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Abstract

Despite significant modern medicine progress, having an infectious disease is a major risk

factor for humans. Mucosal vaccination is now widely considered as the most promising

strategy to defeat infectious diseases; however, only live-attenuated and inactivated muco-

sal vaccines are used in the clinical field. To date, no subunit mucosal vaccine was approved

mainly because of the lack of safe and effective methodologies to either activate or initiate

host mucosal immune responses. We have recently elucidated that intranasal administra-

tion of enzymatically polymerised caffeic acid potentiates antigen-specific mucosal and sys-

temic antibody responses in mice. However, our earlier study has not confirmed whether

these effects are specific to the polymer synthesised from caffeic acid. Here, we show that

enzymatically polymerised polyphenols (EPPs) from various phenolic compounds possess

mucosal adjuvant activities when administered nasally with an antigen to mice. Potentiation

of antigen-specific immune responses by all EPPs tested in this study showed no clear dif-

ference among the precursors used. We found that intranasal administration of ovalbumin

as the antigen, in combination with all enzymatically polymerised polyphenols used in this

study, induced ovalbumin-specific mucosal IgA in the nasal cavity, bronchoalveolar lavage

fluid, vaginal fluids, and systemic IgG, especially IgG1, in sera. Our results demonstrate that

the mucosal adjuvant activities of polyphenols are not limited to polymerised caffeic acid but

are broadly observable across the studied polyphenols. These properties of polyphenols

may be advantageous for the development of safe and effective nasal vaccine systems to

prevent and/or treat various infectious diseases.
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Introduction

Infectious diseases are a major risk factor in humans and are difficult to eradicate. Despite

modern medicine progressing significantly, having an infectious disease is the second leading

cause of death worldwide today [1,2]. Mucosal vaccination is now widely considered as the

most promising strategy to counter infectious diseases caused by pathogens. Recently emerg-

ing mucosal vaccines are superior to conventional vaccines in terms of exerting protective

immune responses not only in systemic compartments but also in mucosal surfaces, sites of

invasion, and/or colonisation for most pathogenic microbes, such as Streptococcus pneumo-
niae, Candida albicans, and influenza virus [3–5]. On the other hand, conventional vaccines

administered through parenteral injections (generally subcutaneous or intramuscular) are

only capable of inducing antigen-specific immune responses in systemic compartments [6–9].

Despite the superiority of mucosal vaccines over conventional parental vaccines, only a few

live-attenuated and inactivated mucosal vaccines have been approved for use in the clinical set-

ting [10]. Both live-attenuated and inactivated mucosal vaccines contain whole pathogenic

microbes. Hence, unexpected adverse effects due to the toxicity and antigenicity of the patho-

gens cannot be avoided. Therefore, the development of subunit mucosal vaccines that consist

of a microbial antigen instead of whole microbes is required for the acceptance of mucosal vac-

cine systems in the clinical setting. However, no subunit mucosal vaccine has been approved,

mainly because of the lack of safe and effective methodologies to either activate and/or initiate

host mucosal immune responses by using mucosal adjuvants [11,12] or to deliver the micro-

bial antigens to mucosal dendritic cells (mDCs) by means of antigen delivery vehicles [13,14].

This is because mucosal area has inherently poor capabilities to respond to antigenic proteins

due to immune tolerance to the exogenous antigens [10,15–17]. Second, although mDCs

located at the lamina propria are able to accomplish transepithelial antigen uptake, antigen

transport into the lamina propria is crucial for initiating mucosal immune responses. How-

ever, macromolecules such as antigens are unable to cross a physical barrier composed of

mucosal epithelial cells to access the mDCs located at the lamina propria; mucosal epithelial

cells seal the entire mucosal tissue and form tight junctions blocking the paracellular route

[18]. Numerous studies to overcome these problems have been reported in the literature. For

instance, many microbe-derived mucosal adjuvants that trigger host innate immune responses

via pattern recognition receptors, such as cholera toxin (CT), flagellin, and monophosphoryl

lipid A, have been reported [19]. In addition, liposomes, nanogels, and bacterial components,

which are utilised when some bacteria intrude the host tissues, have been reported to act as

antigen delivery systems for mDCs [20–24]. However, such systems may cause side effects due

to the presence of antigenic and toxic molecules largely derived from microbes. Hence, a safer

and more effective system to promote antigen-specific immune responses in mucosal surfaces

is needed for the successful development of mucosal vaccines.

