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It is well established that polyubiquitin chains, in particular those linked through K48 and
K63, play a key role in the regulation of the antiviral innate immune response. However,
the role of the atypical chains linked via any of the other lysine residues (K6, K11, K27,
K29, and K33) and the M1-linked linear chains have not been investigated very well
yet in this context. This is partially due to a lack of tools to study these linkages in
their biological context. Interestingly though, recent findings underscore the importance
of the atypical chains in the regulation of the antiviral immune response. This review will
highlight the most important advances in the study of the role of atypical ubiquitin chains,
particularly in the regulation of intracellular antiviral innate immune signaling pathways.
We will also discuss the development of new tools and how these can increase our
knowledge of the role of atypical ubiquitin chains.

Keywords: atypical ubiquitination, K27-linked ubiquitin, innate immune response, antiviral signaling, interferon,
NFκB

INTRODUCTION

Virus infection triggers an immediate response in the host cell, termed the innate immune
response. The basic innate immune response pathways, operational in virtually every cell type,
have been comprehensively reviewed elsewhere (Schneider et al., 2014; Sparrer and Gack, 2015;
Chen et al., 2016). In summary, they comprise a variety of signaling cascades that are initiated
by the recognition of pathogen-associated molecular patterns by intra- and extracellular pattern
recognition receptors (PRRs). An important class of intracellular PRRs are those that recognize
viral nucleic acids in the cytosol. The retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLRs) recognize double-stranded RNA (dsRNA), whereas cyclic GMP-AMP synthase (cGAS)
recognizes dsDNA. Activation of RLRs and the cGAS-STING pathway leads to a signaling cascade
converging at the transcription factors NFκB and IRF3 and -7, which induce the production of
proinflammatory cytokines and type I interferons (IFN), respectively (Figure 1).

Ubiquitin plays a crucial role in the activation and downregulation of the innate immune
response. Conjugation of ubiquitin onto lysine residues of target proteins by E1, E2, and E3 enzymes
and deconjugation by deubiquitinating enzymes (DUBs) can modulate the function, localization,
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FIGURE 1 | Overview of ubiquitin chains that modulate the antiviral innate
immune response. Cytosolic viral nucleic acids are recognized by the dsRNA
sensors MDA5 and RIG-I and the dsDNA sensor cGAS. These activate
downstream signaling cascades that converge at TBK1 and lead to
subsequent activation of the transcription factors IRF3 and -7 and the NFκB
subunits p50 and p65. IRF3 and -7 induce the production of type I IFNs,
whereas p50 and p65 stimulate proinflammatory cytokine production. In
addition to K48- and K63-linked chains, atypical chains are important
regulators of the activation and downregulation of the innate immune
response. For the sake of clarity, K48- and K63-linked chains are only
depicted when an interaction with one of the atypical chains is shown in the
discussed literature. Blocks with rounded corners present key innate immune
factors, whereas rectangles represent E3 ligases (blue text) and DUBs (red
text) that (de)conjugate the indicated chains. Dashed lines indicate an
interaction between the connected protein and ubiquitin chains.

and abundance of the ubiquitinated target (Heaton et al., 2016).
Moreover, polyubiquitin chains can be formed by conjugation
of a subsequent ubiquitin molecule to one of the lysine
residues or the N-terminal methionine of the previous ubiquitin
molecule. These polyubiquitin chains have different topologies,
thereby creating a complex ubiquitin code that can direct many
different outcomes (Komander and Rape, 2012; Kulathu and
Komander, 2012). Regulation of the innate immune response
by polyubiquitination is well characterized for K48- and K63-
linked chains (reviewed in Davis and Gack, 2015). However,
knowledge of the role of the atypical linkages, linked via any of the
other lysine residues or the N-terminal methionine, is still rather
limited. Here we focus on the role of linear, K11-, K27-, K29-, and
K33-linked chains in the innate immune response and the tools
that are available to study these chains. Table 1 summarizes the
functions of atypical ubiquitination in innate immune responses,
and associated E3 enzymes and DUBs, as will be discussed below.

