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Coherent control of quasi-
degenerate stationary-like states 
via multiple resonances
Yunrong Luo1,2, Kuo Hai1,2, Mingliang Zou1 & Wenhua Hai1,2

We use three bosons held in a depth-tilt combined-modulated double-well to study coherent control 
of quantum transitions between quasi-degenerate stationary-like states (QDSLSs) with the same 
quasienergy. Within the high-frequency approximation and for multiple-resonance conditions, we 
analytically obtain the different QDSLSs including the maximal bipartite entangled states, which 
enable us to manipulate the transitions between QDSLSs without the observable multiphoton 
absorption and to simulate a two-qubit system with the considered bosons. The analytical results are 
confirmed numerically and good agreement is shown. The quantum transitions between QDSLSs can 
be observed and controlled by adjusting the initial and the final atomic distributions in the currently 
proposed experimental setup, and possess potential applications in qubit control based on the bipartite 
entangled states and in engineering quantum dynamics for quantum information processing.

Quantum transition between stationary states plays a crucial role in much of quantum mechanics, while the 
coherent control of quantum transition is a master key for its practical applications such as the quantum infor-
mation processing1, precision measurement2 and so on. Recently, there have been many works focusing on the 
coherent control of quantum transition in both theoretical and experimental sides3–13. Usually, the stimulated 
quantum transitions between quantum states associated with different energies can be controlled by using photon 
resonance. In a single-frequency driven system, the notion of resonance transition was associated with the driving 
frequency fitting a level difference between two internal electronic states14 or two external motional states15–19. 
Quantum states also can transit spontaneously from a high level to a low level. The spontaneous quantum tran-
sition is one of the reasons for producing the decoherence in quantum information processing. A double-well 
trapped many-boson system or an atomic Bose-Einstein condensates (BEC) in two different hyperfine states 
trapped in a single trap can be treated as a bipartite system of two modes19–21. The bipartite entangled states in 
such a system have been investigated, which can be used to encode the qubit22. As a maximal bipartite entangled 
state the NOON state has also been widely studied22,23. In order to eliminate the adverse decoherence arising 
from the spontaneous transitions, we hope to seek the quasi-degenerate bipartite states associated with the same 
energy24 and with the different external fields, and to control the transitions between them by adjusting the field 
parameters.

The optically trapped atoms offer robust quantum coherence and controllability, providing an attractive system 
for quantum information processing and for the simulation of complex physical problems25,26. When a depth-tilt 
combined-modulated double-well atomic system with two different driving frequencies are considered, the res-
onance between driving frequencies becomes possible. The multiple resonances which contain several different 
forms of resonances will bring new applicable effects for the quantum control27–30. In a system of double-well 
trapped few particles, any one of the above-mentioned motional states corresponds to a certain atomic distri-
bution, which can be expanded in terms of Fock basis. If the probability amplitude of the system being in any 
Fock state is time-dependent and the corresponding probability is a constant, we call the quantum state the 
stationary-like (or quasistationary) state (SLS)31,32. A SLS with invariant population may be a single Floquet state 
or a superposition of Floquet states. Quantum transition between different SLSs is as important as that between 
usual stationary states. When the SLSs have the same Floquet quasienergy, the transitions between them can-
not be directly related to the observable multiphoton absorption15,16. We define such SLSs as quasi-degenerate 
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stationary-like states (QDSLSs), including the CDT (coherent destruction of tunneling) single state with only a 
single Fock basis33, and the NOON state (a superposition of N particles in well 1 with zero particle in well 2 and 
vice versa)30. We will demonstrated that the QDSLSs may be prepared by using the multiple-resonance effects. 
Then we define SCDT (selective coherent destruction of tunneling) state as a superposition of n Fock states with 
time-dependent occupied probabilities, where n is less than the dimension of the considered Hilbert space33. In 
such a state, transition of the system to any one of the lacked Fock states can be suppressed selectively. While any 
pair of QDSLSs can be coherently connected via SCDT states by changing the corresponding system parameters. 
In recent experiments of Bloch group6, high controllability of numbers of atoms within a given well has been real-
ized. Therefore, it is feasible to experimentally control quantum transitions between QDSLSs of different atomic 
distributions.

In this paper, we consider three bosons held in a depth-tilt combined-modulated double-well and propose a 
new formalism to study coherent control of quantum transitions between QDSLSs without quasienergy differ-
ence. Within the high-frequency approximation and for multiple-resonance conditions, we analytically obtain all 
Floquet eigenstates and quasienergies. When the driving parameters and initial conditions are adjusted appro-
priately, a superposition state of Floquet states becomes one of the QDSLSs or a SCDT state33–35 that means the 
transitions between some states are suppressed selectively and the Rabi oscillations between the other QDSLSs 
occur. Thus the coherent control of quantum transitions between QDSLSs with the same Floquet quasienergy can 
be realized transparently via the analytical solutions. The results are confirmed numerically and good agreements 
are found. The transitions between the QDSLSs without quasi-level difference are equivalent to the related popu-
lation transfers, and can be observed and controlled by adjusting the corresponding atomic distributions with the 
current experimental capability5,6. The results may be used to simulate a two-qubit system with the considered 
bosons, which is useful in performing the two-qubit logical operations25,26 for quantum information processing.