Polyphenols are predominantly found in plants, and we ingest large amounts of polyphe-

nols in our daily life [25]. We have long been focusing on these because of their immune-mod-

ulating effects on various immune cells. Polyphenols show anti-viral and anti-bacterial effects

through their immune-enhancing characteristics [26,27]. We have found that orally adminis-

tered polyphenols result in the activation of natural killer cells in vivo [28], and these polyphe-

nols induce the production of cytokines from splenocytes in vitro [29–31]. Additionally, our

previous studies investigating the cytotoxic and carcinogenic effects of the synthesised poly-

mers revealed no cytotoxic or carcinogenic effects [28–31]. These findings clearly show that

polyphenols positively activate innate immune systems without adverse effects in mice. In the

course of our studies, we have recently uncovered that intranasal administration of enzymati-

cally polymerised caffeic acid (pCA) potentiates antigen-specific mucosal and systemic
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antibody responses in mice by acting as a mucosal adjuvant. Specifically, intranasal adminis-

tration of pCA, in combination with an antigenic protein, resulted in the induction of a higher

titre of antigen-specific serum IgG1 and high levels of IL-4 and interferon-γ (IFN-γ) secretion

in splenocytes following re-stimulation with an antigen in vitro. These findings suggest that

pCA polarises a mixed Th1/Th2 type immune response [32].

However, our earlier study has not concluded whether such mucosal adjuvant effects are

limited to the polymer synthesised from caffeic acid or are broadly observable in polymers

synthesised from a range of phenolic compounds. In other words, the structure-activity rela-

tionship between the polyphenols synthesised from various precursors is yet to be elucidated.

Thus, the goal of our study was to compare the effects of mucosal adjuvants from polyphenols

from various precursors. We synthesised pCA, polymerised trans-ferulic acid (pFA), and poly-

merised trans-p-coumaric acid (pCoA) using horseradish peroxidase (HRP) as an enzymatic

source, and then examined the mucosal adjuvant effects of various polyphenols using ovalbu-

min (OVA) as a model antigen by evaluating OVA-specific antibody production in both

mucosal and systemic compartments in mice.

Materials and methods

Ethics statement

All animal experiments followed the guidelines of the Tokyo University of Pharmacy and Life

Sciences. The institution’s committee for laboratory animal experiments approved each exper-

imental protocol (P 17–26 and P 18–71).

Materials

BALB/cCrSlc female mice (7 weeks old) were purchased from Japan SLC (Hamamatsu, Shizu-

oka, Japan) and were housed under specific pathogen-free conditions. All animal experimental

protocols were approved by the Tokyo University of Pharmacy and Life Sciences committee

for laboratory animal experiments (P17–26 and P18–71). 3-(3,4-Dihydroxyphenyl)-2-prope-

noic acid (commonly termed as caffeic acid; CA), trans-4-hydroxy-3-methoxycinnamic acid

(commonly termed trans-ferulic acid; FA), and trans-4-hydroxycinnamic acid (commonly

termed trans-p-coumaric acid; CoA) were all purchased from Tokyo Chemical Industry Co.,

Ltd. (Tokyo, Japan). HRP was obtained from Merck Millipore (Burlington, MA, USA). Low

endotoxin (less than 1 EU/mg) egg white OVA and CT were acquired from FUJIFILM Wako

Pure Chemical Corporation (Osaka, Japan).