LINEAR CHAINS ARE IMPORTANT
REGULATORS OF NEMO AND NFκB
SIGNALING

Since the discovery of the linear ubiquitin chain assembly
complex (LUBAC) that uniquely catalyzes the formation of
linear chains, it has become evident that LUBAC and linear
chains are crucial for the activation of nuclear factor κB
(NFκB) signaling (Kirisako et al., 2006; Gerlach et al., 2011;
Tokunaga et al., 2011). Linear chains are especially important
for tumor necrosis factor α (TNFα) signaling, but are also
involved in other immune signaling pathways (Spit et al., 2019).
One important mechanism in the activation of NFκB, is the
interaction of linear chains with NFκB essential modulator
(NEMO). NEMO is part of the IKK complex that phosphorylates
NFκB inhibitor α (IκBα), thereby releasing the NFκB subunits
p50 and p65, which then act as transcription factors and
induce the transcription of proinflammatory cytokines. The
UBAN domain (ubiquitin binding in ABIN proteins and NEMO)
of NEMO has a strong binding-preference for linear chains,
although some studies indicate that it can also bind longer K63-
linked chains. NEMO mutants that cannot bind linear chains
or NEMO chimeras in which the UBAN domain is replaced by
the NZF domain of TAB2, a ubiquitin-binding domain (UBD)
that binds specifically to K63-linked chains, cannot activate NFκB
upon TNFα stimulation (Rahighi et al., 2009; Hadian et al., 2011;
Kensche et al., 2012). Altogether, these studies show that NEMO
UBAN has a strong preference for linear chains, and that this is
required and sufficient for NFκB activation.

In addition to its binding to linear chains, NEMO is also
a substrate for the conjugation of linear chains by LUBAC
(Tokunaga et al., 2009). Furthermore, association of LUBAC with
NEMO mediates the interaction between NEMO and TRAF3,
which then leads to the disruption of the MAVS-TRAF3 complex.
This results in NFκB activation and inhibition of type I IFN
signaling (Belgnaoui et al., 2012). LUBAC has also been found
to interact with MAVS. Hepatitis B virus-induced recruitment of
the E3 ligases Parkin and LUBAC to MAVS leads to the formation
of linear chains. Interaction of MAVS with these chains results
in a disruption of the MAVS signalosome and downstream IRF3
activation, thereby inhibiting the type I IFN response. It is unclear
to which substrate these chains are conjugated (Khan et al., 2016).

In summary, linear chains potentiate NFκB signaling, while
inhibiting type I IFN signaling.

K11-LINKED CHAINS REGULATE THE
DEGRADATION OF INNATE IMMUNE
FACTORS

K11-linked ubiquitination is associated with the regulation of
the cell cycle and proteasome-mediated degradation (Meyer
and Rape, 2014; Grice and Nathan, 2016; Yau et al., 2017).
By regulating the degradation of innate immune factors, K11-
linked ubiquitination can affect the innate immune response. For
example, RNF26-mediated K11-linked ubiquitination of STING
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TABLE 1 | Overview of the functions of atypical ubiquitination and the associated E3 enzymes and DUBs.

Ubiquitin
linkage

Modifying
enzyme

Substrate Functional outcome References

Linear LUBACa ? Interaction of NEMO with linear chains potentiates NFκB activation. Rahighi et al., 2009; Hadian et al.,
2011; Kensche et al., 2012

NEMO Upregulates NFκB activation and disrupts MAVS-TRAF3 interaction,
thereby inhibiting IRF3 activation and the IFN response.

Tokunaga et al., 2009; Belgnaoui
et al., 2012

? Interaction of MAVS with LUBAC leads to the formation of linear chains that
disrupt the MAVS signalosome and prevent downstream signaling.

Khan et al., 2016

K11 RNF26a STING Inhibits STING degradation, leading to increased type I IFN and cytokine
production.

Qin et al., 2014

USP19b Beclin-1 Stabilizes Beclin-1 and limits type I IFN production by disrupting the
interaction between RIG-I and MAVS.