Results
Analytical solutions in the high-frequency approximation.  We consider three bosons held in a 
driven and tilted double well potential which can be generated experimentally from a train of optical double wells 
in the form refs 5 and 36
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for the spatial range of a single double well. Here F0,1 denote the force constants, V1,2 are the amplitudes of the two 
optical potentials forming the double-well structure5 and  a small dimensionless constant describing the devia-
tion from the incidence angle of (π/3), and (ω, ω′) the driving frequencies. Experimentally, the optical double well 
Vdw(x, t) can be formed by two driven laser standing waves5,6, and the tilt potential Vtilt(x, t) can be produced by a 
magnetic field gradient7,8 or a periodic shaking of the optical lattice9. In Eq. (1), the potentials have been normal-
ized in units of the recoil energy =Er

k
m2
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 of atom with mass m; the position x, driving frequencies (ω, ω′) and 

time t are in units of the inverse wave vector k−1, recoil frequency ωr = Er/ħ and inverse recoil frequency ω −
r

1, 
respectively. Thus the amplitudes V1,2 and force constants F0,1 are in units of Er and kEr. For the ultracold 87Rb 
atoms the typical ωr value is about 5 × 103 Hz in the experiment37.

In the two-mode approximation38,39, the Hamiltonian governing this system reads30,40
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where ˆ†c1,2 ĉ( )1,2  denote atomic creation (annihilation) operators in the well 1 and 2, respectively, Ĥ , Ω, ε and U 
have been normalized in units of Er. The coupling parameter Ω is given by the integral36,41,42
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Here, w(x − xq) (q = 1, 2) are the dimensionless Wannier states in units of k−1/2 and x1,2 are two positions of the 
minimal potential36. Generally, the coupling parameters obey the inequality30 0 ≤ Ω1 ≤ Ω0. For a fixing V1 the 
values of Ω0 and Ω1 increase with the increase of V2 and  , respectively. The time-dependent bias ε(t) is related to 
the linear potential36,
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Here parameters ε0,1 are proportional to the force constants F0,1 respectively, which are two key adjustable 
parameters for our control schemes. The on-site interaction intensity is in the form
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with a1D being the renormalized s-wave scattering length in one-dimensional case43, which can be adjusted exper-
imentally in a wide range by the Feshbach-resonance technique44.

Using the Fock basis |i〉 = |i, 3 − i〉 with i atom(s) being in the left well and 3 − i atom(s) being in the right well, 
we expand the quantum state |ψ(t)〉 of three-body system (2) as

∑ψ = −
=

t a t i i( ) ( ) , 3
(6)i

i
0

3

in the four dimensional Hilbert space. Here ai(t) for i = 0, 1, 2, 3 denote the time-dependent probability ampli-
tudes with i atom(s) bing in the left well, which obey the normalization condition Σ == a t( ) 1i i0

3 2 . Inserting Eqs 
(2) and (6) into the Schrödinger equation ψ=ψ∂

∂
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It is difficult to obtain the exact solutions of Eq. (7), because of the periodically varying coefficients. However, 
in the high-frequency approximation, it can become a set of linear equations with constant coefficients, which is 
analytically solvable. To do so, we employ the multiple-resonance conditions U = nω, ω′ = mω, ε0 = lω with n, m, l 
being integers. Any one of the conditions implies a particular resonant mechanism and can cause different tunne-
ling effect27–30. We desire that their combination will result in multiple-resonance effects which can be applied to 
manipulate the system, although the corresponding control protocol may be constrained partially.

In high-frequency case, we introduce the slowly varying functions bi(t) through the transformations 
a0(t) = b0(t)e−i∫[3U+3ε(t)]dt, a1(t) = b1(t)e−i∫[U+ε(t)]dt, a2(t) = b2(t)e−i∫[U−ε(t)]dt, a3(t) = b3(t)e−i∫[3U−3ε(t)]dt, and use the 
Fourier expansion ∫ ε ω
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is transformed to the form
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where the coupling constants have been renormalized as
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The renormalized effective coupling coefficients ηj directly determine the solutions of Eq. (8), which are 
adjusted by the system parameters. At any zero-point of ηj, Eq. (8) will be partly decoupled and its solutions will 
be consequently simplified. In Fig. 1, we plot the ηi as functions of the driving parameter 2ε1/ω for ω = 20, Ω0 = 1, 
n = 1 (U = ω) and (a) m = l = 1 (ω′ = ε0 = ω), Ω1 = 0.3; (b) m = l = 1 (ω′ = ε0 = ω), Ω1 = 1; (c) m = 1 (ω′ = ω), 
l = −7 (ε0 = −7ω), Ω1 = 1; (d) m = 2 (ω′ = 2ω), l = 0 (ε0 = 0), Ω1 = 0.3. Expressing the zero-points of part ηj as 
Mi = Mi(2ε1/ω, η1, η2, η3), we label eight zero-points in Fig. 1 with the inset as M1 = M1(0, 0, 0, 2), M2 = M2(0.6, 0, 
0, 1.82), M3 = M3(5.1356, 0.61, 0, −0.26) for the other parameters of Fig. 1(a); M4 = M4(0, 0, 0, 2), M5 = M5(4, 0, 
0.36, −0.79), M6 = M6(5.52, 0.22, −0.16, 0) for the other parameters of Fig. 1(b); M7 = M7(5.52, 0.001, 0, 0) and 
M8 = M8(5.28, 0, −0.19, 0) for the other parameters of Fig. 1(c) and (d) respectively. The parameters associated 
with these zero-points are related to the collapse points of quasienergy spectrum and the CDT13, which will be 
adopted in our control proposals of quantum transitions.

