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Abstract

Natural Killer (NK) cells provide key resistance against viral infections and tumors. A diverse

set of activating and inhibitory NK cell receptors (NKRs) interact with cognate ligands pre-

sented by target host cells, where integration of dueling signals initiated by the ligand-NKR

interactions determines NK cell activation or tolerance. Imaging experiments over decades

have shown micron and sub-micron scale spatial clustering of activating and inhibitory

NKRs. The mechanistic roles of these clusters in affecting downstream signaling and activa-

tion are often unclear. To this end, we developed a predictive in silico framework by combin-

ing spatially resolved mechanistic agent based modeling, published TIRF imaging data, and

parameter estimation to determine mechanisms by which formation and spatial movements

of activating NKG2D microclusters affect early time NKG2D signaling kinetics in a human

cell line NKL. We show co-clustering of NKG2D and the guanosine nucleotide exchange

factor Vav1 in NKG2D microclusters plays a dominant role over ligand (ULBP3) rebinding in

increasing production of phospho-Vav1(pVav1), an activation marker of early NKG2D sig-

naling. The in silico model successfully predicts several scenarios of inhibition of NKG2D

signaling and time course of NKG2D spatial clustering over a short (~3 min) interval. Model-

ing shows the presence of a spatial positive feedback relating formation and centripetal

movements of NKG2D microclusters, and pVav1 production offers flexibility towards sup-

pression of activating signals by inhibitory KIR ligands organized in inhomogeneous spatial

patterns (e.g., a ring). Our in silico framework marks a major improvement in developing

spatiotemporal signaling models with quantitatively estimated model parameters using

imaging data.
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Author summary

Natural Killer cells are lymphocytes of our innate immunity and provide important resis-

tance against viral infections and tumors. NK cells scan the local environment with diverse

activating and inhibitory NK cell receptors (NKRs) and remain tolerized or lyse target

cells expressing cognate ligands to NKRs. NKRs have been found to form micron sized

clusters (or microclusters) as they interact with cognate ligands, and mechanisms regard-

ing how the formation and movements of these microclusters influence NK cell signaling

and activation, specifically related to activating NKRs, are often unclear. To this end, we

develop a predictive spatially resolved early-time NK cell signaling model to study the

interplay between membrane-proximal biochemical signaling events and the kinetics of

microclusters of activating NKG2D and inhibitory KIR2DL2 receptors. We used pub-

lished TIRF imaging data to validate our in silico models and estimate model parameters.

Predictions from multiple in silico models are tested against a variety of data obtained

from published imaging experiments and immunoassays. Our analysis suggests co-clus-

tering of NKG2D and the guanosine nucleotide exchange factor Vav1 in the microclusters

plays a major role in enhancing downstream activating signals. The developed framework

can be extended to describe spatiotemporal signaling for other activating NKRs including

CD16.

Introduction

Natural Killer (NK) cells are lymphocytes of our innate immune system which provide impor-

tant immune protection against viral infection and tumors [1,2]. NK cells express a wide range

of germ line encoded activating and inhibitory NK cell receptors (NKRs). In humans, activat-

ing NKRs include NKG2D and killer Ig- like receptor (KIR) KIR2DS1, and inhibitory NKRs

include inhibitory KIRs such as KIR2DL1, and KIR2DL2. NKRs bind to cognate ligands

expressed by target cells initiating biochemical, physical, and mechanical modifications within

NK cells that culminate into diverse NK cell responses ranging from a neutral response to lysis

of target cells to secretion of cytokines [3]. Healthy host cells express polymorphic class I HLA

molecules, cognate to a wide range of inhibitory NKRs, and generate tolerant NK cell

responses. Whereas, tumor and infected cells downregulate expression of class I HLA mole-

cules or upregulate expressions of ligands cognate to activating NKRs and tip the balance

between activating and inhibitory signals toward NK cell activation. NKG2D is one of the

best-studied activating NKR. In humans it binds to two families of ligands: one family (MICA

and MICB) is akin to MHC class I and the other (ULBP1-3) is related to human proteins that

bind to UL16 protein of human cytomegalovirus [4]. Tumor or infected host cells upregulate

expressions of NKG2D ligands which contribute to lysis of these cells by NK cell cytotoxic

responses [4].

Spatial clustering of NKG2D has been well investigated in confocal [5], total internal reflec-

tion fluorescence (TIRF) [6], and super-resolution microscopy experiments [7,8]. Abeyweera

et al. [6] using TIRF microscopy experiments reported formation of mobile and immobile

microclusters of NKG2D in human NK cell line NKL stimulated by cognate ligand ULBP3

presented on a planar lipid bilayer supported by a glass coverslip. The NKG2D microclusters

form at the interface between the NK cell and the lipid bilayer which is also known as the

immunological synapse (IS). NKG2D microclusters that are generated at the periphery of IS

migrate to the central region of the IS at later times, whereas NKG2D microclusters formed at

the central region of the IS remain immobile. The mobility of NKG2D microclusters depends
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on actin remodeling as treatment by latrunculin, an actin depolymerizing agent, abrogate

microcluster movements [6]. Additionally, confocal microscopy experiments show simulta-

neous localization of NKG2D receptors, Grb2, and Vav1 in the IS in NK cell line NKL upon

stimulation by NKG2D ligand MICA [7]. Phosphorylation of Vav1 induces actin remodeling

via activation of Rac GTPases [9,10], and thus can regulate motility of NKG2D microclusters.

Spatially resolved computational models have been successfully employed to glean mecha-

nisms that underlie formation, motility, and function of spatial clusters of activating [11] and

inhibitory [12,13] NKRs. Kaplan et al. [11] developed a spatially resolved model to investigate

hypotheses regarding signal integration of activating NKG2D and inhibitory human KIR2DL/

mouse Ly49 receptors and concluded inhibitory NKRs locally suppress activating signals. Spa-

tial in silico models describing clustering and signaling of inhibitory NKRs elucidated mecha-

nisms giving rise to peptide antagonism for inhibitory KIR2DL2/3[12]. However, the above in

silico models do not quantitatively match or fit microcluster formation and movements of

NKRs with that observed in microscopy experiments. As we reason below, in silico modeling

of spatial kinetics of NKG2D microclusters is important for gleaning mechanisms and generat-

ing improved model predictions. (1) Formation of NKG2D microclusters can increase the pro-

duction of phosphorylated Vav1 (pVav1) due to increase in the frequency of ligand (e.g.,

ULPB3) rebinding to NKG2D residing within microclusters, and/or increase in biochemical

propensity of signaling reactions when NKG2D molecules are co-clustered with other signal-

ing molecules (e.g., Vav1). (2) Increased production of pVav1 due to clustering of NKG2D can

increase centripetal movements of NKG2D microclusters leading to higher spatial aggregation

of NKG2D thereby further increasing pVav1 production. This chain of events constitutes a

“spatial” positive feedback [14]. Therefore, sizes and spatial separations between NKG2D

microclusters could be relevant for affecting downstream signaling.

Motivated by above reasoning and a potential interplay between signaling kinetics and spa-

tial clustering, we developed a framework combining a spatially resolved mechanistic agent

based model and published TIRF imaging data assaying spatiotemporal signaling kinetics in

NKL cell lines stimulated via NKG2D receptor or NKG2D and KIR2DL2 receptors. The agent

based model developed here represents a major improvement over previous modeling efforts

in the following aspects: (1) The model is able to quantitatively describe micron scale details of

spatial clustering of activating and inhibitory NKRs. (2) A detailed parameter estimation of

model parameters is carried out using spatial data. (3) The model includes interplay between

spatial clustering and activating NKR signaling kinetics. We investigated three hypotheses

(Model 1, Model 2, and Model 3) to show that co-clustering of Vav1 with NKG2D rather than

ligand rebinding of ULBP3 is required to produce increased pVav1 production due to the for-

mation of NKG2D microclusters. The presence of the spatial positive feedback allows for an

efficient suppression of early time NKG2D signaling by heterogeneously distributed inhibitory

HLA-C ligands on target cells.

Model development

We developed a spatially resolved agent based model involving activating NKG2D receptors,

inhibitory KIR2DL2 receptors, cognate NKR ligands (ULBP3 and HLA-C), and signaling pro-

teins: Src family kinases (SFKs), Vav1, and phosphatase SHP1. The NKRs and signaling pro-

teins interact via different rules to describe membrane proximal signaling events in human

NK cell line NKL. The model includes rules describing biochemical signaling reactions, spatial

movements of signaling complexes, and regulation of the spatial movements by biochemical

reactions. The rules in the model are designed to quantitatively capture several distinguishing

features of spatiotemporal NK cell signaling kinetics observed in previous imaging
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experiments, namely, a) formation of mobile and immobile NKG2D microclusters upon

NKG2D stimulation[6], b) centripetal movements of the mobile NKG2D microclusters from

the periphery to the central region of the IS[6,15], c) decrease in the velocity of mobile

NKG2D microclusters as those move closer to the central region of the IS[6], and, d) random

movements of NKG2D microclusters in the central region of the IS[6].

Our agent based model describes spatiotemporal membrane proximal NK cell signaling in

a quasi three-dimensional simulation box representing the interface between NK cell mem-

brane and the plasma membrane of target cell or the lipid bilayer in a TIRF experiment at the

IS (Fig 1). The simulation box of area (A = 15μm × 15μm) and thickness z is discretized into

chambers of volume l0× l0×z where, z = l0 or z = 2l0 (l0 = 0.5μm) for molecules residing in the

plasma membrane or the cytosol, respectively. The following spatiotemporal processes occur

in the models.

(i) Biochemical signaling reactions. We considered key membrane proximal biochemi-

cal signaling reactions involved in NKG2D and KIR2DL2 signaling. The specific roles of sig-

naling proteins (adaptors, kinases, GEFs) considered here in regulating NKG2D signaling

have been validated in experiments and modeling over the years. A selection of the pertaining

literature is cited below and in Table 1. Similar to Mesecke et al. [16], we take a parsimonious

approach in creating the NKG2D signaling network where key signaling reactions are

Fig 1. Schematic depiction of the agent based models. (A) Shows biochemical signaling reactions considered in the models. The reactions and their propensities

are shown in Table 1. (B) Shows spatial movements considered in the agent based models. The simulation box is divided into chambers of volume l0 × l0 × z. A

ULBP3 bound NKG2D complex at chamber i moves to its nearest neighbor chamber j with a probability p(m-clus)
ji. p(m-clus)

ji depends on the number of pVav1

molecules in chamber i and the four nearest neighbor chambers. ULPB3 bound NKG2D complexes in a chamber hop to the nearest neighbor chambers with

probabilities pleft, pright, pdown and pup to implement centripetal movements (see main text). Free protein (receptors, kinases, phosphatases, Vav1/pVav1) molecules

hop to next nearest neighbor chambers with probability pdiffu implementing diffusive moves. (C) The biochemical signaling induces spatial clustering of NKG2D

which in turn increases biochemical signaling- this represents a spatial positive feedback in the models.

https://doi.org/10.1371/journal.pcbi.1010114.g001
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considered. This approach is widely used for developing “detailed but manageable” signaling

kinetic models where a model contains select reactions that pertain to the experimental data

the model aims to describe [17]. Below we describe signaling reactions and specific approxi-

mations considered in the model.

NKG2D receptors bind to cognate ligands (ULBP3) to form NKG2D-ULPB3 complexes.

NKG2D homodimers are associated with a pair of DAP10 homodimers in human NK cells.