Jin et al., 2016

? RIP1 Interacts with NEMO. Dynek et al., 2010

K27 TRIM23a NEMO Leads to NFκB and IRF3 activation. Arimoto et al., 2010

NEMO and
Rhbdd3

Recruits the DUB A20 to remove K63-linked chains from NEMO, thereby
preventing excessive NFκB activation.

Liu et al., 2014

TRIM23a TRIM23 Activates TBK1 and thereby induces antiviral autophagy. Sparrer et al., 2017

TRIM26a TRIM26 Interacts with NEMO, leading to increased type I IFN and cytokine
production.

Ran et al., 2016

TRIM40a RIG-I and
MDA5

Induces proteasome-mediated degradation of RIG-I and MDA5, thereby
inhibiting the type I IFN response.

Zhao et al., 2017

TRIM21a MAVS Enhances type I IFN production. Liu H. et al., 2018; Xue et al., 2018

MARCH8a MAVS Induces autophagy-mediated degradation of MAVS, thereby restricting the
type I IFN response.

Jin et al., 2017

RNF185a cGAS Induces IRF3 activation and the production of type I IFNs and
proinflammatory cytokines.

Wang et al., 2017

AMFRa STING Recruits TBK1 to STING and induces IRF3 activation and the production of
type I IFNs and proinflammatory cytokines.

Wang Q. et al., 2014

USP13 and
USP21b

STING Inhibits IRF3 activation and the production of type I IFNs and
proinflammatory cytokines.

Chen et al., 2017; Sun et al., 2017

USP19b TAK1 Inhibition of proinflammatory cytokine production. Lei et al., 2019

K27 and K29 RNF34a MAVS Induces autophagy-mediated degradation of MAVS, thereby restricting the
type I IFN response.

He et al., 2019

K29 SKP1-Cullin-
Fbx21a

ASK1 Induces IFNβ and IL-6 production. Yu et al., 2016

K33 USP38b TBK1 Prevents TBK1 degradation and induces IRF3 activation. Lin et al., 2016

RNF2a STAT1 Suppresses ISG transcription. Liu S. et al., 2018

This table summarizes the E3 enzymes and DUBs that (de)conjugate atypical ubiquitin chains in the context of the innate immune response and the effects of
(de)conjugation of these chains on the innate immune response. a Indicates that the modifying enzyme is an E3 ligase, whereas b indicates that the enzyme is a DUB.

causes inhibition of STING degradation. Thereby, the production
of type I IFNs and proinflammatory cytokines is potentiated (Qin
et al., 2014). On the other hand, RNF26 can induce autophagy-
mediated degradation of IRF3, which limits the production of
type I IFNs. This is dependent on the E3 ligase activity of RNF26,
but the authors could not identify which ubiquitin linkage is
involved (Qin et al., 2014). Overall, it seems that RNF26, partially
via K11-linked ubiquitination, can both prevent and promote the
induction of type I IFNs via the degradation of its target, and that
this is under strict temporal regulation.

The presence of K11- and K48-linked chains on Beclin-
1, a protein interacting with MAVS, has been associated with
proteasome-mediated degradation of Beclin-1 (Jin et al., 2016).
Removal of K11-linked chains by the DUB USP19 prevents this
and leads to Beclin-1 stabilization. Stabilized Beclin-1 induces
autophagy and inhibits the interaction between RIG-I and MAVS,
thereby limiting the production of type I IFNs upon SeV

or vesicular stomatitis virus (VSV) infection. This way, K11-
linked ubiquitination of Beclin-1 indirectly inhibits autophagy
and promotes the type I IFN response by inducing Beclin-1
degradation (Jin et al., 2016).

Lastly, there is some evidence that NEMO can bind K11-
linked chains, which are for example conjugated to receptor-
interacting serine/threonine-protein kinase 1 (RIP1), a kinase
associated with the TNFα receptor (Dynek et al., 2010). However,
it is unclear what the effects of this interaction are.

K27-LINKED CHAINS: BALANCING
ACTIVATION AND INHIBITION?