Quasienergies and Floquet states.  According to the Floquet theorem30,45,46, Eq. (6) contains the Floquet 
solution |ψ(t)〉 = |ϕ(t)〉e−iEt, where E is called the quasienergy and |ϕ(t)〉 = |ϕ(t + 2π/ω)〉 is the corresponding 
Floquet state. Noticing the multiple resonance conditions and the relations between ai(t) and bi(t), the Floquet state 
can be represented as |ϕ(t)〉 = Ae−i∫(3U+3ε(t))dt|0, 3〉 + Be−i∫(U+ε(t))dt|1, 2〉 + Ce−i∫(U−ε(t))dt|2, 1〉 + De−i∫(3U−3ε(t))dt|3, 0〉,  
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through the stationary solutions of Eq. (8), b0(t) = Ae−iEt, b1(t) = Be−iEt, b2(t) = Ce−iEt, b3(t) = De−iEt, where A, B, 
C, D are constant amplitudes satisfying the normalization condition |A|2 + |B|2 + |C|2 + |D|2 = 1, and the slowly 
varying functions bi(t) require the quasienergy to satisfy |E| ≪ ω. Inserting the stationary solutions into Eq. (8), 
one obtain the four Floquet quasienergies Ej and four sets of the constant amplitudes Aj, Bj, Cj, Dj (j = 1, 2, 3, 4) as
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ηj in Eq. (9) are adjusted by the system parameters, all the quasienergies Ej and amplitudes Aj, Bj, Cj, Dj are deter-
mined by a set of fixed parameters. From Eq. (10), we immediately obtain the four Floquet states
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for j = 1, 2, 3, 4.
It is known that these Floquet states are the SLSs with variable probability amplitudes and invariant popula-

tions31,32. Quantum population transfer of any particle cannot occur in a single Floquet state ψ ϕ= −t t e( ) ( )j j
iE tj , 

but it can occur in a linear superposition state of the Floquet states. The system may occupy a single Floquet state 
only for some fixed initial conditions and system parameters.

General coherent superposition state.  In order to study population transfer of the system, we have to 
consider the coherent superposition of the Floquet states. According to the superposition principle of quantum 
mechanics, linear superposition of the Floquet states which constitute a set of complete bases36,47 is still a solution 
of the Schrödinger equation. Directly employing Eqs (10) and (11) to the linear superposition yields the general 
superposition state
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where sj are superposition coefficients adjusted by the initial conditions and normalization, and the probability 
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4j j  with constants Ej, Aj, Bj, Cj, Dj being given in Eq. (10). The occupy 
probabilities of i bosons in left well read as = ′P b t( )i i

2 for i = 0, 1, 2, 3. The first line of Eq. (12) means that the 
general superposition state can be reduced to a new Floquet state, if and only if quasienergy of every nonzero 
term take the same value. Generally, the superposition state (12) does not satisfy the definition of the Flouqet 
state. The coherent superposition implies quantum interference effect among the four Floquet states with different 
quasienergies. It may cause the coherent enhancement or suppression of quantum tunneling with adjustable 
degree by changing the driving parameters48. Such an interference effect will be applied to manipulate the quan-
tum transfer between QDSLSs.

Coherent control of quantum transitions between QDSLSs.  Under the multiple-resonance condi-
tions and high-frequency approximation, we have obtained the general form (12) of the coherent superposition 
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state, which is related to the superposition coefficients sj and the renormalized couplings ηj through Eq. (10). 
When the parameters of any zero-points Mi in Fig. 1 are adopted, Eq. (12) will be reduced to a relatively simple 
quantum state. We then select appropriate initial conditions to fix the coefficients sj, this simple quantum state can 
become a SCDT state or one of QDSLSs. The QDSLSs contain the CDT single states and NOON states. Because 
any SCDT state describes the Rabi oscillation between two or three QDSLSs and any one of the QDSLSs is asso-
ciated with a set of fixed system parameters, we can adjust the driving parameters to prepare the QDSLSs and to 
control the transitions between QDSLSs transparently, through some interim SCDT states.