The tyrosine residues in two YINM motifs in a DAP10 homodimer are phosphorylated by Src

family kinases [18,19] upon ULBP3 binding. NK cells contain several Src family kinases

including Lck, Fyn, Lyn, and Yes [20]. During signaling the DAP10 molecules associated with

NKG2D homodimers can be in a variety of partially phosphorylated states where one, two, or

three of the total four tyrosine residues are phosphorylated. To reduce the number of agents in

the model we approximated partially and fully phosphorylated states of the two DAP10 homo-

dimers by two states, unphosphorylated or fully phosphorylated. In the model, a kinase mole-

cule (SFK) represents multiple Src family kinases that phosphorylate DAP10 upon the

formation of the NKG2D-ULBP3 complex. In NK cells, phosphorylated DAP10 becomes

available to bind Grb2-Vav1 complex [1,16,21]. In the model, these reactions are approxi-

mated by binding of Vav1 to fully phosphorylated DAP10 where Grb2 is not included explic-

itly. Tyrosine residues in Vav1 have been found to be phosphorylated by SFKs in in vitro

assays [22,23]. In NK cells, engagement of adhesion receptor LFA-1[24] or 2B4 receptors [25]

has been reported to lead to phosphorylation of tyrosine residues in Vav1. In an experimen-

tally validated in silico NKG2D signaling model Mesceke et al. [16] considered phosphoryla-

tion of tyrosine residues in Vav1 by SFKs. Given the above background we considered DAP10

bound Vav1 is phosphorylated by the SFK in the model. Vav1 phosphorylation is an important

event during early time NK cell signaling as pVav1 leads to actin polymerization and degranu-

lation in NK cells [2,26]. Inhibitory KIR2DL2 receptors bind to cognate ligands (HLA-C) and

tyrosine residues in immunoreceptor tyrosine based inhibitory motifs (ITIMs) associated with

the cytoplasmic part of KIR2DL2 are phosphorylated by the SFKs [27]. SFKs have been impli-

cated in phosphorylation of tyrosine residues on ITIMs [27,28], however, the precise mecha-

nisms are not clear [29]. Phosphorylation of tyrosine residues in ITIMs results in recruitment

of SHP-1[29,30] which lead to dephosphorylation of pVav1[29,31]. We assume the catalytic

domains of SFK phosphorylate the ITIMs associated with KIR2DL2. The model assumes two

states of ITIM phosphorylation (unphosphorylated and fully phosphorylated) and the phos-

phatase SHP-1 binds to fully phosphorylated ITIMs. ITIM bound SHP-1 dephosphorylates

pVav1 via enzymatic reactions. Unbinding of ligands from cognate receptors (NKG2D or

KIR2DL2) dissociates the signaling complexes completely in the model–this step is included to

implement kinetic proofreading [32,33]. In addition, there are first order dephosphorylation

reactions for pVav1 representing dephosphorylation of phospho-tyrosines by phosphatases

other than SHP1[34]. Some of the biochemical signaling reactions were not included in the

model to keep the model simple and to stay focused on questions of interest, which is further

discussed in the Limitations of the model section at the end.

(ii) Spatial movements. We modeled movements of NKG2D-ULBP3 complexes for for-

mation of NKG2D microclusters and centripetal movements of NKG2D microclusters

towards the center of the IS. These movements are assumed in the model to be dependent on

actin remodeling which is regulated by signaling products such as pVav1[35]. The above

movements are implemented by hops to nearest neighbor chambers occurring with specific

probabilities. The velocity of the microclusters decreases as those move closer to the center. In

addition, unbound molecules of receptor, ligand, and signaling proteins perform diffusive ran-

dom movements in the model. Further details are provided in Table 1, Materials and Methods

section, and the Supplementary Material.
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Table 1. List of processes and parameter values used in the agent based model. nx is the number of species x in a chamber. k(x-y)
on denotes binding rate for species x

and y. k(x-y)
off denotes unbinding rate of complex x-y. k(x-E/P)

phospho/dephospho is the catalytic rate of phosphorylation/de-phosphorylation of x by enzyme E/P. k(px)
dephospho

denotes the de-phosphorylation rate of x by uncharacterized phosphatases.

Rule Processes implemented in

the model

Propensities Notes Range Used in PSO

Biochemical signaling processes initiated by NKG2D

1. NKG2D receptors binding/

unbinding with ligand

(ULBP3)

Binding: k(NKG2D-ULBP3)
on nNKG2D

× nULPB3

kon estimated by PSO. Range fixed by using KD

= 4μM for ULBP3 [36] and koff = 0.023s-1 (for

MICA)[36]

k(NKG2D-ULBP3)
on:

6×10−5

– 6 ×10−2 μM-1s-1

Unbinding:

k(NKG2D-ULBP3)
off nNKG2D-ULBP3

koff fixed to 0.023s-1, also close to the measured

koff for ULPB1[37].

2. Binding/unbinding of SFKs

to DAP10

Binding: k(DAP10-SFK)
on nDAP10 ×

nSFK
�nDAP10 is equal to nNKG2D in the

model.

Parameters estimated by PSO; ranges are based

on our estimation lck catalytic domain:tyrosine

(on CD3z) binding reaction rate kon = 0.063

(μm)2s-1 using Ref. [38]. Further details in S1

Text and S14 Fig.

k(DAP10-SFK)
on: 1.1–1.1× 102 μM-1s-1

Unbinding: k(DAP10-SFK)
off

nDAP10-SFK
�nDAP10 is equal to nNKG2D in the

model.

Parameter estimated by PSO; based on the

catalytic- domain of Csk:tyrosine (on Lck)

dissociation rate, koff = 0.044 s-1 [39]. Further

details in S1 Text and S14 Fig.

k(DAP10-SFK)
off: 0.006–6 s-1

3. Phosphorylation of tyrosine

residues in adaptor DAP10

via SFKs

Phosphorylation:

k(DAP10-SFK)
phospho nDAP10-SFK

Parameter estimated by PSO; based on ITAM-

tyrosine:lck phosphorylation kinetics, kcat =

2.3×10−4 to 98.4 × 10−4 s-1 [40].

k(DAP10-SFK)
phospho:

0.01–10 s-1

Upper limit is chosen to be 1000 × the

reported value to match the kinetics at

seconds scale in the simulations.

4. Vav1 binding/unbinding to

phosphorylated DAP10

Binding: k(pDAP10-Vav1)
on npDAP10 ×

nVav1

Parameter estimated by PSO; based on KD =

16.8μM for Vav-SH3:Grb2-SH3 binding

kinetics[41]. and koff = 10 s-1 (0.01 s-1) which

gives kon = 6 ×10−1 μM-1s-1 (6 × 10−4 μM-1s-1)

k(pDAP10-Vav1)
on:

0.6–60.0μM-1s-1

Due to small binding rate the upper

limit is chosen to be 100 times the

reported value

Unbinding: k(pDAP10-Vav1)
off

npDAP10-Vav1

Assumed to lie between 0.01–10 s-1 (Range

similar to reactions considered here).

k(pDAP10-Vav1)
off:

0.01–10 s-1

5. Phosphorylation of Vav1 by

SFKs

Phosphorylation:

k(pDAP10-Vav1-SFK)
phospho

npDAP10-Vav1-SFK

Parameter estimated by PSO; based on

Vav1-tyrosine:lck-SH2 phosphorylation

kinetics kcat = 1.78 s-1 to 2.4 s-1 [42].

k(pDAP10-Vav1-SFK)
phospho:

0.01–10 s-1

6. Binding/unbinding of SFKs

to pDAP10-Vav1

Binding: k(pDAP10-Vav1-SFK)
on

npDAP10-Vav1 × nSFK

Parameter estimated by PSO; based on

Vav1-phospho-tyrosine:lck-SH2

phosphorylation kinetics KD = 1.39μM [42] and

koff = 10 s-1 (0.01 s-1) which gives kon = 7.2 μM-

1s-1 (7 x 10−3 μM-1s-1)

k(pDAP10-Vav1-SFK)
on:

7.6 × 10−3–7.6 μM-1s-1

Unbinding: k(pDAP10-Vav1-SFK)
off

nDAP10-Vav1-SFK

Assumed to lie between 0.01–10 s-1 (range

similar to reactions considered here)

k(pDAP10-Vav1-SFK)
off:

0.01–10 s-1

7. De-phosphorylation of

NKG2D-pDAP10 by

phosphatases

De-phosphorylation:

k(pDAP10)
dephospho npDAP10

Parameter estimated by PSO; based on

dephosphorylation of NKG2D-pDAP10, kcat =

0.245 s-1 [43]

k(pDAP10)
dephospho:

0.02–2 s-1

8. De-phosphorylation of pVav1

by phosphatases

De-phosphorylation:

k(pDAP10-pVav1)
dephospho

npDAP10-pVav1

Parameter estimated by PSO; based on

dephosphorylation of pVav1, kcat = 0.145 s-1

[43]

k(pDAP10-pVav1)
dephospho:

0.01–1 s-1

Biochemical signaling processes initiated by inhibitory KIR2DL2

9. KIR2DL2 receptors binding/

unbinding with ligand

(HLA-C)

Binding: kon
(KIR2DL2) nKIR2DL2 ×

nHLA-C

Fixed value. Based on KIR2DL2:HLA-C

binding kinetics with KD = 3.6x10-2 μM [44]

and koff = 1 s-1 which gives kon = 27.7 μM-1 s-1

kon
(KIR2DL2):

27.7 μM-1 s-1

Unbinding:

koff
(KIR2DL2)nKIR2DL2-HLA-C

Fixed value. Based on KIR2DL3:HLA-Cw7

binding kinetics with koff = 1.1 s-1 [45]

koff
(KIR2DL2):

1.0 s-1

10. Binding/unbinding of SFKs

to ITIMs in KIR2DL2

Binding: k(ITIM-SFK)
on nITIM × nSFK

� nITIM = nKIR2DL2 in the model.

Fixed value. Assumed to be same as rule #2;

estimated from PSO.

Unbinding: k(ITIM-SFK)
off nITIM-SFK

� nITIM = nKIR2DL2 in the model.

Fixed value. Assumed to be same as rule #2;

estimated from PSO.

(Continued)

PLOS COMPUTATIONAL BIOLOGY Spatially resolved in silico modeling of NKG2D signaling kinetics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010114 May 18, 2022 6 / 33

https://doi.org/10.1371/journal.pcbi.1010114


(iii) Interplay between spatial movements and signaling reactions. The probabilities

of hops generating NKG2D microclusters and centripetal movements of NKG2D micro-

clusters depend on the local and the total number of pVav1 in the simulation box,

Table 1. (Continued)

Rule Processes implemented in

the model

Propensities Notes Range Used in PSO

11. Phosphorylation of tyrosine

residues in ITIMs via SFKs

Phosphorylation: k(ITIM-SFK)
phospho

nITIM-SFK

Fixed value. Assumed to be same as rule #3;

estimated from PSO.

12. SHP1 binding/unbinding to

phosphorylated ITIM

Binding: k(pITIM-SHP1)
on npITIM ×

nSHP1

Fixed value. Based on SHP1-Ly49A binding

kinetics with kon = 37.40× 104 M-1s-1 [46]

k(pITIM-SHP1)
on:

36.1 × 10−2 μM-1s-1

Unbinding: k(pITIM-SFK)
off

npITIM-SHP1

Fixed value. Based on SHP1-Ly49A binding

kinetics with koff = 5.09 x 10−4 s-1 [46]

k(pITIM-SFK)
off:

5.09 × 10−4 s-1

Biochemical processes for inhibition of activating signaling by inhibitory signaling

13. Binding/unbinding of ITIM

bound SHP1 to pVav1

Binding: k(SHP1-pVav1)
on nbound-SHP1

× npVav1

Fixed value. Assumed to be 6.11 μM-1 s-1.