It is becoming more and more evident that K27-linked chains are
important regulators of the innate immune response. The first
evidence for this came from a study by Arimoto et al. (2010).
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They showed that E3 ligase TRIM23 can conjugate K27-linked
chains to NEMO and that this is required for the induction
of NFκB and IRF3 upon activation of RLR signaling (Arimoto
et al., 2010). K27-linked chains on NEMO subsequently serve
as an interaction platform for other factors that regulate the
innate immune response. This is for example illustrated by
binding of Rhbdd3, a serine protease that regulates epidermal
growth factor signaling, to K27-linked chains on NEMO. This
leads to K27-linked ubiquitination of Rhbdd3 and recruitment
of the DUB A20. A20 then removes K63-linked chains from
NEMO, thereby preventing excessive NFκB activation. By this
mechanism, Rhbdd3 was shown to control the activation of
dendritic cells and to limit Th17 cell-mediated colitis in mice
(Liu et al., 2014).

TRIM23 is also auto-ubiquitinated with K27-linked chains.
As a result, TRIM23 activates TBK1 by its GTPase activity.
TBK1 subsequently phosphorylates the selective autophagy
receptor p62, which leads to the induction of autophagy
upon infection with several different DNA and RNA viruses
(Sparrer et al., 2017).

Another E3 ligase that is auto-ubiquitinated with K27-
linked chains is TRIM26. Upon activation of RLR signaling,
TBK1 phosphorylates TRIM26, leading to TRIM26 auto-
ubiquitination. NEMO then interacts with the K27-linked
chains conjugated to TRIM26, which induces the expression
of proinflammatory cytokines, type I IFNs, and interferon
stimulated genes (ISGs) (Ran et al., 2016).

Another E3 ligase of the TRIM family, TRIM40, was
shown to conjugate K27- and K48-linked chains to the
dsRNA sensors RIG-I and Melanoma Differentiation-Associated
protein 5 (MDA5). This leads to attenuation of RNA virus-
induced RLR signaling. Mechanistically, TRIM40-mediated
ubiquitination of RIG-I and MDA5 induces proteasome-
mediated degradation of these proteins (Zhao et al., 2017).
Therefore, the authors conclude that both K27- and K48-
linked chains are involved in proteasome-mediated degradation.
However, they do not discriminate between the functions of these
two linkages. Since K48-linked chains have strongly been linked
to proteasome-mediated degradation, it may be likely that the
proteasome-mediated degradation could be attributed to K48-
linked ubiquitination, while the role of K27-linked chains in
degradation of RIG-I and MDA5 remains unclear.

Lastly, TRIM21 has been suggested to catalyze K27-linked
ubiquitination of MAVS (Liu H. et al., 2018; Xue et al., 2018).
TRIM21 expression is induced by infection with different RNA
viruses and it potentiates the innate immune response (Liu H.
et al., 2018; Xue et al., 2018). These studies clearly demonstrate
that TRIM21 has antiviral effects. However, the presented
Western blots which show that TRIM21 exerts its effects via K27-
linked ubiquitination are not very convincing, and this should be
further investigated.

Another E3 ligase that can conjugate K27-linked chains to
MAVS, is MARCH8 (Jin et al., 2017). MARCH8 is recruited
to MAVS by Tetherin, an ISG that restricts the release
of enveloped viruses (Evans et al., 2010). Recruitment of
MARCH8 by Tetherin induces K27-linked ubiquitination of
MAVS followed by the degradation of MAVS by selective

autophagy. This provides a negative feedback loop by which
the innate immune response is restricted (Jin et al., 2017).
Another E3 ligase that induces autophagic degradation of
MAVS, is RNF34. RNF34 catalyzes both K27- and K29-linked
ubiquitination of MAVS (He et al., 2019). However, the authors
also show that RNF34 is important for the clearance of damaged
mitochondria by mitophagy, so the question is whether the
degradation of MAVS is specific or is a result of mitophagy
(He et al., 2019).