Preparation of QDSLSs.  We at first seek the CDT single states and NOON state with the same Floquet 
quasienergy by setting the parameters associated with the different zero-points of renormalized couplings ηj and 
the different superposition coefficients sj. These QDSLSs are derived for the following three cases:

Case 1: η1 = η2 = 0 of the zero-points M1, M2 and M4. In such a case, the superposition state (12) of Floquet states 
is reduced to a simple form [see Eq. (A1) in the Appendix]. We then select the initial conditions P0(0) = 1, 
Pi≠0(0) = 0 or P1(0) = 1, Pi≠1(0) = 0 to fix s3 = s4 = 0 and = =s s1

1
2 2 or −s2. Substituting them into Eq. (A1), 

respectively, results in the two CDT single states

ψ = ω
ε
ω ω− 


 + + 


t e( ) 0, 3 , (13)

i n l t t
03

3 ( ) sin( )1

ψ = .ω
ε
ω ω− 


 + + 


t e( ) 1, 2 (14)

i n l t t
12

( ) sin( )1

They are different superpositions of the Floquet states ϕ1 and ϕ2 in Eqs (11) and (12) with the same qua-
sienergy E1 = E2 = 0 and the amplitudes = = − =A B B1,2 1 2

1
2

, C1,2 = D1,2 = 0.

Figure 1.  The renormalized coupling coefficients ηi as functions of the driving parameter 2ε1/ω for ω = 20, 
Ω0 = 1, n = 1 and (a) m = l = 1, Ω1 = 0.3; (b) m = l = 1, Ω1 = 1; (c) m = 1, l = −7, Ω1 = 1; (d) m = 2, l = 0, 
Ω1 = 0.3. By the points we mean the zero-points Mi = Mi(2ε1/ω, η1, η2, η3) of part ηj. Hereafter, any parameter 
adopted in the figures is dimensionless.
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Case 2: η2 = η3 = 0 of the zero-point M7. Similarly, the reduced superposition state is given by Eq. (A2) in the 
Appendix. Applying the initial conditions P2(0) = 1, Pi≠2(0) = 0 or P3(0) = 1, Pi≠3(0) = 0 to fix s3 = s4 = 0 and 

= = ±s s2
1
2 1, respectively, Eq. (A2) becomes the other CDT single states with zero quasienergy

ψ = ω
ε
ω ω− 


 − − 


t e( ) 2, 1 , (15)

i n l t t
21

( ) sin( )1

ψ = .ω
ε
ω ω− 


 − − 


t e( ) 3, 0 (16)

i n l t t
30

3 ( ) sin( )1

Case 3: η1 = η3 = 0 of the zero-point M8. In this case, the reduced superposition state is given by Eq. (A3) in the 
Appendix. For the initial constants s3 = s4 = 0 and s1 ≠ ±s2, Eq. (A3) becomes the general NOON state

ψ = +

+ −

ω
ε
ω ω

ω
ε
ω ω

− 

 + + 




− 

 − − 




t s s e

s s e

( ) 1
2

( ) 0, 3

1
2

( ) 3, 0
(17)

NOON
i n l t t

i n l t t

1 2
3 ( ) sin( )

1 2
3 ( ) sin( )

1

1

with zero quasienergy and the invariant populations = = + = = −P t P s s P t P s s( ) (0) , ( ) (0)0 0
1
2 1 2

2
3 3

1
2 1 2

2. The 
normalization implies the relation + + − =s s s s 11

2 1 2
2 1

2 1 2
2  between s1 and s2. When s1 = 1, s2 = 0 and s1 = 0, 

s2 = 1 are selected respectively, Eq. (17) gives two maximal entangled states23 of the two modes19,21.
The five SLSs of Eqs (13–17) are different superpositions of the Floquet states ϕ1 and ϕ2 with the same qua-

sienergy E1 = E2 = 0, so they are called the QDSLSs.

Preparation of SCDT states.  It is well known that any one of the above-mentioned QDSLSs corresponds 
to a special atomic distribution. Therefore, the Rabi oscillation between the QDSLSs means the periodic popula-
tion transfer. The SCDT states which describe such Rabi oscillations can serve as the interim states to realize the 
quantum transitions between the QDSLSs. In this subsection, six SCDT states are derived from Eq. (12) for the 
following five cases.

Case 1: η1 = 0 of the zero-point M5. In this case, Eq. (10) gives the quasienergies E1,2 = 0, η η= ± +E 4 33,4
1
2 2

2
3
2 

and the corresponding constants Aj, Bj, Cj, Dj for j = 1, 2, 3, 4. Consequently, Eq. (12) becomes the SCDT state49,
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It describes the Rabi oscillation among the Fock states |1, 2〉, |2, 1〉 and |3, 0〉, and means the corresponding 
population transfer. Because Eq. (18) does not contain the Fock state |0, 3〉, so it implies the SCDT from any one 
of the Fock states |1, 2〉, |2, 1〉, |3, 0〉 to the |0, 3〉 state.

Case 2: η2 = 0 of the zero-point M3. The reduced superposition state of Floquet states is given by Eq. (A4) in the 
Appendix. For s3 = s4 = 0 and s1, s2 ≠ 0, Eq. (A4) becomes the SCDT state

ψ = +

+ +

ω
ε
ω ω

ω
ε
ω ω
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
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
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( ) sin( )
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1
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1

which describes the Rabi oscillation between the Fock states |0, 3〉 and |1, 2〉, and infers for the SCDT from any 
one of the states |0, 3〉 and |1, 2〉 to the states |3, 0〉 and |2, 1〉.