Preparation of the enzymatically polymerised polyphenols

The lignin-like polymerised polyphenols were enzymatically synthesised with the enzyme

HRP and the precursors CA, FA, or CoA, as reported earlier (Fig 1) [29]. Briefly, 200 mg of the

various precursors were neutralised with 1 M NaOH and diluted to 10 mL with phosphate-

buffered saline (PBS) containing 1 mg of HRP. 1.5 mol eq H2O2 was then added dropwise into

a mixture of the precursor and HRP solutions while stirring at 25˚C for 1 h. The reaction mix-

tures were stirred for another 2 h and subsequently heated for 20 min at 100˚C to inactivate

and precipitate the enzyme HRP. After centrifugation, the supernatant was collected and dia-

lysed extensively using a dialysis membrane (MWCO 50,000) against deionised water for 2

days, and then lyophilised to obtain pCA, pFA, and pCoA. Endotoxin contaminants in this

preparation were tested using the Endospecy ES-50M kit (Seikagaku Biobusiness Corporation;

Tokyo, Japan) and indicated that the endotoxin content of pCA, pFA, and pCoA were low

(231.5 pg/mg, 93.7 pg/mg, and not detected, respectively). All samples were dissolved in
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endotoxin-free PBS (FUJIFILM Wako Pure Chemical Corporation) as stock (10 mg/mL) and

sterilised by filtration through 0.22 μm filter membranes (Osaka Chemical Co., Ltd., Osaka,

Japan). The stock solutions were stored at -20˚C in the dark until use. The immunomodulatory

activities (cytokine secretion by splenocytes and T cell proliferation) of all polyphenols tested

in this study did not change for at least one year under the storage conditions used.

Fig 1. The scheme of synthesis, the structure of precursors, and the proposed major structure of enzymatically polymerised polyphenols used

in this study. CA, caffeic acid; FA, trans-ferulic acid; CoA, trans-coumaric acid; pCA, polymerised caffeic acid; pFA, polymerised trans-ferulic acid;

pCoA, polymerised trans-coumaric acid; HRP, horseradish peroxidase; MWCO, molecular weight cut-off; R, H or OH.

https://doi.org/10.1371/journal.pone.0246422.g001
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Immunisation and sampling schedule

Mice were divided into six groups and anaesthetised via intraperitoneal injection of 0.2 mL of

a mixture containing 0.75 mg/kg of medetomidine, 4 mg/kg of midazolam, and 5 mg/kg of

butorphanol tartrate. They were then immunised intranasally with the following: 1) PBS, 2)

OVA alone (2.5 μg/mouse), 3) OVA (2.5 μg/mouse) plus pCA (100 μg/mouse), 4) OVA

(2.5 μg/mouse) plus pFA (100 μg/mouse), 5) OVA (2.5 μg/mouse) plus pCoA (100 μg/mouse),

or 6) OVA (2.5 μg/mouse) plus CT (1 μg/mouse). Each group of mice was immunised once

weekly on days 0, 7, and 14. All samples were collected immediately after the mice were sacri-

ficed via intraperitoneal injection of sodium pentobarbital (250 mg/kg; Tokyo Chemical

Industry Co., Ltd., Tokyo, Japan). Blood samples were collected on day 21. The blood samples

were allowed to clot at 25˚C for 30 min, followed by incubation at 4˚C for 60 min. The serum

was then separated by centrifugation at 1200 × g for 30 min. Nasal wash fluid, bronchoalveolar

lavage fluid (BALF), and vaginal wash fluid were collected in 200 μL, 1 mL, and 100 μL of cold

PBS, respectively [20,33]. All samples were stored at –80˚C until enzyme-linked immunosor-

bent assay (ELISA) analysis.