Further details are provided in S2 Text and S15

Fig.

k(SHP1-pVav1)
on:

6.11 μM-1 s-1

Unbinding: k(SHP1-pVav1)
off

nbound-SHP1-pVav

Fixed value. Assumed to be 0.01 s-1. Further

details are provided in S2 Text and S15 Fig.

k(SHP1-pVav1)
off:

0.01 s-1

14. Dephosphorylation of pVav1

by ITIM bound SHP1

Dephosphorylation:

k(SHP1-pVav1)
dephos

nbound-SHP1-pVav1

Fixed value. Based on dephosphorylation of

PD1 tethered SHP1 molecules [47,48], we fixed

kcat = 3.0 s-1. Further details in S2 Text and S15

Fig.

k(SHP1-pVav1)
dephos:

3.0 s-1

Microcluster formation and spatial movements

15. NKG2D microcluster

formation
min (

exp b Ei � Ejð Þð Þ
1þexp b Ei � Ejð Þð Þ

; 1) × nNKG2D_sp
β estimated by PSO. β:

0.01–0.1

16. NKG2D microcluster

movements

k(cluster-move) × p left/right/up/down

p left/right/up/down is described in Eq

1 and depends on parameters w
and K.

k(cluster-move), w, and K are estimated via PSO. k(cluster-move): 0.1–5

K: 102–1581

w: 0.79–1

w is chosen closer to 1 favoring

centripetal over random movements.

17. Influx of NKG2D k(influx) × nNKG2D k(influx) estimated by PSO. This rule is added to

describe the influx of NKG2D observed in the

TIRF experiments in Ref.[6].

k(influx):

1 x 10−5–1 × 10−2 s-1

18. Diffusion of membrane

bound free NKG2D,

KIR2DL1, cognate ligands

D/l20 nNKG2D/KIR2DL1 D fixed to

0.01μm2 s-1

19. Diffusion of cytosolic

signaling proteins

D/l20 nVav1/pVav1/SHP1 D fixed to

10 μm2 s-1

Protein concentrations

NKG2D Set to 8 molecules/(μm)2 based on the

estimated number of NKG2D in a single NKL

cell of diameter 18μm[16].

Lck Set to 698 molecules/(μm)2 based on the

estimated number of NKG2D in a single NKL

cell of diameter 18μm [16].

Vav1 Set to 114 molecules/(μm)3 based on the

estimated number of NKG2D in a single NKL

cell of diameter 18μm [16].

SHP1 Set to 2090 molecules/(μm)3 based on the

estimated number of NKG2D in a single NKL

cell of diameter 18μm[16].

KIR2DL2 Set to 106 molecules/(μm)2 [49].

ULBP3 Parameter estimated by PSO. 1075–3468 molecules in the simulation

box.

HLA-C Set to 98 molecules/(μm)2 [50].

https://doi.org/10.1371/journal.pcbi.1010114.t001
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respectively. The rules capture the interplay between biochemical signaling reactions and

regulation of specific spatial movements by signaling reactions which in turn affects sig-

naling reactions. For NKG2D signaling the above interplay represents a positive feedback

[14].

Hypotheses considered. We considered three hypotheses encoded in models Model 1,

Model 2, and Model 3. The models probe functional outcomes of different types of NKG2D

clustering and interplay between NKG2D microclusters and biochemical signaling reactions.

In Model 1, mobile NKG2D microclusters and NKG2D bound signaling protein molecules

move toward the central region of the IS. In Model 2, NKG2D complexes and membrane

proximal Vav1 molecules move simultaneously toward the central region of the IS. This Vav1

species in the model could potentially represent Vav1 molecules that are recruited to the

plasma membrane via SOS1[51]. Because of the above rule, there is a strong co-clustering of

NKG2D and Vav1 in Model 2. In Model 3, we studied outcomes of the absence of the positive

feedback between NKG2D microcluster movement and signaling reactions. In Model 3, the

rate of centripetal movements of mobile NKG2D microclusters is independent of pVav1 abun-

dances. Model 3 contains co-clustering of NKG2D and Vav1 as in Model 2. The models are

summarized in Table 2.

Model simulation and parameter estimation

The simulations are carried out in a quasi-three-dimensional simulation box representing a

thin junction between NK cell and the supported lipid bilayer in TIRF experiments. The

simulation box has an area of 15 × 15 μm2 and a depth of z, and is divided into small cubic

chambers of size (l0 × l0 × z), where l0 = 0.5μm and z = l0 (for molecules residing in mem-

brane) or 2l0 (for cytosolic molecules). The molecules are well-mixed in each chamber and

molecules in a chamber hop to next nearest neighbor chambers with specific rates to pro-

duce diffusive or centripetal movements, or movements leading to microcluster formation.

The kinetics of the system is simulated using a kinetic Monte Carlo (kMC) approach via a

freely available simulator SPPARKS (https://spparks.sandia.gov/). The kMC simulation

includes intrinsic noise fluctuations in biochemical reactions as well as in spatial move-

ments. The list of the processes, and their propensities are listed in Table 1. The copy num-

bers of most of the signaling proteins in the simulation box are estimated using available

measured concentrations for NKLs (Table 1). However, values of many of the model param-

eters in the cellular environment are unknown, and we estimated these parameters by a

parameter fitting scheme that reproduced the spatial pattern of NKG2D receptors measured

in TIRF experiments [6]. The spatial patterns of NKG2D in our simulation and TIRF imag-

ing data are quantified using mean values, variances, and a two-point correlation function

computed from density profiles for NKG2D. Similar variables are widely used in statistical

physics [52] to quantify spatial patterns. The Euclidean distance between dimensionless

forms of the above variables in TIRF images and the agent based model is used to create a

cost function which is minimized by particle swarm optimization (PSO) to estimate model

Table 2. List of the agent based models.

Biochemical signaling

reactions

Formation of NKG2D

microclusters

Centripetal movement of

NKG2D microclusters

Co-clustering of

NKG2D and Vav1

pVav1 dependent centripetal

movements of NKG2D micro clusters

Model 1 Yes Yes Yes No Yes

Model 2 Yes Yes Yes Yes Yes

Model 3 Yes Yes Yes Yes No

https://doi.org/10.1371/journal.pcbi.1010114.t002
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parameters. Details regarding our parameter estimation scheme are provided in Materials

and Methods section and the Supplementary Material.

Results

1. Multiple models quantitatively describe kinetics of NKG2D

microclusters

Spatiotemporal signaling kinetics of NKG2D and associated signaling proteins was simulated

in Model 1 and Model 2. NKG2D, ULBP3, SFK, and Vav1 molecules were distributed homo-

geneously in space in the simulation box at the beginning of the simulation at t = 0. Binding of

NKG2D and ULBP3 initiates a series of biochemical signaling reactions (Table 1) leading to

phosphorylation of Vav1 in the simulations. The production of pVav1 molecules initiates

NKG2D microcluster formation and centripetal movements of the NKG2D microclusters (S1

and S2 Movies). Both models fit spatial distribution of NKG2D in TIRF experiments at

t = 1min, in particular, at length scales� 1μm reasonably well (Fig 2). The variances and the

two-point correlation functions calculated using spatial distributions of NKG2D in model sim-

ulations agreed well with that calculated from the TIRF imaging data (Figs 2 and S1). The esti-

mated best-fit parameters for the models are shown in Table 3. Many parameter values show

order of magnitude differences between Model 1 and Model 2, e.g., binding-unbinding rates

Fig 2. Model 1 and Model 2 captures the spatial clustering of NKG2D (DAP10) in TIRF experiments. (A) Shows a 2D fluorescence intensity of

NKG2D-DAP10-mCherry in TIRF experiments in Ref. [6] at t = 1min post stimulation by ULPB3. The above image shows a region of interest extracted from S4

Fig in Ref. [6] which is coarse-grained to match the minimum length scale (~ 0.5 μm) of spatial resolution in our model (see Materials and Methods for details).

(B and C) Shows spatial distribution of NKG2D in the x-y plane in the simulation box for our agent based model (B) Model 1 and (C) Model 2 at t = 1 min post

NKG2D stimulation. The parameters for the simulation are set at the best fit value from our PSO. The area of the region of interest in the image and simulation

box is set to 15μm × 15μm. (D) Shows comparison between the two-point correlation function (C(r,t)/C(0,t) vs r) at t = 1 min calculated from the image in (A)

(red, empty square) and configurations for Model 1 (black, empty circle) and Model 2 (blue, empty triangle) shown in (B) and (C).

https://doi.org/10.1371/journal.pcbi.1010114.g002
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of SFK to DAP10 or of Vav1 to pDAP10. The reason for this difference can be explained as fol-

lows. In Model 2, co-clustering of Vav1 and NKG2D increases propensities of reactions that

Table 3. List of parameter values estimated from PSO. Values within () and [] correspond to the standard deviation (s.d.) (details in Materials and Methods section)

and to the ratio PSO s.d./(PSO estimated value), respectively.

Processes Parameters PSO estimated parameters

Model 1 Model 2

NKG2D receptors binding with ligand (ULBP3) k(NKG2D-ULBP3)
on 5.631×10−2 μM-1 s-1

(1.37 ×10−2)

[0.24]

2.387 ×10−2 μM-1 s-1

(1.43 ×10−2)

[0.6]

Binding/unbinding of SFKs to DAP10 k(DAP10-SFK)
on 47.14 μM-1 s-1

(26.07)

[0.55]

1.054 μM-1 s-1

(8.56)

[8.12]

k(DAP10-SFK)
off 1.831 s-1

(1.71)

[0.93]

0.006 s-1

(0.36)

[61.29]

Phosphorylation of tyrosine residues in adaptor DAP10 via SFKs k(DAP10-SFK)
phospho 0.452 s-1

(1.89)

[4.16]

2.189 s-1

(1.94)

[0.89]

Vav1 binding/unbinding to phosphorylated DAP10 k(pDAP10-Vav1)
on 35.4 μM-1 s-1

(10.0)

[0.28]

0.6112 μM-1 s-1

(3.64)

[5.94]

k(pDAP10-Vav1)
off 5.069 s-1

(2.33)

[0.46]

0.01 s-1

(0.26)

[26.16]

Binding/unbinding of SFKs to pDAP10-Vav1 k(pDAP10-Vav1-SFK)
on 1.023 ×10−2 μM-1 s-1

(0.38)

[37.38]

7.528 μM-1 s-1

(0.56)

[0.07]

k(pDAP10-Vav1-SFK)
off 0.042 s-1

(1.13)

[26.88]

0.028 s-1

(0.14)

[5.0]

Phosphorylation of Vav1 by SFKs k(pDAP10-Vav1-SFK)
phospho 0.922 s-1

(1.65)

[1.79]

0.776 s-1

(0.28)

[0.37]

De-phosphorylation of pDAP10 by phosphatases k(pDAP10)
dephospho 0.127 s-1

(0.39)

[3.03]

2.0 s-1

(0.25)

[0.13]

De-phosphorylation of pVav1 by phosphatases k(pDAP10-pVav1)
dephospho 0.048 s-1

(0.17)

[3.63]

1.0 s-1

(0.12)

[0.12]

NKG2D microcluster formation β 0.013

(8.43 ×10−3)

[0.64]

0.01

(3.9 ×10−4)

[0.04]

NKG2D microcluster movements k(cluster-move) 0.899

(0.32)

[0.35]

1.157

(0.3)

[0.26]

K 102.086

(31.01)

[0.30]

102.086

(19.02)

[0.19]

w 0.802

(3.02 × 10−2)

[0.04]

1.0

(5.37 × 10−2)

[0.05]

Influx of NKG2D k(influx) 6.6 × 10−5 s-1

(3.23 × 10−4)

[4.86]

0.0044 s-1

(1.97 × 10−3)

[0.44]

Number of ULBP3 in the simulation box + outer rim 3459

(59.20)

[1.71 × 10−2]

3462

(62.53)

[1.81 × 10−2]

https://doi.org/10.1371/journal.pcbi.1010114.t003
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influence pVav1 production and consequently the formation and motility of NKG2D micro-

clusters. Therefore, different values for reaction rates (e.g., binding/unbinding rate of Vav1 to

pDAP10) regulating microcluster kinetics are chosen as optimal parameter values in Model 1

to compensate for the absence of the increase in reaction propensities due to Vav1-NKG2D

co-clustering in the model.