When s1 = s2 = 0 and s3, s4 ≠ 0 are set, Eq. (A4) of the Appendix becomes the SCDT state
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This state means the Rabi oscillation between states |2, 1〉 and |3, 0〉, and the SCDT from any one of states |2, 
1〉 and |3, 0〉 to states |0, 3〉 and |1, 2〉.

Case 3: η3 = 0 of the zero-point M6. This case means E1,2 = 0, η η= ± +E 3 43,4
1
2 1

2
2
2, so Eq. (12) becomes the 

SCDT state
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It means the Rabi oscillation among states |0, 3〉, |1, 2〉 and |2, 1〉, and the SCDT from any one of states |0, 3〉, 
|1, 2〉 and |2, 1〉 to state |3, 0〉.

Case 4: η1 = η3 = 0 of the zero-point M8. Here the parameters are the same as those of the NOON state case. We 
apply the different coefficients s1 = s2 = 0 and s3, s4 ≠ 0 to Eq. (A3) of the Appendix, the latter becomes the SCDT 
state

ψ = −

− +

ω
ε
ω ω

ω
ε
ω ω

− − 

 + + 




− − 

 − − 




t s e s e e

s e s e e

( ) 1
2

( ) 1, 2

1
2

( ) 2, 1 ,
(22)

iE t iE t i n l t t

iE t iE t i n l t t

1221 3 4
( ) sin( )

3 4
( ) sin( )

3 3
1

3 3
1

which describes the Rabi oscillation between states |1, 2〉 and |2, 1〉, and the SCDT from any one of states |1, 2〉 
and |2, 1〉 to states |0, 3〉 and |3, 0〉.

Case 5: η1 = η3 ≈ 0.302 and η2 ≈ 1.996 for m = 2, n = 1, l = 0, Ω0 = 1, ω = 20, ε1 = 0.05ω and Ω1 = 0.3. In order to 
seek a SCDT state describing the Rabi oscillation between states |0, 3〉 and |3, 0〉, we require nonzero coupling 
constants to make ′ ≈ ′ ≈b t b t( ) ( ) 01 2  in Eq. (12) for any time. Such special couplings are found numerically as 
η1 = η3 ≈ 0.302 and η2 ≈ 1.996 (see Sec. B of the Appendix). In this case, if the initial state is taken as |0, 3〉, Eq. (12) 
is approximately the SCDT state

∑

∑
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1

4
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j
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1

1

for s1 = s2 ≈ −0.701, s3 = s4 ≈ 0.09, A1,2 = D1 = −D2 ≈ −0.701, A3,4 = −D3 = D4 ≈ 0.09, E1 = −E2 ≈ 0.034 and 
E3 = −E4 ≈ 2.029. This state means that the Rabi oscillation between states |0, 3〉 and |3, 0〉 is allowable and the 
SCDT from any one of states |0, 3〉 and |3, 0〉 to any one of states |1, 2〉 and |2, 1〉 can occur.

Quasienergy spectra analysis.  We have analytically obtained the Floquet quasienergies in Eq. (10), which 
directly affect the Floquet states (11) and their superposition state (12). To see the effect of the quasienergies on 
the quantum states, as functions of the driving parameters the Floquet quasienergies Ej = Ej(2ε1/ω) for j = 1, 2, 3, 
4 are plotted by the circles in Fig. 2, where the parameters are taken as ω = 20, Ω0 = 1, m = n = 1 (ω′ = U = ω), and 
(a) l = 1 (ε0 = ω), Ω1 = 0.3; (b) l = 1 (ε0 = ω), Ω1 = 1; and (c) l = −7 (ε0 = −7ω), Ω1 = 1. Due to the Hamiltonian (2) 
is time periodic, we can introduce the Hermitian operator5,36  = − ∂

∂
ˆt H t i( ) ( )

t
 and numerically solve the eigen-

value equation ϕ ϕ=t t E t( ) ( ) ( )j j  of the Floquet state |ϕj(t)〉. The quasienergies E = Ej(2ε1/ω) for j = 1, …, 4 
can be easily obtained from the eigenvalue equation for the analytically used parameters. The numerical results 
are shown by the solid curves of Fig. 2. Clearly, both the analytical and numerical results are in good agreement.
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In Fig. 2(a), the quasienergies = = ±E E(0) 0, (0) 31,2 3,4  are associated with the parameters of the point 
M1(2ε1/ω, η1, η2, η3) = M1(0, 0, 0, 2) in Fig. 1(a) and the quasi-degenerate CDT single states (13) and (14). The 
quasienergies E1,2(5.1356) ≈ ±0.23, E3,4(5.1356) ≈ ±0.53 correspond to the zero-point M3(5.1356, 0.61, 0, −0.26) 
in Fig. 1(a) and the SCDT states (19) and (20). Therefore, we can control the quantum transition from one of the 
QDSLSs (13) and (14) to the state (19) by setting the suitable initial conditions and adjusting the driving param-
eter 2ε1/ω from 0 to 5.1356.