RNF185-mediated K27-linked ubiquitination of cGAS, and
AMFR-mediated K27-linked ubiquitination of STING both lead
to the induction of a proinflammatory and antiviral response
upon stimulation with different DNA ligands or infection
with the DNA virus herpes simplex virus 1 (HSV-1). K27-
linked ubiquitination of cGAS and STING is required for
TBK1 activation (Wang Q. et al., 2014; Wang et al., 2017).
Mechanistically, K27-linked chains on STING are responsible
for the recruitment of TBK1 to STING (Wang Q. et al., 2014).
The DUBs USP13 and USP21 were shown to remove K27-linked
ubiquitin from STING (Chen et al., 2017; Sun et al., 2017).
These studies confirmed that K27-linked ubiquitin activates the
immune response upon infection with several DNA viruses or the
intracellular bacterium Listeria monocytogenes (Chen et al., 2017;
Sun et al., 2017).

TGFβ-activated kinase 1 (TAK1) is a protein that is activated
by various inflammatory stimuli and subsequently induces
activation of NFκB signaling. TAK1 activation is strongly
regulated by posttranslational modifications, including K48- and
K63-linked ubiquitination (Hirata et al., 2017). Recently, it was
shown that TAK1 can also be K27-linked ubiquitinated and that
both K27- and K63-linked chains can mediate the interaction
with TAK1-binding protein 2 (TAB2) and TAB3. Removal of
K27- and K63-linked chains by USP19 inhibited TNFα- and
IL-1β-induced NFκB activation, suggesting that these ubiquitin
chains normally activate TAK1 downstream signaling (Lei et al.,
2019). However, the authors could not discriminate between the
role of K27- and K63-linked chains, due to technical constraints.

In summary, K27-linked chains are important activators of
the innate immune response, in this context often conjugated
by members of the TRIM family but also by other E3 ligases.
These chains are also part of negative feedback loops that
prevent excessive inflammation and immunopathology, hence
K27-linked ubiquitin chains could be used to give a temporary
controlled boost to the innate immune system, when this is
deemed necessary by the cell.

K29-LINKED CHAINS ON ASK1
ACTIVATE IRF3

Very little is known about the role of K29-linked ubiquitination
in the innate immune response. It has been shown that the
SKP1-Cullin-Fbx21 (SCF) E3 ligase complex is activated upon
VSV and HSV-1 infection. This complex then catalyzes K29-
linked ubiquitination of apoptosis signal-regulating kinase 1
(ASK1), thereby inducing phosphorylation of JNK1/2, p38,
and IRF3, and activation of the transcription factor activator
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protein-1 (AP-1). Altogether, this leads to the production of
IFNβ and interleukin-6 (Yu et al., 2016). However, it remains
to be elucidated how virus infection leads to the activation
of ASK1 signaling.

K33-LINKED CHAINS MODULATE RLR
AND TYPE I IFN SIGNALING

K33-linked ubiquitination is associated with cGAS-STING- and
RLR-induced type I IFN signaling. Upon infection with different
DNA and RNA viruses, TBK1 is K33-linked ubiquitinated,
which leads to IRF3 activation (Lin et al., 2016). This can
be reversed by the DUB USP38. USP38-mediated removal
of K33-linked ubiquitin is associated with an increase in
K48-linked ubiquitination and subsequent proteasome-mediated
degradation of TBK1, thereby downregulating the antiviral
response (Lin et al., 2016). Another study describes K33-linked
ubiquitination of the type I IFN-induced transcription factor
STAT1. This is mediated by the E3 ligase RNF2. Upon interferon
stimulation, RNF2 binds to STAT1 in the nucleus and mediates
K33-linked ubiquitination of the STAT1 DNA binding domain.
This leads to the dissociation of STAT1 from the promotor of
several ISGs, thereby suppressing the production of ISGs (Liu S.
et al., 2018). These two studies demonstrate two different ways
in which K33-linked chains can be involved in the regulation
of the innate immune response. Further studies are necessary
to elucidate how these mechanisms complement each other and
regulate RLR and interferon signaling.