ELISA for evaluating antigen-specific antibody titer

To evaluate the induction of antigen-specific IgA in the nasal and vaginal wash, BALF, and

antigen-specific IgG in serum and BALF, a 96-well Nunc MaxiSorp plate (Thermo Scientific,

Waltham, MA, USA) was coated with 1.25 μg of OVA dissolved in 0.1 M carbonate buffer (pH

9.5) and incubated overnight at 4˚C. The plate was then washed with PBS containing 0.05%

Tween 20 (PBST) and blocked with 1% bovine serum albumin (BSA; Wako Pure Chemical

Corporation) containing PBST (BPBST) at 37˚C for 60 min. The plate was washed and incu-

bated with samples for 60 min at 37˚C. Plates were washed with PBST, treated with peroxi-

dase-conjugated anti-mouse IgA, IgG, IgG1, IgG2a, or IgG2b secondary antibody

(SouthernBiotech; Alabama, USA) in BPBST, and developed using a tetramethylbenzidine

(TMB) substrate system (KPL, Maryland, USA). Colour development was terminated using 1

N phosphoric acid and the optical density was measured at 450 nm (reference filter 650 nm)

using a Synergy HTX Multi-Mode Microplate Reader (BioTek Instruments, Inc., Vermont,

USA). The endpoint titres were calculated as the reciprocal of the last dilution reaching a cut-

off value set to twice the mean optical density of a negative control [34,35].

Statistics

Statistical differences were assessed using the Mann-Whitney U test or the Kruskal-Wallis test

with Dunn’s post-hoc test calculated by GraphPad Prism 7 (GraphPad Software, San Diego,

California, USA). P values lower than 0.05 were considered significant.

Results

Nasal immunisation with an antigen in combination with various

polyphenols induces antigen-specific antibody responses

To compare the influence of different sources of phenolic compounds on the promotion of

antigen-specific antibody responses in both mucosal and systemic compartments, mucosal

immunisation of the enzymatically polymerised polyphenols in combination with OVA in

mice was performed intranasally. The first experiment was aimed to test whether all polyphe-

nols synthesised in this study induced OVA-specific mucosal IgA and IgG responses. As

expected, the mice with OVA plus pCA showed high levels of OVA-specific mucosal IgA and

BALF IgG, as reported earlier (Fig 2). We next examined the mucosal adjuvant effects of pFA
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Fig 2. Enzymatically polymerised polyphenols promote antigen-specific mucosal antibody responses. Female BALB/

cCrSlc mice were immunised three times intranasally (days 0, 7, and 14) with vehicle (PBS), OVA (2.5 μg/mouse) alone,

OVA (2.5 μg/mouse) plus pCA (100 μg/mouse), OVA (2.5 μg/mouse) plus pFA (100 μg/mouse), or OVA (2.5 μg/mouse)

plus pCoA (100 μg/mouse). OVA-specific IgA endpoint titres in nasal wash, BALF, and vaginal wash as well as OVA-

specific IgG endpoint titres in BALF at day 21 were detected by ELISA. The data were obtained from three biologically

independent experiments. PBS, n = 9; OVA, n = 9; OVA plus pCA, n = 9; OVA plus pFA, n = 9; OVA plus pCoA, n = 9.

The box-plot shows the median value with the 25th–75th percentiles and the error bars indicate the 5th–95th percentiles.

Significance was calculated using the Kruskal-Wallis with Dunn’s post-hoc test: �p< 0.05.

https://doi.org/10.1371/journal.pone.0246422.g002
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and pCoA. OVA plus pFA or pCoA also induced high levels of OVA-specific mucosal IgA as

well as BALF IgG compared with mice immunised with OVA alone; the levels were similar to

those generated by pCA (Fig 2). In addition to mucosal responses, pFA and pCoA also pro-

moted OVA-specific systemic IgG in sera compared with mice immunised with OVA alone;

the levels were comparable to those generated by pCA (Fig 3). On the contrary, OVA-specific

IgE production in sera was not detected in any of the groups. Furthermore, OVA-specific IgM

responses in sera were not altered when OVA was nasally co-administered with polyphenols

compared to mice that received OVA alone (data not shown).

