0.56 g zinc acetate at 30 ◦C for 120 min in 20 mL PBS buffer solution.

The thermostability of temperature on free trypsin and trypsin/Zn3(PO4)2 activity
was determined in the temperature range 33–55 ◦C and for different incubation times
(0–60 min) at 45 ◦C. The effect of pH on activity of free and immobilized trypsin was
assayed in different PBS buffers of pH ranging from 7.0 to 10.0. These tests were performed
in triplicate. The durability of free trypsin and trypsin/Zn3(PO4)2 was investigated at 4 ◦C
for a week. The reusability of trypsin/Zn3(PO4)2 hybrid nanoflowers was conducted at
37 ◦C and 12 repeated cycles.
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3.5. Characterization

The morphologies of trypsin/Zn3(PO4)2 hybrid nanoflowers were observed by scan-
ning electron microscopy (SEM, FEI Verios G4, Waltham, Thermo Fisher Scientific Ltd,
Waltham MA, USA) and transmission electron microscope (TEM, JEM-ARM300F, JEOL
Ltd, TOKYO, JPN). Fourier transform infrared (FT-IR) spectra of the nanoflowers was
conducted with an FT-IR (FTIR, TENSOR27, Bruker Ltd, Billerica, Massachusetts, USA).
The crystal structures of the nanoflowers were determined by X-ray powder diffraction
(XRD, Thermo Scientific 7000, Thermo Fisher Scientific Ltd, Waltham, MA, USA). Thermo-
gravimetric analysis (TGA, Mettler Toledo Q50) was carried out in an O2 atmosphere. The
temperature range was 50–500 ◦C, and the heating rate was 10 ◦C/min. Specific surface
areas and pore size distribution were performed by Brunauer–Emmet–Teller (BET) using an
N2 physisorption analyzer (Tristar3020, Micromeritics Ltd, Norcross, Georgia, USA). The
concentration of tyrosine was calculated by absorbance, which was obtained by a UV–vis
spectrophotometer with a dual optical path (Shanghai Unico Ltd, Shanghai, China).

4. Conclusions

In summary, trypsin-incorporated Zn3(PO4)2 hybrid nanoflowers were successfully
prepared under mild conditions using Zn2+ as the intermediate medium, which precipi-
tated with phosphate and coordinated with trypsin. The concentration and ratio of raw
materials and reaction temperature are the core factors influencing the morphology of hy-
brid nanoflowers. The formation mechanism of trypsin/Zn3(PO4)2 hybrid nanoflowers was
clarified by the intuitive observation results of morphology tracking. Trypsin/Zn3(PO4)2
hybrid nanoflowers as an immobilized enzyme demonstrated excellent enzyme activity,
including exceptional stability to pH and temperature, storage stability and reusability,
compared with free trypsin. The optimal catalytic pH and temperature are 8.5 and 45 ◦C, re-
spectively. We are convinced that our proposed strategy for fabricating trypsin/Zn3(PO4)2
hybrid nanoflowers will contribute to the extensive application of immobilized enzyme in
industrial biocatalysis.
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