The computation of uncertainties in the estimated parameter values showed that about 2/3

of the total number of parameters are estimated well, e.g., (standard deviation)/(estimated

value) < 3. The procedure for estimation of uncertainty is described in detail in the Materials

and Methods section, and potential causes behind poor parameter estimations of 1/3 of the

parameters are discussed in the Discussion section. Next, we assessed the utility of the parame-

ter estimation scheme for generating predictions at future time points (Figs 3 and S2) and pro-

viding mechanistic insights (next section). The best-fit models were used for predicting spatial

patterns of NKG2D at later times t> 1 min. Both models predict spatial distribution of

NKG2D in TIRF imaging data until t = 3 min reasonably well (Figs 3 and S2). However, model

predictions deviate from the C(r,t) data calculated for the TIRF images at t = 4 min (S3 Fig).

This disagreement is likely due to change in the organization of the NKG2D microclusters

caused by the spreading of the NK cells on the supported lipid bilayer which is not included in

our agent based models.

Fig 3. Model prediction for NKG2D spatial clustering at later times are in agreement with TIRF experiments. (A) (Top) Shows coarse-grained 2D image

extracted for a region of interest in TIRF image (S4 Fig in Ref. [6]) of NKG2D-Dap10-mCherry at t = 2 min post stimulation by ULPB3. (Middle and Bottom)

Shows spatial distribution of NKG2D in the x-y plane at t = 2 min post stimulation for Model 1 (middle) and Model 2 (bottom). The model parameters are

set to the best fit values obtained for the fit at t = 1 min. (B) (top) Similar to (A), TIRF image Ref. [6] at 3 min post ULBP3 stimulation. (Middle and Bottom)

Shows spatial distribution of NKG2D in the x-y plane at t = 3 min post stimulation for Model 1 (middle) and Model 2 (bottom). The model parameters are

set to the best fit values obtained for the fit at t = 1 min. (C) Comparison of the two-point correlation function (C(r,t)/C(0,t) vs r) evaluated from the TIRF

image (red, empty square) and simulations for Model 1 (black circle) and Model 2 (blue triangle) at t = 2 min. (D) Similar to (C) showing comparison

between experiments and Model 1 and Model 2 at t = 3 min.

https://doi.org/10.1371/journal.pcbi.1010114.g003

PLOS COMPUTATIONAL BIOLOGY Spatially resolved in silico modeling of NKG2D signaling kinetics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010114 May 18, 2022 11 / 33

https://doi.org/10.1371/journal.pcbi.1010114.g003
https://doi.org/10.1371/journal.pcbi.1010114


2. Co-clustering of NKG2D and Vav1 is required to increase the production

of pVav1 due to the formation of NKG2D microclusters

We investigated the mechanistic role of formation and centripetal movement of NKG2D

microclusters in increasing pVav1 production. The average lifetime of a NKG2D-ULBP3

complex within NKG2D microclusters can increase because of the increase in the frequency

of ULBP3 rebinding due to higher density of NKG2D molecules in microclusters. The

increased ULBP3 rebinding could elevate abundances of NKG2D-ULBP3 complexes lead-

ing to higher pVav1 production in Model 1 and Model 2. In addition, in Model 2, the

increase in reaction propensities due to co-clustering of NKG2D and Vav1 can enhance

pVav1 production. In order to evaluate the roles of ULBP3 rebinding and NKG2D and

Vav1 co-clustering in increasing pVav1 production we compared kinetics of pVav1 produc-

tion in Model 1 and Model 2 under two conditions: Case A: NKG2D is not allowed to form

microclusters or perform centripetal movements, and, Vav1 does not co-cluster with

NKG2D. This case represents NKG2D stimulation in experiments where NKG2D micro-

cluster formation and migration is blocked by application of drugs inhibiting actin poly-

merization [14]. Case B: Spatial aggregations of NKG2D and Vav1 occur according to the

model rules. Simulations for Case A result in spatially homogeneous distribution of

NKG2D molecules in both models. Our simulations for Model 1 show that abundances of

pVav1 at t = 1 min for a range of ULBP3 doses have negligible differences between Case A

and B (Fig 4A). The kinetics of pVav1 production for a particular ULBP3 dose also shows

almost no difference between Case A and B (S4A Fig). In contrast, pVav1 abundances

decrease in Case A compared to Case B in Model 2 for a range of ULBP3 doses (Figs 4B and

S4B). The magnitude of this decrease increases with the increasing ULBP3 dose (Fig 4B).

These results suggest that co-clustering of NKG2D and Vav1 in Model 2 could be important

for increased pVav1 production in the model.

However, ULBP3 rebinding could also help in elevating pVav1 production in Model 2.

Therefore, we further quantified the contribution ULBP3 rebinding in increasing the average

number of NKG2D-ULBP3 complexes in Model 2. We followed an approach in ref. [53] for

this quantification, wherein decay kinetics of an initial fixed number of receptor-ligand com-

plex is studied in the presence of immobile spatially distributed receptors. The simulations

start with a fraction of receptors bound to ligands and no free ligands; free ligands created by

dissociation of the receptor-ligand complex at a rate koff can diffuse and rebind to the recep-

tors. In the absence of any ligand rebinding, the number of receptor-ligand complex decays

exponentially as/ exp(-koff t). The presence of rebinding produces a slower and a non-expo-

nential decay of the number of receptor ligand complex with higher numbers of receptor-

ligand complex remaining in the system at longer times (t� 1/koff) compared to an exponen-

tial decay as exp(-koff t). We evaluated the decay kinetics of an initial number of

NKG2D-ULBP3 complex where NKG2D-ULBP3 binding-unbinding reactions were the only

reactions present in simulations. The NKG2D molecules, held fixed in space, were distributed

uniformly and randomly or in a spatially clustered configuration obtained from our simula-

tions for Model 1 or Model 2 at t = 1 min (Fig 2C). The decay kinetics shows non-exponential

decay for both the cases and a small increase in the number of NKG2D-ULBP3 complex (Fig

4C and 4D) when NKG2D are clustered. The above results reveal that the effect of ULBP3

rebinding in our models is almost equally strong when NKG2D are distributed uniformly ran-

domly or in microclusters. Thus, increased ULBP3 rebinding in NKG2D microclusters does

not play a substantial role in increasing pVav1 production.

The increase in the production of pVav1 induced by NKG2D microclusters in Model 2

(Fig 4B) is consistent with experiments by Endt et al. [14], where blocking cytoskeletal
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movements by an actin polymerization inhibiting drug cytochalasin D produces a substan-

tial decrease in pVav1 in NKLs stimulated by NKG2D ligand MICA. Actin polymerization

induces microcluster formation and centripetal movements of NKG2D as treatment with

actin depolymerization agent latrunculin abrogated NKG2D microcluster formation and

movements in NKLs [6]. Next, we used Model 2 for deciphering mechanisms of signal

integration.

3. pVav1 dependent centripetal movements of NKG2D are abrogated by

inhibitory KIR2DL2 signaling

We investigated inhibition of NKG2D signaling by inhibitory KIR2DL2 receptors in

Model 2. The KIR2DL2 receptors were distributed in the simulation box following TIRF

imaging data in ref. [6] (S5A Fig). The two-point correlation function calculated from spa-

tial distribution of KIR2DL2 at t = 0 in our simulations agrees well with that of the TIRF

imaging data (S5C Fig). The TIRF experiments show that KIR2DL2 microclusters are pres-

ent in higher numbers at the periphery compared to the central region of the IS. In addi-

tion, the spatial organization of these microclusters does not change appreciably between

pre- and ~30s post- stimulation by HLA-C ligands (S5B Fig). The changes in KIR2DL2

microcluster distributions beyond 30s occurred presumably due to rapid retraction of NK

Fig 4. Co-clustering of Vav1 is needed to increase pVav1 upon NKG2D stimulation. Shows increase in the total number of pVav1 at t = 1 min as

the number of ULBP3 is increased in Model 1 (A) and Model 2 (B) for cases where NKG2D are not allowed to form microclusters (magenta asterisks,

Model 1; magenta diamonds, Model 2) or form microclusters (black circles, Model 1; blue triangles, Model 2) according to the model rules. The pVav1

concentrations are averaged over 50 different configurations. The points in green indicate the data obtained for parameter values that best-fit TIRF

imaging data at t = 1 min. (C and D) Decay kinetics of the fraction of the ULBP3-NKG2D complex when NKG2D molecules are distributed in space

uniformly (magenta asterisks, Model 1; magenta diamonds, Model 2) or in clusters obtained from NKG2D configuration at t = 1min for (C) Model 1

and (D) Model 2. NKG2D molecules are drawn from a uniform random distribution for creating the homogeneous configurations where a 0.90 (0.83)

fraction of NKG2D are bound to ULBP3 at t = 0 for Model 1 (Model 2). The decay kinetics are averaged over 200 initial configurations. The solid lines

show fits to exponential decays at early times. The decay kinetics start deviating from the exponential decay at t ≳ 10sec.

https://doi.org/10.1371/journal.pcbi.1010114.g004

PLOS COMPUTATIONAL BIOLOGY Spatially resolved in silico modeling of NKG2D signaling kinetics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010114 May 18, 2022 13 / 33

https://doi.org/10.1371/journal.pcbi.1010114.g004
https://doi.org/10.1371/journal.pcbi.1010114


cells from the supported lipid bilayer. Since we did not model NK cell retraction in our

models, we assumed KIR2DL2 microclusters to be stationary in our simulations. The

chambers where the number of KIR2DL2 exceeded a threshold value were considered to be

parts of KIR2DL2 microclusters in simulations. In our models, KIR2DL2 microclusters co-

localize with SFK which is supported by previous experiments [54]. NKG2D, ULPB3,

HLA-C, SFK, SHP1, and Vav1 were distributed homogeneously in the simulation box at

t = 0. Some of the SFK molecules were co-clustered with KIR2DL2 which remained immo-

bile for the duration of the simulations (details in Materials and Methods section). In the

simulations, SHP1 recruited by the pITIMs in KIR2DL2-HLA-C complexes dephosphory-

late pVav1 (bound to NKG2D complex or free) residing in the same spatial location or the

same chamber. Thus, the production of pVav1 reduces substantially in the presence of

inhibitory KIR2DL2 signaling (Fig 5B). The decrease in pVav1 abundance also slows down

centripetal movements of the NKG2D microclusters resulting in a more spread-out spatial

distribution of NKG2D in simulations (Fig 5A and S3 Movie). We quantified the reduction

of centripetal migration of NKG2D by calculating the increase in the number of NKG2D

molecules in a region enclosing the center of the IS (Fig 5C) over a time period. This

decrease in the centripetal movement of NKG2D is qualitatively in agreement with experi-

ments by Abeyweera et al. [6].