We further tested the production of OVA-specific IgG1, IgG2a, and IgG2b in sera from

mice with OVA plus the polyphenols to assess the type of immune response induced. Intrana-

sal immunisation with OVA plus all enzymatically polymerised polyphenols tested in this

study exerted primarily OVA-specific IgG1 production rather than IgG2a and IgG2b antibod-

ies (Fig 3). This production pattern implied an alteration to the Th2-type immune response

since serum IgG subclasses reflect Th responses [36,37]. On the other hand, intranasal immu-

nisation with OVA plus all enzymatically polymerised polyphenols did not induce OVA-spe-

cific serum IgM or IgE. Collectively, these data indicate that the enzymatically polymerised

polyphenols possess mucosal adjuvant activities, which is not different from the precursors

synthesised.

Comparison of the mucosal adjuvant effect of polyphenols with a well-

known experimental mucosal adjuvant, CT

In order to examine the efficacy of mucosal adjuvant activities of enzymatically polymerised

polyphenols from various phenolic precursors, we next compared the mucosal adjuvant effects

of polyphenols with CT, which is a potent mucosal adjuvant. Comparing the mucosal adjuvant

effects of the enzymatically polymerised polyphenols (EPPs) and CT, Fig 4 shows that the

mucosal adjuvant effects of the enzymatically polymerised polyphenols were relatively low in

terms of nasal IgA, vaginal IgA, BALF IgA, and BALF IgG. In addition, the production of

OVA-specific systemic IgG antibodies was relatively low.

Discussion

Although mucosal vaccination is now considered as the most promising strategy in the pre-

vention and/or treatment of fatal infectious diseases, no subunit mucosal vaccine is available

to date. One of the major reasons is the lack of agents/methodologies for inducing antigen-spe-

cific immune responses in the mucosa. In this context, the development of agents/methodolo-

gies to exert the mucosal immune response that is safe and effective is needed. In the course of

such studies, we have previously found that an enzymatically polymerised polyphenol from

caffeic acid as a precursor can enhance antigen-specific immune responses when administered

nasally with an antigen [32]. Nonetheless, we do not know if these effects rely upon the struc-

ture of a phenolic compound used as a precursor. In this study, we show that intranasal immu-

nisation of all the tested polymers, enzymatically synthesised from various phenylpropanoids

as precursors, potentiate the production of antigen-specific antibodies in both mucosal and

systemic fluids. The results shown here may support the development of a safe and effective

nasal vaccine system for preventing and/or treating infectious diseases.

Herein, we found that intranasal immunisation of pFA and pCoA in combination with

OVA induced OVA-specific antibody responses similar to those of pCA (Figs 2 and 3) [32].

Moreover, the polyphenols preferentially induced Th2 responses based on the observation of

higher antigen-specific IgG1 production, rather than the IgG2 response. Notably, a limitation

of this study is that the production of cytokines in leukocytes from mice vaccinated with OVA
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Fig 3. Enzymatically polymerised polyphenols promote antigen-specific systemic antibody responses. Female BALB/

cCrSlc mice were immunised three times intranasally (days 0, 7, and 14) with vehicle (PBS), OVA (2.5 μg/mouse) alone,

OVA (2.5 μg/mouse) plus pCA (100 μg/mouse), OVA (2.5 μg/mouse) plus pFA (100 μg/mouse), or OVA (2.5 μg/mouse)

plus pCoA (100 μg/mouse). OVA-specific total IgG, IgG1, IgG2a, and IgG2b endpoint titres in sera at day 21 were detected

by ELISA. The data were obtained from three biologically independent experiments. PBS, n = 9; OVA, n = 9; OVA plus

pCA, n = 9; OVA plus pFA, n = 9; OVA plus pCoA, n = 9. The box-plot shows the median value with the 25th–75th

percentiles and the error bars indicate the 5th–95th percentiles. Significance was calculated using the Kruskal-Wallis with