In Fig. 2(b) with l = 1, the quasienergies = = ±E E(0) 0, (0) 31,2 3,4  are associated with the parameters of 
the point M4(0, 0, 0, 2) in Fig. 1(b) and the states (13) and (14). However, the quasienergies E1,2(5.52) = 0, 
E3,4(5.52) ≈ ±0.25 correspond to the point M6(5.52, 0.22, −0.16,0) in Fig. 1(b) and the different state (21). 
Therefore, the adjustment of 2ε1/ω from 0 to 5.52 will cause the transfer from state (13) or (14) to state (21).

In Fig. 2(c) with l = −7, the quasienergies E1,2(5.52) = 0, E3,4(5.52) = ±0.02 are associated with the parameters 
of the point M7(5.52, 0.001, 0, 0) in Fig. 1(c) and the states of Eqs (15) and (16). Thus, from Fig. 2(b) and (c) we 
find that when the value of l is adjusted from 1 to −7, the corresponding quantum transition occurs from Eqs 
(21) to (15) for the same value 2ε1/ω = 5.52. In the inset, we show that the absolute value of maximum deviation 
between the analytical results (circles) and the numerical ones (solid curves) is less than 0.05. Such a deviation can 
be decreased by analytically taking into account the second-order effect of quantum tunneling50.

The detailed control proposals of the quantum transitions between the QDSLSs will be given in next 
subsection.

Manipulating transitions between QDSLSs without quasi-level difference.  Given the 
above-mentioned five QDSLSs and six SCDT states, and according to the quasienergy spectra analysis, we can 
transparently perform manipulations of the transitions between QDSLSs. Generally, the control proposal is 
designed as the following: Firstly, we fix the parameters (ω, n, m, l, Ωi, εi) to prepare an initial SLS 1, then selecting 
a final SLS 2 and the interim SCDT state 3 which oscillates between SLS 1 and SLS 2. Secondly, we change the ac 
field strength ε1 or dc field strength l(ω) at an appropriate time t1 to make the state transition from the SLS 1 to the 
state 3; Finally, when the oscillating state 3 reaches the SLS 2, we perform the adjustment of ε1 or l again to create 
the transition from state 3 to SLS 2. In Table 1 and Figs 3 and 4, we show seven control proposals of quantum 
transitions from the initial SLS |ψ03(t)〉 (or |ψ12(t)〉) to any different final SLS, where Pi denotes the probability of 
i particle(s) being in the left well and (3 − i) particle(s) occupying the right well. In Fig. 5 we illustrate that in the 
four control proposals of Fig. 3 how the time-dependent bias of Eq. (4) can be adjusted experimentally.

As an example, we first consider the proposal of the second line in Table 1, namely the transition from |ψ03(t)〉 
of Eq. (13) to |ψ12(t)〉 of Eq. (14). The corresponding time evolutions of the probabilities are plotted in Fig. 3(a), 
where we initially place the three bosons in right well with P0(0) = 1 and Pi≠o(0) = 0. By taking the parameters 
ω = 20, m = n = l = 1 (ω′ = U = ε0 = ω), Ω0 = 1, Ω1 = 0.3, ε1 = 0 to yield the renormalized couplings η1 = η2 = 0 of 
the zero-point M1 in the inset of Fig. 1(a), we prepare the initial SLS 1 as |ψ03(t)〉. Then at a selected time = πt1

47
40

 
which obeys the continuity condition ε(t1) = ε0 in Eq. (4), we change the driving strength ε1 from 0 to 2.5678ω to 
fit η1 ≠ 0, η2 = 0 of the zero-point M3 in Fig. 1(a) and to make the transition from |ψ03(t)〉 to the SCDT state 3 
|ψ0312(t)〉 of Eq. (19). In the latter state, the system performs the Rabi oscillation between |0, 3〉 and |1, 2〉, as 
shown in Fig. 3(a). When the time approaches = πt2

17
8

 and the probability P1(t) of state |1, 2〉 reaches 1, we return 
the driving strength to ε1 = 0 that creates the final SLS 2 |ψ12(t)〉 with one atom in the left well and two atoms in 
the right well. In such a transition, one atom tunnels from the right well to left well. The analytical result (circular 
points) is conformed by the numerical one (solid curves) based on Eq. (7), and perfect agreement is shown in 
Fig. 3(a).