Fig 5. KIR2DL2 inhibition abrogates centripetal movements of NKG2D receptor clusters. (A) Spatial clustering of NKG2D in the presence of

inhibitory KIR2DL2 signaling in Model 2 at t = 1 min post ULBP3 stimulation. KIR2DL2 is stimulated by HLA-C at t = 0. KIR2DL2 is distributed

in the simulation box following the data extracted from TIRF imaging at 1 min 44 sec in Fig 4 of Ref. [6]. (B) Kinetics of total number of pVav1 in

Model 2 in the presence (filled brown triangle) and the absence (empty blue triangle) of inhibitory ligands (HLA-C). (C) The kinetics of the

number of NKG2D molecules in a region of area 3μm ×3μm around the center of the simulation box for Model 2 in the presence (filled brown

triangle) and absence (empty blue triangle) of inhibitory ligands (HLA-C). The decrease in the number of NKG2D in the presence of KIR2DL2

signaling shows the decrease in the centripetal flow of the NKG2D microclusters in the simulation. The pVav1 and NKG2D kinetics shown are

averaged over 200 different configurations.

https://doi.org/10.1371/journal.pcbi.1010114.g005
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4. Interplay between Vav1 phosophorylation and centripetal movements is

required for efficient inhibition of NKG2D signaling by inhibitory

KIR2DL2

We employed Model 2 and Model 3 to study the role of the interplay between centripetal

movements of NKG2D microclusters and pVav1 in early time integration of NKG2D and

KIR2DL2 signals. In Model 3, centripetal movements of NKG2D and Vav1 are independent of

pVav1 abundances, thus, the decrease in pVav1 abundances due to inhibitory signaling does

not affect accumulation of NKG2D at the central region of the IS (S4 Movie and Fig 6B). We

carried out simulations for two scenarios where inhibitory HLA-C ligands were distributed in

the simulation box homogeneously (Case I) or in a ring pattern (Case II) (Fig 6A) devoid of

HLA-C molecules at the center of the ring. The ring pattern could represent HLA molecules

on engineered surfaces [55] or on target cells. Almeida et al. [54] found HLA-C molecules to

be organized in a ring pattern on target cells after NK cells are incubated with target cells for

10mins. The pattern formation in part is initiated by binding of inhibitory KIR2DL2 and

HLA-C, and KIR2DL2 co-localizes with HLA-C in such clusters. Simulations were carried out

with HLA-C and ULBP3 in Model 2 and Model 3. When HLA-C are distributed homo-

geneously (Case I), the total number of pVav1 at t = 1 min post NKG2D stimulation decreases

substantially in both models as the number of HLA-C increased about 4 -fold (1000 to 4000 in

the simulation box) (Fig 6D). The pVav1 abundances are slightly higher in Model 3 than

Fig 6. The presence of the spatial positive feedback allows for efficient inhibition. (A) Shows spatial arrangement of inhibitory HLA-C

ligands in a ring configuration used in the simulations of Model 2 and Model 3. (B) Spatial distribution of NKG2D the simulation box for

Model 3 at 1 min in the presence of both activating ULBP3 and inhibitory ligands shown in (A). Note the central accumulation of NKG2D

because of the independence of NKG2D centripetal movements on pVav1 for Model 3. (C and D) Show variation of total number of pVav1

at t = 1 min with increasing HLA-C concentrations for Model 2 (empty blue triangle) and Model 3 (purple asterisks). The decrease in pVav1

is higher in Model 2 compared to Model 3. The decrease in pVav1 Model 2 is more pronounced at larger HLA-C concentrations when

HLA-C are organized in a ring pattern (C) vs distributed homogeneously (D). The pVav1 values shown in (C) and (D) were obtained by

averaging over 50 configurations for each HLA-C dose.

https://doi.org/10.1371/journal.pcbi.1010114.g006
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Model 2 owing to increased NKG2D clustering in the former model. This decrease in pVav1

with increasing HLA-C in the models is qualitatively similar to the large decrease in the per-

centage of lysis of human NK cell line YTS in cytotoxicity assays reported in ref. [54] as the

abundance of HLA-C on target cells increased about 4 -fold. Next, we investigated variation of

pVav1 with increasing HLA-C dose in Model 2 and Model 3 when HLA-C molecules were dis-

tributed in a ring pattern (Case II). The simulations show smaller decrease in the number of

pVav1 in Model 3 compared to Model 2 as the number of HLA-C is increased (Fig 6C). This

result can be explained as follows. In Model 3, NKG2D microclusters, regardless of the pVav1

concentrations, accumulate at the center of the IS devoid of HLA-C and produce pVav1 even

at high HLA-C concentrations, whereas, in Model 2 the lower amount of pVav1 at high

HLA-C concentrations decreases centripetal movements of NKG2D and prevents accumula-

tion of NKG2D at the center of the IS (S6 Fig). We also carried out the above comparison

when KIR2DL2 molecules are co-localized with HLA-C in the ring pattern to represent

HLA-C clustering in target cells interacting with NK cells [54]. The results (S7 Fig) were simi-

lar to that in Fig 6C. Therefore, the HLA-C ligands are able to suppress the production of

pVav1 more efficiently in Model 2 compared to Model 3.

Discussion

Spatial organization of activating human NKRs such as CD16[56], NKp46[57], KIR2DS1[58],

and NKG2D [5–7], and associated signaling proteins has been observed in NK cells stimulated

by cognate activating ligands. Microcluster formation by NKRs can increase the apparent life-

time of NKR-ligand complexes because of higher frequency of ligand rebinding within a

microcluster. In addition, co-clustering of NKRs with signaling proteins in NKR microclusters

can increase biochemical propensities of signaling reactions due to elevated local concentra-

tions of reacting proteins. Either of the above mechanisms could increase production of acti-

vated (e.g., tyrosine phosphorylated) signaling proteins. However, when the contribution due

to ligand rebinding is not substantial, co-clustering of NKR and other signaling proteins plays

a dominant role in increasing downstream signaling. We developed a predictive in silico

framework to quantify relative roles of the above mechanisms for early (~ few mins) NKG2D

signaling kinetics to demonstrate that co-clustering of Vav1 with NKG2D plays a more domi-

nant role over ULBP3 rebinding in increasing activating signals. Since NKG2D binds with

ULPB3 with a half-life (ln(2)/koff) of ~ 30 seconds and the average number of homogeneously

distributed NKG2D molecules in the area occupied by a typical NKG2D microcluster is about

two molecules, the higher numbers of NKG2D in microclusters do not result in a large

increase in abundances of NKG2D-ULBP3 complexes due to ligand rebinding. Our simula-

tions confirm the above explanation. Co-clustering of signaling proteins could play an impor-

tant role for increasing downstream signaling for other activating NKRs as well. The density of

CD16 on primary NK cells is about 200 times larger than that of NKG2D [59] and the lifetime

of a CD16-ligand complex is similar (e.g., koff <0.01 s-1 for IgG[60]) or larger than that of

NKG2D-ULBP3, therefore, the effect of co-clustering of signaling proteins with CD16 could

be more relevant for increasing downstream signaling than ligand rebinding.

Our NKG2D signaling model could describe spatiotemporal clustering by other activating

NKRs such as CD16 qualitatively, as the formation and movements of another activating NKR

microclusters could arise from similar interplay between pVav1 kinetics and cytoskeletal reor-

ganizations modeled here, however, the time scales of formation and centripetal movements

of microclusters of activating NKRs would depend on the time scales of pVav1 production.

Since, the signaling reactions leading to pVav1 production can be different between NKG2D
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and another activating NKR (e.g., CD16, KIR2DS1), the spatiotemporal kinetics of NKG2D

and other activating NKRs are likely be quantitatively different.

Our agent based model (Model 2) is successful in generating predictions regarding inhibi-

tion of NKG2D signaling by inhibitory KIR2DL2 signaling or by drugs inhibiting actin poly-

merization. The model qualitatively captures the slowing down of the NKG2D microcluster

movements in the presence of inhibitory KIR2DL2 signaling (Fig 5A and 5C) and the decrease

in pVav1 (Fig 5B) in response to an actin polymerization inhibiting drug cytochalasin D in

NKLs stimulated by NKG2D ligand MICA [14]. The model also quantitatively predicts spatial

pattern of NKG2D in TIRF imaging at later time points, not included in model training, rea-

sonably well. The model also reasonably predicted (S8 Fig) early (� 70 secs) clustering of

NKG2D in NKLs stimulated by MICA on target Daudi cells in confocal experiments reported

by Brown et al. [7]. This provides confidence on the applicability of our model and parameter

estimation for describing other systems. The model can be further expanded to investigate

mechanisms of interplay between pairs of activating and inhibitory NKRs stimulated by acti-

vating ligands and different organizations of HLA-C ligands with peptides. Adaptable spatial

patterns of antigens presented by DNA origami structures have been recently used to manipu-

late responses in B- cells [61] and CAR T- cells [62]. The spatial model developed here can

serve as a screening tool for identifying spatial patterns of antigens optimal for generating spe-

cific lymphocyte responses.

In order to investigate the utility of our model to predict further downstream NK cell

responses, we applied our model to predict lysis of target cells treated with DNA polymerase

inhibitor aphidicolin in NK cell cytotoxic assays by Gasser et al. [63]. Gasser et al. [63]

observed aphidicolin treatment moderately increases the expression of NKG2D ligands in

mouse T-cell blast target cells and these target cells showed increased lysis compared to their

untreated counterparts. An extension of our signaling model qualitatively predicts (S3 Text

and S16 Fig) the differences in lysis of aphidicolin treated and untreated target cells for a range

of effector cell:target cell ratios as reported by Gasser et al. [63]. This application could point to

a potential way to combine early time signaling model with population kinetic models describ-

ing later time NK cell responses.

We studied the role of the interplay between creation of NKG2D microclusters, centripetal

movement of the microclusters, and early time signaling using an alternate model (Model 3)

where centripetal movement of NKG2D microclusters is independent of pVav1. Our simula-

tions show that pVav1 dependent centripetal movements allow for a more efficient suppres-

sion of pVav1 in the presence of inhibitory KIR signaling, in particular, when inhibitory

ligands (HLA-C) are clustered in a ring formation in the target cell membrane. HLA-C mole-

cules have been found to organize in ring or multifocal patterns on target cells [54], the pres-

ence of the spatial feedback in NKG2D microclusters and pVav1 creates an efficient and

flexible maneuver to inhibit signaling when inhibitory ligands are present in spatially inhomo-

geneous patterns.

A unique aspect of our modeling framework is estimation of model parameters that best fit

spatial patterns of NKG2D measured in TIRF imaging experiments. Many parameters in our

model were not measured in experiments previously or are difficult to measure because they

described coarse-grained processes (e.g., parameters in describing centripetal force). In addi-

tion, reported parameter values measured under specific conditions (e.g., outside the cell)

might not reflect its magnitude within the cell. Therefore, we carried out an estimation of

model parameters using parallel codes that produced quantitative agreement between spatial

patterns of NKG2D in simulation and imaging experiments. We used two-point correlation

functions to quantify spatial organization of NKG2D microclusters which is widely used in sta-

tistical physics and materials science to quantify spatial patterns. The parameter estimation
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step provides the following benefits: (i) it allows models to capture unique aspects of kinetics

of NKG2D microclusters, e.g., centripetal movement with decreasing mobility at the center of

the IS. (ii) Provides parameter ranges where the roles of ligand rebinding and co-clustering of

NKG2D and Vav1 can be compared. Since both the processes depend on parameter values,

these should be compared in parameter ranges that are able to reproduce experimental data.

Receptor clustering in the IS has been widely investigated in computational models in T-[64–

70], B-[71], and NK- cells[11,12], however, most of these models described the spatial patterns

qualitatively. Some of the modeling quantitatively described receptor patterns in NK-[72] and

T-[73] cells, however, did not couple receptor clustering with signaling kinetics. A major diffi-

culty in parameter estimation in spatial models is computationally intensive nature of such cal-

culations, which we address here using parallel computation. However, as we discuss below

there are several areas where this framework requires further improvement.