Dunn’s post-hoc test: �p< 0.05.

https://doi.org/10.1371/journal.pone.0246422.g003
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in combination with polyphenols when restimulated with OVA in vitro has not been evaluated

to further assess the type of immune response evoked by the polyphenols. The mucosal adju-

vant activities of pFA and pCoA for the induction of antigen-specific mucosal and systemic

antibody responses were not statistically significant compared to those induced by pCA (Figs 2

and 3). However, the immune-stimulatory effects of pFA and pCoA in terms of the production

of cytokines by splenocytes stimulated with these polyphenols [e.g. IFN-γ, granulocyte macro-

phage colony-stimulating factor, and tumour necrosis factor-α] and by bone marrow dendritic

cells stimulated with these polyphenols were higher than those of pCA [28–31]. A comparative

study of the mucosal adjuvant effects of polyphenols on CT showed that the mucosal adjuvant

Fig 4. Comparison of the mucosal adjuvant effects of the enzymatically polymerised polyphenols with CT. Female BALB/

cCrSlc mice were immunised three times intranasally (days 0, 7, and 14) with OVA (2.5 μg/mouse) plus either pCA (100 μg/

mouse), pFA (100 μg/mouse), or pCoA (100 μg/mouse), or OVA (2.5 μg/mouse) plus CT (1 μg/mouse). ELISA detected OVA-

specific IgA endpoint titres in nasal wash and BALF; IgG endpoint titres in BALF and vaginal wash; and total IgG, IgG1, and IgG2a

endpoint titres in sera on day 21. The data were obtained from three biologically independent experiments. OVA plus

enzymatically polymerised polyphenols (EPPs); the median value of the sum of OVA plus pCA, OVA plus pFA, and OVA plus

pCoA, n = 27; OVA plus CT, n = 9. The box-plot shows the median value with the 25th–75th percentiles and the error bars indicate

the 5th–95th percentiles. Significance was calculated using the Mann-Whitney U test: �p< 0.05.

https://doi.org/10.1371/journal.pone.0246422.g004

PLOS ONE Polyphenols potentiate antigen-specific immune responses in both mucosal and systemic compartments in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0246422 February 8, 2021 9 / 13

https://doi.org/10.1371/journal.pone.0246422.g004
https://doi.org/10.1371/journal.pone.0246422


effects of polyphenols were relatively weak (Fig 4). Nevertheless, polyphenols developed in this

study could be a useful formulation for nasal vaccines because CT is a molecule derived from

pathogenic Vibrio cholerae, the causative agent of diarrhoeal disease. However, despite recent

significant efforts made to develop non-toxic mutants of CT, none of these have been

approved for human use [38,39].

Although the mechanism of mucosal adjuvant effects of polyphenols has not been eluci-

dated at this time, in addition to the immune-stimulatory activities of polyphenols, recent

studies have revealed that polyphenols, such as epigallocatechin gallate (EGCG), can interact

with proteins/peptides, which have the amino acid residues of proline, phenylalanine, and

arginine, mainly through non-covalent hydrophobic or hydrophilic interactions, leading to

complex formation [40,41]. Tachibana et al. have reported that EGCG could bind to the 67

kDa laminin receptor on the cell surface of various cell types, including DCs [42–44]. From

these observations, we speculate that polyphenols also serve as an antigen delivery vehicle to

mucosal DCs, resulting in subsequent antigen-specific immune responses. This possibility

needs to be clarified in future experiments.

Conclusions

In conclusion, we have elucidated that the mucosal adjuvant effects of enzymatically polymer-

ised polyphenols did not rely upon the starting phenolic compounds as precursors. These bio-

materials can be synthesised using food containing components such as caffeic acid and HRP

as an enzymatic source. We believe that the enzymatically polymerised polyphenols could be

used as a highly safe and efficient formulation for mucosal vaccine systems; thus, these bioma-

terials can be clinically utilised for combatting infectious diseases caused by deadly pathogens.
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