TOOLS TO STUDY SPECIFIC UBIQUITIN
LINKAGES IN THEIR BIOLOGICAL
CONTEXT

Probably the most reliable technique to identify specifically
linked ubiquitin chains on a purified substrate or in the total
cellular ubiquitin pool, is using mass spectrometry. However,
this is relatively elaborate, and may not be available to all
researchers. Furthermore, this does not allow the identification
of specific ubiquitin linkages conjugated to a specific substrate
in cells. Most biochemical studies that try to identify specific
ubiquitin linkages therefore rely on expression of ubiquitin
mutants that contain only one lysine residue (KX-only mutants)
or individual lysine-to-arginine substitutions (KXR mutants).
These are then individually co-transfected into cells together
with the other proteins of interest. However, using this approach
it is hard to study the role of a specific ubiquitin linkage in
the innate immune response, as most cultured cells, such as
the often-used 293T cells, have important deficiencies in these
pathways (Burdette et al., 2011; Lin et al., 2014). Therefore,
one should use cells that have an intact innate immune system,
however, transfection of these cells is usually rather inefficient
and subsequent virus infection is very hard. Another frequently
used method are in vitro ubiquitination and deubiquitination
assays. Although these can be a helpful tool, such assays
do not take into account the subcellular localization of the

proteins involved and do not allow to study the effects of
a specific chain on a specific target in the innate immune
response. Therefore, methods are needed to directly detect
specific ubiquitin linkages in cells. For linear, K11-, K27-,
K48-, and K63-linked chains, linkage-specific antibodies have
been generated (Newton et al., 2008; Matsumoto et al., 2010,
2012). These have been used with varying results, and in
most cases they hardly produce any specific signal when used
in cell lysates. The generation of linkage-specific antibodies
is apparently very challenging, which is probably due to the
sometimes very subtle structural differences between different
ubiquitin chains.

An alternative to antibodies are affimers. These are small
scaffold proteins of which the sequence is based on a
phytocystatin consensus sequence (Tiede et al., 2014, 2017). The
insertion of two variable peptide regions into this sequence was
used to construct a phage-display library that can be screened
for any protein of interest (Tiede et al., 2014). Michel et al.
(2017) have described the development of an affimer against
K6-linked ubiquitin. This affimer was used successfully in pull
downs, Western blotting, and confocal microscopy (Michel et al.,
2017). Using the affimer, the cellular E3 ligase that catalyzes
K6-linked ubiquitination, a DUB with strong preference for K6-
linked ubiquitin and a substrate could be identified (Gersch et al.,
2017; Michel et al., 2017; Heidelberger et al., 2018). In addition,
an affimer against K33-linked ubiquitin was developed. However,
this affimer also recognized K11-linked ubiquitin (Michel et al.,
2017). Most likely this is the result of heterogeneity in the
conformation of polyubiquitin chains, which is why chains linked
via different residues can have closely resembling conformations
(Wang Y. et al., 2014). Although this shows that it can be
hard to achieve linkage-specificity, affimers could be a powerful
alternative for antibodies.

In addition to methods that directly detect a specific
type of ubiquitin chain, linkage-specific DUBs can be used
to discriminate between different linkages in a cell lysate
or on a target that was precipitated using pull-downs. The
following linkage-specific DUBs are available: OTULIN for
linear chains, Cezanne for K11-linked chains, Otubain-1 for
K48-linked chains, and AMSH or OTUD1 for K63-linked
chains (Mevissen et al., 2013). No DUBs are known that have
specificity for K6-, K27-, K29-, and K33-linked chains. However,
OTUD3 and USP30 have a strong preference for K6- and
K11-linked chains, whereas TRABID has a strong preference
for K29- and K33-linked chains. When OTUD3 or USP30
are used in combination with Cezanne, the discrimination
between K6- and K11-linked chains can be made (Mevissen
et al., 2013; Cunningham et al., 2015). Based on this principle,
a method was developed termed ubiquitin chain restriction
(UbiCRest) in which in vitro ubiquitinated proteins, cell
lysates, or precipitated immunocomplexes are incubated with
a combination of the aforementioned linkage-specific DUBs
(Hospenthal et al., 2015).