Similarly, the control proposals of the quantum transitions from the initial SLS |ψ03(t)〉 to different final SLSs 
|ψ21(t)〉, |ψ30(t)〉 and |ψNOON(t)〉 are also given in Fig. 3(b,c and d), respectively. In Fig. 4, we give the other control 
proposals of the quantum transitions from the initial SLS |ψ12(t)〉 to one of the final SLSs |ψ03(t)〉, |ψ21(t)〉 and 

Figure 2.  Quasienergies as functions of the driving parameter, Ej = Ej(2ε1/ω) for ω = 20, Ω0 = 1, m = n = 1 and 
(a) l = 1, Ω1 = 0.3; (b) l = 1, Ω1 = 1; (c) l = −7, Ω1 = 1. Hereafter, circles label the analytical results from Eq. (10) 
and solid curves denote the numerical correspondences, unless it is specially indicated.
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Initial SLSs ∼ ε
ω( )t l0 , ,1
1 SCDT states ∼ ε

ω( )t l, ,2
1 Final SLSs ≥ ε

ω( )t l, ,2
1 Figures
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8 ψ ≥ π( )t( ) , 1, 012
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Fig. 3(a)

ψ ∼ π( )t( ) 0 , 1, 003
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40 ψ ∼ .π( )t( ) , 1, 2 76031221
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40 ψ ≥ − .π( )t( ) , 7, 2 7621
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Fig. 3(b)

ψ ∼ .π( )t( ) 0 , 2, 0 0503
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40 ψ ∼ .π( )t( ) , 0, 0 050330
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8
Fig. 3(c)
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Fig. 3(d)
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Fig. 4(a)
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Fig. 4(b)

ψ ∼ π( )t( ) 0 , 1, 012
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Fig. 4(c)

Table 1.  Several control proposals of quantum transitions between QDSLSs for some initially fixed parameter 
sets (n, m, Ωi).

Figure 3.  Time evolutions of the transition probabilities from the initial SLS |ψ03(t)〉 to other final SLSs for the 
parameters ω = 20, Ω0 = 1, n = 1, and (a) Ω1 = 0.3, m = l = 1, ε1 = 0 (in the time intervals ≤ < = πt t0 1

47
40

 and 

≥ = πt t2
17

8
) and ε1 = 2.5678ω (in interval = ≤ < =π πt t t1

47
40 2
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8

); (b) Ω1 = 1, m = 1, (l, ε1) = (1, 0) (in 

≤ < = πt t0 1
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40

), (l, ε1) = (1, 2.76ω) (in = ≤ < =π πt t t1
87
40 2
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40

), (l, ε1) = (−7, 2.76ω) (in ≥ = πt t2
253

40
); (c) 

Ω1 = 0.3, m = 2, ε1 = 0.05ω, and l = 2 (in ≤ < = πt t0 1
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40
), l = 0 (in = ≤ < =π πt t t1
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40 2
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8

), l = −2 (in 

≥ = πt t2
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8
); (d) Ω1 = 0.3, m = 2, (l, ε1) = (2, 0.05ω) (in ≤ < = πt t0 1
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40

), (l, ε1) = (0, 0.05ω) (in 

= ≤ < =π πt t t1
129

40 2
441

40
), (l, ε1) = (0, 2.64ω) (in ≥ = πt t2

441
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). Hereafter, the big circular points (online 
black), small circular points (online orange), thick dashed line (online green) and thin dashed line (online 
purple) label the analytical results of probabilities P0, P1, P2, P3, respectively, and the solid curves denote the 
numerical correspondences.
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Figure 4.  Time evolutions of the transition probabilities from the initial SLS |ψ12(t)〉 to other final SLSs. (a) The 
parameters are the same as those of Fig. 3(a); (b) The parameters are the same as those of Fig. 3(a) except for 
Ω1 = 0.6, and (l, ε1) obeying (l, ε1) = (1, 1.2025ω) in = ≤ < =π πt t t1

47
40 2

93
40

, (l, ε1) = (−4, 1.2025ω) in 
≥ = πt t2

93
40

; (c) The parameters are the same as those of Fig. 3(a) except for Ω1 = 0.5, and (l, ε1) obeying (l, 
ε1) = (1, ω) in = ≤ < =π πt t t1

47
40 2

123
40

, (l, ε1) = (−3, ω) in ≥ = πt t2
123

40
.

Figure 5.  Temporal sequences of the time-dependent bias ε(t) with the parameters of Fig. 5(a,b,c,d) being 
the same as those of Fig. 3(a,b,c,d), respectively, in the corresponding time intervals. The insets indicate the 
evolution details around several operation times. In (a), the driving of amplitude ε1 = 2.5678ω is continuously 
added to the constant bias ε0 = 1ω. In (b,c and d), the static bias is adjusted between the discrete values6, which 
leads to discontinuous changes of ε(t).
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|ψ30(t)〉. Because the left-right symmetry of the system, the quantum transitions starting from the initial SLSs 
|ψ30(t)〉 and |ψ21(t)〉 are equivalent to the above considered transitions. Therefore, it is asserted that we can achieve 
the quantum transitions between arbitrary two SLSs analytically and numerically. Particularly, the outcome of the 
predicted transitions presented in our paper is insensitive to slight deviations of the parameters, which means that 
the manipulating scheme for quantum transitions between QDSLSs are workable experimentally.

The above-mentioned control proposals can be performed experimentally. For instance, the time-dependent 
bias associated with Fig. 3(a) is shown schematically in Fig. 5(a), where the dc part ε0 is kept as ε0 = lω for l = 1 
and t ≥ 0, and the ac field with amplitude ε1 = 2.5678ω for ω = 20 is applied in the time interval t1 ≤ t ≤ t2. The 
driving amplitude ε1 can be adjusted in an experiment by periodically varying the magnetic field gradient applied 
along the x direction7,8 or by employing the mirrors mounted on piezoelectric actuators that allow one to sinu-
soidally shake each lattice back and forth9. The continuity of ε(t) at the operation times ti for i = 1, 2 leads to the 
smooth modulations.