Limitations of the work

The model did not include several processes or made approximations to keep the model sim-

ple and focused on the questions of interest addressed here. We did not include integrin recep-

tor LFA1 and its ligand ICAM-1 in our models for simplicity and focused our study to

NKG2D and KIR2DL1 signaling and clustering. Larger size LFA1-ICAM-1 complexes

(~40nm) segregate from the smaller sized (~10-15nm) NKG2D-MICA or KIR2DL1 molecules

due to size based exclusion interactions [74]. Usually, LFA1-ICAM1 molecules reside in the

periphery of the IS surrounding NKG2D [74,75]. However, integrin receptor signaling con-

tributes towards NK cell signaling [76–78] and spatial clustering of LFA-ICAM1 will likely

contribute towards early time NK signaling and its regulation of NKG2D spatiotemporal sig-

naling kinetics. Similarly, proximal signaling proteins such as PI3K [79] were not included in

the model to keep the model simple and focused on the questions of interest addressed here.

The models also do not include NKG2D degradation [80] which tends to occur later in the sig-

naling (>15 mins)[81] and could underlie the lower amount of phosphorylated ITAM phos-

phorylation in the central region in the TIRF experiments in Abeyweera et al. [6]. We

represented multiple SFKs (e.g., Lck, Fyn, Lyn, Yes) in NK cells by a single species for simplify-

ing models. There are differences in substrate specificities [82] for SFKs in T cells. It will be

straightforward to extend our models to include multiple SFKs if similar differences are found

in NK cells.

Furthermore, our model did not include spreading of the NK cell surface on the glass slide.

Upon NKG2D stimulation the NK cell spreads at later times (� 4min). Due to this reason our

model can describe early time (0–3 min) NKG2D spatiotemporal signaling kinetics where NK

cell spreading is negligible but is unable to quantitatively predict changes in NKG2D spatial

patterns due to spreading of NK cell surface on the glass slide at times� 4min (S3 Fig) or late

time signaling events such as secretion of lytic granules. The model also does not include

retraction of the NK cell surface from the bilayer within minutes (~ 5 mins) induced by stimu-

lation of inhibitory KIR2DL2 in the TIRF experiments [6]. The retraction helps to self-limit

the formation of NK cell-target cell conjugates when inhibitory signals dominate [5,6].

One the computation side, several parameters showed large error bounds implying these

parameters can be changed substantially but will make small or no changes to the mean cluster

sizes and two-point correlation functions. A potential solution to address this challenge could

be introducing weight factors for combining mean values and two-point correlation functions

(or second moments) following a systematic framework such as generalized method of

moments [83,84].
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Materials and methods

Spatial kinetic Monte Carlo simulation

We used the software package SPPARKS (https://spparks.sandia.gov/) to simulate reactions

and particle hopping moves described below. We chose Gibson-Bruck implementation of Gil-

lespie algorithm [85] within SPPARKS to perform the kinetic Monte Carlo simulation.

Biochemical reactions

Molecules in each chamber of volume (l0 × l0 × z) where l0 = 0.5μm and z = l0 (for plasma

membrane bound molecules) or z = 2l0 (for cytosolic molecules) are taken to be well-mixed.

Stochastic biochemical reactions in individual chambers are simulated using reaction propen-

sities listed in Table 1. There are three types of protein molecules depending on their location

in the simulation box: (i) Molecules residing in the NK cell plasma membrane which include

NKG2D, SFK, and, KIR2DL2. (ii) Molecules residing in the NK cell cytosol which include

Vav1, and SHP1. (iii) Molecules residing in the supported lipid bilayer in TIRF experiments

which include NKR ligands: ULBP3, and HLA-C. The binding of NKRs and their respective

ligands can occur when the binding domains of these proteins are separated by short distances

drecep-lig ~ 2 nm [86]. Therefore, the volume factor (vrecep-lig) used for converting the unit of

binding rate (kon) from (μM)-1 s-1 to propensity (/ kon/vrecep-lig) in s-1 in a chamber is taken

as, vrecep-lig = l0 × l0 × drecep-lig. Similarly, the volume factor vrecep-SFK used for binding of NK

cell receptors with SFKs is set to, vrecep-SFK = l0 × l0 × drecep-SFK, where drecep-SFK ~ 10 nm [16].

The volume factor vcytosol for cytosolic molecules binding with NK cell plasma membrane

bound complexes is taken as, vcytosol = (l0×l0×2l0). In Model 2, the volume factor for binding of

plasma membrane associated Vav1 molecules with other plasma membrane residing mole-

cules is taken as, vVav1-plasma = (l0×l0×l0).

Microcluster formation

A pVav1 dependent processes is implemented to generate microclusters of NKG2D. A “poten-

tial” function Ei is associated with any chamber i, is given by,

Ei ¼ min � x2

i ; � x2

j1; � x2

j2;; � x
2

j3; � x2

j4

� �

where, xi is the number of pVav1 molecules in the ith chamber and {j1, j2, j3, j4} denote its four

nearest neighbors.

The probability of moving NKG2D complexes from the ith chamber to its nearest neighbor

j is given by, p m� clusð Þ
ji ¼ min 1; e

b Ei � Ejð Þ

1þe
b Ei � Ejð Þ

� �

; thus, when a nearest neighbor j has a potential

lower than the ith chamber, i.e., Ej< Ei, NKG2D molecules move to the jth chamber. We esti-

mate β using PSO.

Diffusive movements

Unbound molecules of NKRs, their cognate ligands, SFK, SHP1, and Vav1 move diffusively.

The diffusive movements are simulated by hopping moves of molecules to the nearest neigh-

bor chambers with probability pdiffu/ D/(l0)2. The propensities for these movements are given

in Table 1. Periodic boundary conditions in the x-y plane are chosen for freely diffusing mole-

cules. The propensity for diffusive movements of cytosolic molecules is about >1000 fold

larger than that of the plasma membrane bound molecules and that of most reactions. This is

because of the larger value of the diffusion constant (~10 μm2/s) [87] and the larger average
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number of cytosolic molecules (~ 30–200 molecules) in a chamber. Therefore, a substantial

proportion of the Monte Carlo moves are spent on diffusive moves of cytosolic molecules

which make the run time of the simulation long (wall time ~10 hrs on a single 3.0 GHz AMD

EPYC processor). We approximated these fast diffusive moves by not executing explicit diffu-

sion moves for the cytosolic molecules but by homogenizing cytosolic molecules in the simula-

tion box at time intervals proportional to the average time a cytosolic molecule will need to

diffuse the length of the simulation box. We checked the validity of this approximation by

comparing simulations incorporating the above approximation with those containing explicit

diffusive movements for cytosolic molecules. We did not find appreciable differences between

the two (S9 Fig).

Microcluster movements

Any ULBP3 bound NKG2D receptor complex is assumed to be a part of a microcluster. All

molecules of a specific ULBP3-NKG2D complex, e.g., ULBP3-NKG2D-SFK, in a chamber are

moved to one of the four nearest neighboring chambers in a single microcluster hopping

move. The probabilities of the hops to the neighboring chambers are given by p!hop� (pright,

pleft, pup, pdown) and the corresponding propensities are calculated by multiplying the probabil-

ities by a rate k(cluster-move). p!hop at a position (x,y) in the x-y plane is given by,

pleft=right ¼
1

4
1� s

x
R
� 1

� �� �
wþ

1

4
1 � wð Þ

pdown=up ¼
1

4
1� s

y
R
� 1

� �� �
wþ

1

4
1 � wð Þ ð1Þ

, where, the four corners and the center of the simulation box in the x-y plane are at (0, 0), (0,

2R), (2R,0), (2R, 2R), and (R,R), respectively. The variable s depends on the total number of

pVav1 (or [pVav1]T) in the simulation box and is given by,

s ¼
pVav1½ �T

K þ pVav1½ �T

The hopping probability! phop is composed of two parts: one generates centripetal move-

ments[88, 89] and the other produces random Brownian movements. The weight factor

0� w� 1 determines the relative proportions of centripetal and random components in p!hop,

i.e., the smaller the w, the stronger is the bias toward random movements. The velocities for

centripetal movements along x and y directions are given by,

vx ¼ sw
x
R
� 1

� �
; vy ¼ sw

y
R
� 1

� �
:

Therefore, the magnitude of the centripetal velocity vr is given by,

vr ¼ sw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
R
� 1

� �2

þ
y
R
� 1

� �2
r

:

vr decreases monotonically from the periphery to the center of the simulation box. vr = 0 at

the center (R,R) and is maximum (
ffiffiffi
2
p

sw) at the corners of the simulation box. In the absence

of any pVav1 in the simulation box, the centripetal movements cease to exist, i.e., vr = 0. Veloc-

ity of F-actin retrograde flow decreases monotonically from the periphery to the center in YTS

NK cell lines stimulated by surface coated anti-NKG2D[15]. We assume that NKG2D
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microcluster movements are guided by F-actin, similar to that to TCR microclusters in antigen

stimulated Jurkat T cells [90].

The rate, k(cluster-move) determines the magnitude of the centripetal velocity and the diffu-

sion constant of the Brownian movements of microclusters. A movie of movements of a single

microcluster is shown in the supplementary material (S5 Movie).

Excluded volume interactions

We impose an upper bound (Nthres) to the number of molecules that can reside in a chamber

to incorporate excluded volume interactions. Molecules are allowed to hop to a chamber if the

number of molecules does not increase beyond Nthres due to the move. A separate upper

bound for the number of NKG2D in a chamber is implemented to prevent aggregation of

NKG2D to a small number of very high density NKG2D microclusters in the central region.

Influx of NKG2D

An influx of NKG2D molecules in the simulation box from the boundary with a rate k(influx) is

implemented by adding an outer rim of thickness 2l0 at the boundary of the simulation box.

The chambers in the rim are occupied by NKG2D and ULBP3 which undergo

NKG2D-ULPB3 binding-unbinding reactions. The NKG2D-ULBP3 complexes do not partici-

pate in further downstream reactions inside the outer rim. The bound NKG2D-ULPB3 com-

plexes enter the simulation box by hopping moves that occur at rate k(influx).

Initial configuration

Unbound molecules of NKG2D, SFK, Vav1, KIR2DL2, and SHP1 were distributed homo-

geneously in the simulation box where any chamber contained the same number of molecules

for a particular protein. The numbers of molecules in each chamber for the above protein spe-

cies are calculated using the values shown in Table 1 assuming proteins are distributed homo-

geneously in the plasma membrane or the cytosol of an NK cell. The number of ULBP3 in the

simulation box is estimated via PSO, where, a chamber at t = 0 is populated with 3 molecules

(or left unpopulated) of ULBP3 with a probability f (or 1-f). f is estimated in PSO.

Particle swarm optimization

We performed asynchronous particle swarm optimization (PSO) algorithm with constraints

to optimize a cost function to an estimate model parameters. The parameters were varied as

powers of 10 in PSO. The parameters used in the PSO are the following: particle velocity scal-

ing factor, ω = 0.5, coefficient weighting a particles best-known position, φp = 2.5, and coeffi-

cient weighting the swarm’s best-known position, φg = 1.5. A swarm size of 200 particles is

considered. The maximum iteration limit is assigned to 100. The computation takes about 48h

on 300 parallel 3.0 GHz AMD EPYC CPUs. A similar set of PSO parameters were used to esti-

mate parameters in a spatial model describing formation of bacterial biofilms in three dimen-

sions [91]. The construction of the cost function is described below.