The UBDs of linkage-specific DUBs and other proteins that
interact with specific ubiquitin linkages can also be exploited as
biosensors. TRABID has 3 NZF domains that can bind a variety
of different ubiquitin chains. The NZF1 domain specifically binds
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K29- and K33-linked chains (Kristariyanto et al., 2015). This
NZF1 domain was used to pull down polyubiquitin chains from
cells. Subsequently, the immunocomplexes were treated with the
Crimean-Congo Hemorrhagic Fever virus OTU (vOTU) DUB to
discriminate between K29- and K33-linked chains (Akutsu et al.,
2011; Kristariyanto et al., 2015). According to the authors, vOTU
cleaves all types of ubiquitin chains except for K29-linked chains
(Kristariyanto et al., 2015). Contrary to this, there is also evidence
that vOTU cleaves all linkages except for linear chains (Mevissen
et al., 2013). Using their approach, the authors showed that K29-
linked ubiquitin can be part of heterotypic chains containing
also K48-linked ubiquitin (Kristariyanto et al., 2015). Two other
biosensors have been described, one that is based on the UBAN
domain of NEMO and recognizes linear chains and one that is
based on the NZF domain of TAB2 and recognizes K63-linked
chains. These domains were coupled to GFP and could thereby
be used in microscopy and live cell imaging (van Wijk et al., 2012;
Greenfeld et al., 2015). Although these biosensors are a valuable
tool, their development depends on the availability of a UBD that
specifically binds to a certain ubiquitin linkage.

Another method to obtain insight in the cellular function of a
specific ubiquitin linkage has been developed by Xu et al. (2009).
They developed a tetracycline-inducible RNAi system with which
the expression of all four ubiquitin genes can be knocked down
and replaced by a KXR mutant. Using cells expressing K63R
ubiquitin, they could show that K63-linked chains are required
for IKK activation, but only by IL-1β and not by TNFα (Xu
et al., 2009). Although this setup is laborious to create and
leads to a general depletion of a specific ubiquitin linkage, this
strategy can be very useful in elucidating the role of a certain
linkage in the innate immune response or any other signaling
cascade of interest.

In summary, for M1-, K48- and K63-linked chains rather well-
functioning antibodies, linkage-specific DUBs, and UBD-based
biosensors exist, whereas for most of the other linkages, including
K27- and K33-linked chains, very few or no tools are available.
Potentially, new UBDs could be developed based on the structure
of UBDs in complex with ubiquitin chains for which no specific
UBD is known. By structure-guided mutagenesis, it would in
theory be possible to develop new biosensors that recognize for
example K27- or K33-linked chains.

CONCLUSION

The innate immune response is a crucial first line of defense
against virus infection and is responsible for the recruitment
of innate immune cells to the site of infection and the
induction of the adaptive response. However, overactivation of
the innate response can lead to excessive inflammation and
immunopathology. Therefore, activation of the innate immune
response is subject to strong regulation. Besides phosphorylation,
this is strongly mediated by ubiquitination. The variety in
ubiquitin chains, each with their unique properties, enables
very precise fine-tuning of the innate immune response. Some
linkages, such as linear chains, are currently almost exclusively
linked to the innate immune response. However, most linkages
are involved in many different processes. K27-linked chains seem
to function mainly as activators of the innate immune response,
although they can also have inhibitory effects. For K29- and K33-
linked ubiquitin, too little data is available to define whether they
have a specific role in the innate immune response. In addition
to these homotypic chains that are linked via one specific lysine
residue, hybrid or mixed chains exist as well (Akutsu et al., 2016).
M1/K63-linked hybrid chains can serve as unique scavengers that
recruit TAK1, IKKα, and IKKβ via the K63 linkage, and NEMO
via the M1 linkage (Emmerich et al., 2013). Overall, the ubiquitin
code has a fascinating complexity and elucidating more of this
will give us important insight into the intricate interactions that
regulate the innate immune response.
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