The corresponding temporal sequences of the bias associated with Fig. 3(b,c and d) are shown schematically 
in Fig. 5(b,c and d), respectively, where the static bias ε0 is changed between two discrete values for fitting the 
resonance condition ε0 = lω. Such nonadiabatic adjustments between discontinuous values of the static bias are 
experimentally feasible, since the similar experimental operations have been implemented6.

Discussion
We have investigated coherent control of the quantum transitions between quasi-degenerate stationary-like states 
(QDSLSs) without detectable absorption or emission, which contain the quasi-degenerate CDT single states 
and NOON state by using three bosons held in a depth-tilt combined-modulated double-well potential. Within 
the high-frequency approximation and for the multiple-resonance conditions, we have analytically obtained 
the Floquet solutions in Eq. (11) and quasienergies in Eq. (10). Employing the Floquet states as a set of com-
plete bases, we construct general coherent superposition state (12) of the Floquet states. Given the analytical 
solutions, we demonstrate that combining some special values of the driving parameters with the appropriate 
initial conditions can lead to five different QDSLSs and six SCDT states. The latter states describe the Rabi oscil-
lations between two or three QDSLSs. Applying them as the interim states, we give seven control proposals of 
quantum transitions between QDSLSs in Table 1. The quasienergy spectra analysis based on Fig. 2 supports the 
existence of the QDSLSs and indicates the feasibility of quantum transitions between the QDSLSs. The analytical 
results are verified by the numerical calculations based on the exact Eq. (7) and perfect agreements are shown in  
Figs 2, 3 and 4.

According to our control schemes, we can achieve the quantum transitions between any pair of QDSLSs 
analytically and numerically. The transitions between QDSLSs without quasi-level difference are equivalent to 
the related population transfers, and can thereby be observed and controlled by adjusting the atomic distribu-
tions of the initial and final states in the current experimental setup6. We also expect possible applications of the 
scheme to the preparation of robust quantum entangled states and to the quantum information processing. In 
fact, a double-well trapped many-boson system can be divided into two subsystems A and B and the corre-
sponding bipartite entangled states have been investigated19–21, which can be used to encode the qubit22. 
Noticing the indistinguishability of identical bosons, we can divide the considered three-boson system into the 
subsystem A of a single-boson and subsystem B of a pair-boson. Then by employing the correspondence 
between the double wells 1, 2 and the two internal states25 |−〉 and |+〉, the basis in Eq. (6) can be rewritten as |0, 
3〉 = |+〉A|+〉B, |1, 2〉 = |−〉A|+〉B, |2, 1〉 = |+〉A|−〉B, |3, 0〉 = |−〉A|−〉B. The new expression of the basis is just the 
standard basis for a two-qubit system51,52. At t = 0 the NOON states of Eq. (17) with s1 = 1, s2 = 0 or s1 = 0, s2 = 1 
is just one of the usual Bell basis, ψ = ± = + + ± − −±(0) ( 0, 3 3, 0 ) ( )NOON A B A B

1
2

1
2

, and 
the transition from the initial CDT single state ψ03(ti) to the final NOON state ψNOON(tf) results in generation of 
the maximal entanglement. Thus we can use the considered system to simulate a two-qubit system and to seek 
the connections between the operations in Table 1 and the two-qubit logical gates25,52, and to investigate possible 
manipulations of the qubits aimed at quantum computing purposes and quantum information transfer between 
two qubits25. While the quasi-degeneracy of the QDSLSs enable us to suppress the decoherence from the spon-
taneous transitions.

Methods
Theoretical analysis.  We first derive the Bose-Hubbard Hamiltonian (2) from the potential (1) by using the 
tight-binding approximation. Then we employ the high-frequency limit to simplify the time-evolution equation 
(7) of the probability amplitudes as Eq. (8), leading to the Floquet states and quasienergies. Further application 
of the multiple-resonance conditions results in different QDSLSs and SCDT states for the different renormalized 
coupling constants. By adjusting the dc field strength ε0 or ac field strength ε1 of the time-dependent bias ε(t), we 
achieve the coherent manipulation to the quantum transition between arbitrary QDSLSs via an interim SCDT. 
The corresponding experimental proposals are suggested, as illustrated in Fig. 5.

Numerical calculation.  In addition to theoretical analysis, we have also carried out numerical computations 
to confirm the analytical results. By applying the MATLAB code to the eigenvalue equation 

ϕ ϕ− =∂
∂

ˆ( )H t i t E t( ) ( ) ( )
t j j  of the Floquet state |ϕj(t)〉, we get the numerical results of Floquet quasienergies, 

as indicated by the solid curves of Fig. 2. Then we apply the MATHEMATICA code to the coupled equations (7), 
yielding the numerical results of the transition probabilities Pi shown by the solid curves of Figs 3 and 4. The 
numerical results and analytical ones are in perfect agreement.
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