Construction of the cost function

We extracted intensity profile I({xi,yi},t) of NKG2D-DAP10 using TIRF images (details in

Extraction of image data), where {xi,yi} denote the centers of the chambers in the x-y plane in

the simulation box. Our parameter estimation scheme minimizes a cost function that measures

the Euclidean distance between variables quantifying statistical properties of spatial patterns of

NKG2D in TIRF experiments and simulations from our agent based models. We computed
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mean,

mS tð Þ ¼ 1=Nchamber

X

i
S xi; yi; tð Þ; ð2aÞ

variance,

s2

SðtÞ ¼ 1=Nchamber

X

i
ðSðxi; yi; tÞ � mSðtÞÞ

2
; ð2bÞ

and two-point correlation function [52,91],

Csðr; tÞ ¼ 1=Nchamber

X

i

X

rx ;ry ;r2xþr2y¼r2

ðsðxi; yi; tÞ � msðtÞÞðsðxi þ rx; yi þ ry; tÞ � msðtÞÞ ð2cÞ

The summation over rx and ry indicates average of all neighbors of (xi,yi) separated by a dis-

tance r, i.e., rx
2 + ry

2 = r2. We used periodic boundary conditions for the calculation of CS(r,t)
for r� L/2, where L is the length of the simulation box. For the TIRF imaging data, S({xi,yi},t)
= I(xi,yi,t)/Imax(t), and for our model simulations, S({xi,yi}, t) = n({xi,yi}, t; θ)/nmax(t), where n
(xi,yi,t; θ) denotes the number of NKG2D molecules in a chamber centered at (xi,yi) in the x-y

plane. θ represents model parameters listed in Table 1. Imax(t) and nmax(t) denote the maxi-

mum values of image intensity and NKG2D number in the chambers in the imaging data and

in the simulation, respectively.

The quantities in Eq (2) depend on the initial state of the system at t = 0 in simulations or

experiments and on intrinsic noise fluctuations that arise during time evolution of the system

(S10 Fig). Averages of these quantities (denoted by � � �h i) over ensembles of configurations at

time t arising from different initial states and stochastic trajectories with intrinsic noise fluctu-

ations are traditionally used in physics[52] to characterize spatial patterns. However, it is chal-

lenging to perform such ensemble averages in our situation because, (i) few replicates of

experimental data are usually available, and (ii) computational cost of performing ensemble

averaging within PSO. In order to circumvent these issues, we minimized a cost function as a

function of the quantities in Eq (2) where the best-fit values of the model parameters depend

on the initial state as well as on the intrinsic noise fluctuations. However, we account for effect

of the intrinsic noise fluctuations in the parameter estimation as described in the error estima-

tion section.

The cost function is given by,

Ccost y; Z; n0ð Þ ¼
1

3

mI � mn

mI

� �2

þ
1

3

sI � sn

sI

� �2

þ
1

3

X

r

CI r; tð Þ

CI 0; tð Þ
�

Cn r; tð Þ

Cn 0; tð Þ

� �2

ð3Þ

η represents random variables associated with the intrinsic noise fluctuations and n0 denotes

the initial state at t = 0 in the model. The minimization of Eq (3) in our PSO yields a θ = θmin

associated with a specific set of random variables ηpso-optim and a fixed initial state n0, i.e., the

minimum value of Ccost, Ccost|min = Ccost(θmin; η = ηpso_otim; n0).

Quantification of uncertainties in PSO estimation of parameters

We generated configurations {n({xi,yi},t; θ = θmin)} for the best-fit parameter value θmin for an

initial state n0, and different sets of intrinsic noise fluctuations (or different η) in our simula-

tions. We computed Ccost(θmin; η, n0) given by Eq (3) for each n({xi,yi},t; θmin) and computed

the variance, σC, for the values of Ccost evaluated for the ensemble,{n({xi,yi},t; θ)} (S11 Fig). We

reasoned that the range 0� Ccost� Ccost|min +2σC, will be scanned by intrinsic noise fluctuations

in the model for θmin; therefore, a configuration n({xi,yi}, t; θ) where θ 6¼ θmin that generates a

cost function Ccost within above range cannot be separated well from {n({xi,yi},t; θmin)}. This
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produces an uncertainty in our estimated parameters θmin. We characterized the uncertainty in

θmin by collecting the parameters {θ} that produce cost functions in range 0 to Ccost|min +2σC

(S11 Fig). Next, we evaluated if these parameters reside in a single or multiple clusters in the

manifold spanned by the parameters–the existence of multiple clusters will indicate the pres-

ence of multiple local minima. We computed the number of cluster following a method in

Ref. [92] and found a single cluster (S12 Fig). Each parameter was scaled as (θ-θmin)/(θmax−
θmin), where θmin and θmax are the minimum and the maximum parameter values, respectively,

to make it dimensionless and to lie between 0 and 1 before applying the algorithm in Ref. [92].

The standard deviations computed for the points in the cluster gives an estimate of the uncer-

tainty in θmin.

Extraction of image data

Intensities for fluorescently labeled molecules in TIRF experiments were extracted from

images published in in Ref. 6. The python code used for the extraction is uploaded on github

at https://github.com/jayajitdas/NK_signaling_spatial_model. The extracted intensities for

fluorescently tagged NKG2D-DAP10 or KIR2DL2 molecules from regions of interest were

averaged over multiple pixels to create spatial data with the minimum resolution (~0.5 μm) in

our simulation. Further details are provided in S13 Fig.

Supporting information

S1 Fig. Comparison of μI and σI for TIRF images with μn and σn for configurations in

model simulations. Shows μI and σI calculated from TIRF images (S4 Fig in Ref. [6]) and

model simulations at t = 1, 2, 3, 4, 5, 6, and 7 mins. The calculations of μI and σI are shown in

Eq 2a and 2b in the main text. The values for TIRF images and model simulations are shown

along the y and x axes, respectively. The x = y line is shown to quantify agreement/deviation

between imaging data and models. The symbols indicated by μa and σa depict the values of (μI,

μn) and (σI, σn) in the x-y plane at times a = t1 to t7 denoting times 1 to 7 mins, respectively.

Comparisons are shown for (A) Model 1 and (B) Model 2. The models are simulated for the

best-fit PSO parameters.

(TIF)

S2 Fig. Ensemble averaged two-point correlation function for Model 1 and Model 2 at mul-

tiple time points. Shows comparisons between ensemble averaged two-point correlation func-

tion (<C(r,t)/C(0,t)> vs r) for Model 1 (black, empty circle) and Model 2 (blue, empty

triangle) with C(r,t)/C(0,t) calculated from TIRF image (red, empty square) at (A) t = 1min,

(B) t = 2 min, and (C) t = 3 min. The parameters for the simulation are set at the best-fit values

from the PSO. The two-point correlation functions for the models are averaged over an

ensemble of 200 configurations.

(TIF)

S3 Fig. Model predictions for NKG2D spatial pattern at t = 4 min show deviations from

the TIRF imaging data. Shows comparison between the two-point correlation function (C(r,

t)/C(0,t) vs r) at t = 4 min calculated from TIRF image (red, empty square) and configurations

simulated by Model 1 (black, empty circle) and Model 2 (blue, empty triangle). The parameters

for the simulations are set to the best-fit values obtained from our PSO. The models show devi-

ations from the TIRF imaging data for length scales 1–3 μm which can potentially arise due to

substantial spreading of the NK cell on the lipid bilayer at 4 mins.

(TIF)
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S4 Fig. Effect of formation of microclusters on pVav1 production kinetics for Model 1 and

Model 2. Shows increase in the total number of pVav1 with time in Model 1 (A) and Model 2

(B) when NKG2D are not allowed to form microclusters (magenta asterisks, Model 1; magenta

diamonds, Model 2) or form microclusters (black open circles, Model 1; blue open triangles,

Model 2) according to the model rules. The pVav1 concentrations are averaged over 200 dif-

ferent configurations. The models are simulated for the best-fit PSO parameters.

(TIF)

S5 Fig. Analysis of spatial distribution of KIR2DL2 receptors extracted from TIRF imaging

data. (A) Shows initial configuration of KIR2DL2 at t = 0 in our simulations based on the

coarse-grained 2D image extracted for a region of interest in TIRF image (Fig 4 in Ref. [6]) of

KIR2DL2-GFP at t = 1 min 44 sec to match the minimum length scale (~ 0.5 μm) of spatial res-

olution in our model. (B) C(r,t)/C(0,t) calculated for intensities of KIR2DL2-GFP extracted

from TIRF experiments (Fig 4 in Ref. [1]) at times prior and ~30s post stimulation by HLA-C

ligands (UV irradiation at t = 1min 44 seconds (00:01:44), blue filled circles) for the region of

interest from TIRF images. (C) C(r,t)/C(0,t) calculated for intensities of KIR2DL2-GFP for the

region of interest from TIRF image (blue empty triangles) and after coarse-graining (corre-

sponding to image A) to obtain the minimum scale length resolution of our simulation

box (green cross).

(TIF)

S6 Fig. Accumulation of NKG2D in the central region of the IS in the presence of pVav1

dependent/independent centripetal motility. Shows the number of NKG2D molecules in a

3μm ×3μm area at the center of the simulation box for Model 2 (M2) and Model 3 (M3) in the

presence (filled brown triangle for M2; purple asterisk for M3) and absence (empty blue trian-

gle for M2; pink × for M3) of inhibitory ligands (HLA-C). The parameters for the simulation

are set to the best-fit values. The NKG2D concentrations are averaged over 200 different con-

figurations. KIR2DL2 inhibition abrogates centripetal movements of NKG2D receptor clusters

for Model 2 but not for Model 3.

(TIF)

S7 Fig. Effect of HLA-C spatial patterning on target cells on signal integration in NK cells.

We co-localized KIR-2DL2-HLA-C complexes in a ring pattern at t = 0 in our simulations as

shown in Fig 6A. NKG2D, ULBP3 and other parameters are set as described in the section per-

taining to Fig 6. The figure shows variation of total number of pVav1 at t = 1 min with increas-

ing HLA-C concentrations for Model 2 (empty blue triangle) and Model 3 (purple asterisks).

The decrease in pVav1 is higher in Model 2 compared to Model 3. The pVav1 values shown

were obtained by averaging over 50 configurations for each HLA-C dose.

(TIF)

S8 Fig. Model prediction for NKG2D spatial clustering at later times are in agreement

with live cell confocal microscopy reported in Ref. [7]. We extracted two-dimensional fluo-

rescence intensity of NKG2D-GFP in single NKL published in Ref. [7] following an image

extraction method described in the Materials and Methods section. The NKLs in Ref. [7] were

stimulated by MICA ligands on target Daudi/MICA cells and NKG2D-GFP molecules were

imaged using confocal microscopy. We chose a region of interest in the extracted image and

coarse-grained it to match the minimum length scale (0.5 μm) of our simulation. We used the

confocal data at t = 0 (A; top) to create the initial configuration of NKG2D receptors in the

model (Model 2). The rest of the parameters are initialized as described in the Materials and

Methods sections. We simulated the initial configuration in our model (Model 2) using the

best fit parameters (Table 3) we obtained for Model 2 using the TIRF imaging data in Ref. [6].
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The spatial organization of NKG2D in the simulation (top panels in (A)-(C)) and experiments

(bottom panels in (A)-(C)) at t = 30s and t = 70s were compared using the two-point correla-

tion function (D-E). The two-point correlation functions in the simulations are averaged over

an ensemble of 100 configurations. The values for the correlation function for individual simu-

lation trajectories are shown in grey.

(TIF)

S9 Fig. Approximating cytosolic diffusion by homogenization of molecules at discrete

times has negligible effect on pVav1 kinetics for Model 1. Shows the total number of pVav1

with time in Model 1 when diffusion of cytosolic molecules is introduced explicitly in the sim-

ulations (black, empty circle), which is compared against our simulations approximating

explicit diffusion with homogenization of those molecules at discrete times (magenta, asterisk).

The pVav1 concentrations are averaged over 200 different configurations. The parameters for

the simulation are set to the best-fit values from PSO.

(TIF)

S10 Fig. Effect of intrinsic noise fluctuations in C(r,t). Shows probability distribution func-

tion (pdf) of C(r,t)/C(0,t) at t = 1min for (A) r = 1μm and (B) r = 4μm for Model 2. The param-

eters for the simulation are set at the best-fit value from our PSO. The pdf is calculated for an

ensemble of 200 configurations. μ and σ represent the mean and standard deviation of the pdf,

respectively. c� denotes the values of the C(r,t)/C(0,t) at t = 1min at the r values shown in (A)

and (B) for the best-fit NKG2D configuration obtained in the PSO.

(TIF)

S11 Fig. Effect of the intrinsic noise fluctuations in the cost function Ccost(θmin; η, n0) for

the best -fit parameter value θmin for an initial state n0. η denotes the random variables associ-

ated with intrinsic noise fluctuations. The pdf is calculated for an ensemble of 400 configurations.

μ and σ denotes the mean and standard deviation for Ccost(θmin; η, n0) for the corresponding

model. Copt represents the optimum (minimum) cost function Ccost(θmin; η = ηpso_otim; n0) esti-

mated by PSO for each model. The uncertainty in our estimated parameters θmin is estimated to

lie within the interval 0� Ccost� Cthres, where Cthres is obtained as Cthres = Copt +2σ.

(TIF)

S12 Fig. Decision Graph to compute clusters according to Density Peak Clustering algo-

rithm (Ref. [92]). The points having relatively large local density (ρ) and high value of δ are

considered to be the cluster centers defined in Ref. [92]. For both, Model 1 (A) and Model 2

(B), we observed only one such cluster center to exist implying the presence of a single mini-

mum cost function in the parameter range explored by the PSO. The decision graph was com-

puted for parameters θ in the solution space having cost function, Ccost such that 0� Ccost�

Cthres,, where Cthres = 0.29 and 0.35 for Model 1 and Model 2, respectively. The parameter dc in

the Density Peak Clustering algorithm in Ref. [92] is calculated such that the average number

of neighbours is 2% of the total number of points in the data set.

(TIF)

S13 Fig. Image extraction. (A) Region of interest extracted from S4 Fig at t = 1min in Ref. [6].

(B) Coarse-grained image of region of interest in (A) to obtain the minimum scale length reso-

lution (~ 0.5 μm) in our simulations. The color bar shows the extracted intensities of

Dap10-mCherry from the TIRF experiments in Ref. [6].

(TIF)

S14 Fig. Effect on pVav1 kinetics due to change in parameters kon{Dap10:SFK}, and koff{Dap10:

SFK}. Shows the total number of pVav1 with time for Model 2 for the values of these rates
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estimated in our PSO (blue triangle), estimations from the literature for SFK:NKG2D (orange

circle), and Lck:CD3z (green diamond). The estimated values are shown in S1 Text. The

pVav1 concentrations are averaged over 50 different configurations and show no appreciable

differences for the three sets of rates that were used.

(TIF)

S15 Fig. Effect changing the binding rate (kon) of the catalytic domain of SHP1 to pVav1

on pVav1 kinetics. Shows pVav1 kinetics in the presence of activating ULPB3 and inhibitory

HLA-C ligands. The kon value was decreased 10× (cyan circles) and 150× (purple diamonds)

from the value (6.11 μM-1 s-1) used in Model 2 (brown triangle). The pVav1 kinetics in with

activating ULBP3 and in the absence of inhibitory ligands is shown as a reference (blue empty

triangle). KIR2DL2 is distributed in the simulation box following the data extracted from

TIRF imaging at 1 min 44 sec in Fig 4 of Ref. [6]. The pVav1 concentrations are averaged over

50 different configurations.

(TIF)

S16 Fig. Modeling cytotoxic killing assay in presence of treated and untreated target cells.

(A) Shows normalized distribution of NKG2D ligands in the treated and untreated target cells

extracted from the Fig. 2d in Ref. [63] using a graphing software. (B) Distribution of NKG2D

ligands when a sample of 1000 target cells (filled bars) are drawn from the normalized distribu-

tion for the case of treated target cells shown in dark-green filled squares. (C) Percentage lysis

for the population of 1000 treated or untreated target cells. (D) Percentage lysis of target cells

corresponding to data from Fig. 2d in Ref. [63].

(TIF)

S1 Text. Estimation of rate for binding and unbinding of catalytic domain of SFK interact-

ing with tyrosine residues in (Dap10 –NKG2D) based on the estimated values of koff, Km,

kcat from literature.

(DOCX)

S2 Text. Rates for de-phosphorylation of pVav1 by KIR2DL2 bound SHP1.

(DOCX)

S3 Text. Modeling cytotoxic killing assay.

(DOCX)

S1 Movie. Shows the kinetics of spatial clustering of NKG2D in presence of its cognate

ligand ULBP3 in the x-y plane in the simulation box for Model 1. The parameters for the

simulation are set at the best fit value from our PSO.

(MP4)

S2 Movie. Shows the spatial clustering of NKG2D in presence of its cognate ligand ULBP3

in the x-y plane in the simulation box for Model 2. The parameters for the simulation are set

at the best fit value from our PSO.

(MP4)

S3 Movie. Shows the decrease in clustering of NKG2D upon inhibition by KIR2DL2 in the

x-y plane in the simulation box for Model 2. The parameters for the simulation are set at the

best fit value from our PSO. Kinetic rates describing inhibition are provided in Table 1.

(MP4)

S4 Movie. Shows clustering of NKG2D in the presence of inhibitory ligands in the absence

of the pVav1 induced spatial positive feedback. The video shows clustering behavior of
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NKG2D in the x-y plane in the simulation box for Model 3. The parameters for the simulation

are set at the best fit value from our PSO. Kinetic rates describing inhibition are provided in

Table 1.

(MP4)

S5 Movie. Movement of microclusters of different sizes.

(MP4)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for panels Figs 2D, 3C, 3D, 4A, 4B, 4C, 4D, 5B, 5C, 6C and 6D.

(XLSX)

S2 Data. Data for Fig 2A. Each value in the .vtk data file corresponds to the intensity of

NKG2D-DAP10-mCherry, extracted from TIRF experiments in Ref. [6] at t = 1min post stim-

ulation by ULPB3, at a x-y grid location in the simulation box. “DIMENSIONS” and “POINT

DATA” in the header of the data file represent the dimensions of the simulation box and total

number of chambers in the simulation box, respectively. The image is generated using Para-

View-5.7.0 which takes .vtk files as inputs.

(VTK)

S3 Data. Data for Fig 2B. Each value in the .vtk data file corresponds to the number of

NKG2D in each chamber of the simulation box for our Model 1 at t = 1 min post NKG2D

stimulation. “DIMENSIONS” and “POINT DATA” in the header of data file represent the

dimensions of the simulation box and total number of chambers in the simulation box, respec-

tively. The image is generated using ParaView-5.7.0 which takes .vtk files as inputs.

(VTK)

S4 Data. Data for Fig 2C. Each value in the .vtk data file corresponds to the number of

NKG2D in each chamber of the simulation box for our Model 2 at t = 1 min, post NKG2D

stimulation. “DIMENSIONS” and “POINT DATA” in the header of data file represent the

dimensions of the simulation box and total number of chambers in the simulation box, respec-

tively. The image is generated using ParaView-5.7.0 which takes .vtk files as inputs.

(VTK)

S5 Data. Data for Fig 3A (top). Each value in the .vtk data file corresponds to the intensity of

NKG2D-DAP10-mCherry, extracted from TIRF experiments in Ref. [6] at t = 2min, post stim-

ulation by ULPB3, at a x-y grid location in the simulation box. “DIMENSIONS” and “POINT

DATA” in the header of the data file represent the dimensions of the simulation box and total

number of chambers in the simulation box, respectively. The image is generated using Para-

View-5.7.0 which takes .vtk files as inputs.

(VTK)

S6 Data. Data for Fig 3A (middle). Each value in the .vtk data file corresponds to the number

of NKG2D in each chamber of the simulation box for our Model 1 at t = 2 min, post NKG2D

stimulation. “DIMENSIONS” and “POINT DATA” in the header of data file represent the

dimensions of the simulation box and total number of chambers in the simulation box, respec-

tively. The image is generated using ParaView-5.7.0 which takes .vtk files as inputs.

(VTK)

S7 Data. Data for Fig 3A (bottom). Each value in the .vtk data file corresponds to the number

of NKG2D in each chamber of the simulation box for our Model 2 at t = 2 min, post NKG2D

stimulation. “DIMENSIONS” and “POINT DATA” in the header of data file represent the

dimensions of the simulation box and total number of chambers in the simulation box,
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respectively. The image is generated using ParaView-5.7.0 which takes .vtk files as inputs.

(VTK)

S8 Data. Data for Fig 3B (top). Each value in the .vtk data file corresponds to the intensity of

NKG2D-DAP10-mCherry, extracted from TIRF experiments in Ref. [6] at t = 3min, post stim-

ulation by ULPB3, at a x-y grid location in the simulation box. “DIMENSIONS” and “POINT

DATA” in the header of the data file represent the dimensions of the simulation box and total

number of chambers in the simulation box, respectively. The image is generated using Para-

View-5.7.0 which takes .vtk files as inputs.

(VTK)

S9 Data. Data for Fig 3B (middle). Each value in the .vtk data file corresponds to the number

of NKG2D in each chamber of the simulation box for our Model 1 at t = 3 min, post NKG2D

stimulation. “DIMENSIONS” and “POINT DATA” in the header of data file represent the

dimensions of the simulation box and total number of chambers in the simulation box, respec-

tively. The image is generated using ParaView-5.7.0 which takes .vtk files as inputs.

(VTK)

S10 Data. Data for Fig 3B (bottom). Each value in the .vtk data file gives the number of

NKG2D in each chamber of the simulation box for our Model 2 at t = 3 min, post NKG2D

stimulation. “DIMENSIONS” and “POINT DATA” in the header of data file represent the

dimensions of the simulation box and total number of chambers in the simulation box, respec-

tively. The image is generated using ParaView-5.7.0 which takes .vtk files as inputs.

(VTK)

S11 Data. Data for Fig 5A. Each value in the .vtk data file gives the number of NKG2D in

each chamber of the simulation box for our Model 2 in the presence of both activating ULBP3

and inhibitory ligands at t = 1 min. “DIMENSIONS” and “POINT DATA” in the header of

data file represent the dimensions of the simulation box and total number of chambers in the

simulation box, respectively. The image is generated using ParaView-5.7.0 which takes .vtk

files as inputs.

(VTK)

S12 Data. Data for Fig 6B. Each value in the .vtk data file gives the number of NKG2D in each

chamber of the simulation box for our Model 3 in the presence of both activating ULBP3 and

inhibitory ligands at t = 1 min. “DIMENSIONS” and “POINT DATA” in the header of data

file represent the dimensions of the simulation box and total number of chambers in the simu-

lation box, respectively. The image is generated using ParaView-5.7.0 which takes .vtk files as

inputs.

(VTK)
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25. Dong Z, Davidson D, Pérez-Quintero LA, Kurosaki T, Swat W, Veillette A. The adaptor SAP controls NK

cell activation by regulating the enzymes Vav-1 and SHIP-1 and by enhancing conjugates with target

cells. Immunity. 2012; 36(6):974–85. https://doi.org/10.1016/j.immuni.2012.03.023 PMID: 22683124

26. Billadeau DD, Brumbaugh KM, Dick CJ, Schoon RA, Bustelo XR, Leibson PJ. The Vav–Rac1 pathway

in cytotoxic lymphocytes regulates the generation of cell-mediated killing. The Journal of experimental

medicine. 1998; 188(3):549–59. https://doi.org/10.1084/jem.188.3.549 PMID: 9687532

27. Binstadt BA, Brumbaugh KM, Dick CJ, Scharenberg AM, Williams BL, Colonna M, et al. Sequential

involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyro-

sine kinase activation. Immunity. 1996; 5(6):629–38. https://doi.org/10.1016/s1074-7613(00)80276-9

PMID: 8986721

28. Ljutic B, Carlyle JR, Filipp D, Nakagawa R, Julius M, Zúñiga-Pflücker JC. Functional requirements for
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