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Abstract

Human papillomaviruses (HPVs) are a group of circular double-stranded DNA viruses,

showing severe tropism to mucosal tissues. A subset of HPVs, especially HPV16 and 18,

are the primary etiological cause for several epithelial cell malignancies, causing about

5.2% of all cancers worldwide. Due to the high prevalence and mortality, HPV-associated

cancers have remained as a significant health problem in human society, making an urgent

need to develop an effective therapeutic vaccine against them. Achieving this goal is primar-

ily dependent on the identification of efficient tumor-associated epitopes, inducing a robust

cell-mediated immune response. Previous information has shown that E5, E6, and E7 early

proteins are responsible for the induction and maintenance of HPV-associated cancers.

Therefore, the prediction of major histocompatibility complex (MHC) class I T cell epitopes

of HPV16, 18, 31 and 45 oncoproteins was targeted in this study. For this purpose, a two-

step plan was designed to identify the most probable CD8+ T cell epitopes. In the first step,

MHC-I and II binding, MHC-I processing, MHC-I population coverage and MHC-I immuno-

genicity prediction analyses, and in the second step, MHC-I and II protein-peptide docking,

epitope conservation, and cross-reactivity with host antigens’ analyses were carried out suc-

cessively by different tools. Finally, we introduced five probable CD8+ T cell epitopes for

each oncoprotein of the HPV genotypes (60 epitopes in total), which obtained better scores

by an integrated approach. These predicted epitopes are valuable candidates for in vitro or

in vivo therapeutic vaccine studies against the HPV-associated cancers. Additionally, this

two-step plan that each step includes several analyses to find appropriate epitopes provides

a rational basis for DNA- or peptide-based vaccine development.

Introduction

HPVs are a large branch of the Papillomaviridae family, grouped in different genera (Alpha-,

Nu-/Mu-, Beta- and Gamma-papillomaviruses), with more than 200 genotypes [1–4]. The

classification of Papillomaviruses (PVs) has been based on L1 gene sequence. They are clini-

cally divided into two groups: low-risk HPVs, like HPV 6 and 11, which cause benign lesions

(warts and benign papillomas), and high-risk HPVs (hrHPVs), like HPV16 and 18, which are
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carcinogenic to humans [5–7]. The global ratio of all the malignant diseases attributable to

HPV infection is estimated to be 5.2% [8–10]. Almost all the cervical carcinomas and a signifi-

cant part of anogenital and oropharyngeal malignancies are associated with HPV infections

[11].

Currently, It is proven that all the oncogenic HPVs are genetically related, Although, they

vary greatly in the prevalence and risk of triggering malignant lesions [12, 13]. According to

the International Agency for Research on Cancer evaluation (IARC), twelve HPV types (16,

18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59) are known as hrHPV. All hrHPVs belong to the

alpha genus in Papillomaviridae family. Oncogenicity of some types that classified as probably

carcinogenic (HPV 68) or possible carcinogenic (HPV 34, 73, 26, 69, 82, 30, 53, 66, 70, 85, 97,

67, 5 and 8) is still needed to be clarified [14].

The relatively simple genome of HPV contains three regions: the upstream regulatory

region (URR), the early region, and the late region. The early and late regions encode six early

genes (E1, E2, E4, E5, E6, and E7) and two late genes (L1 and L2), respectively. Among these

early proteins, E5, E6, and E7 play a pivotal role in the cell transformation. They can interfere

in several cell cycle pathways, especially the alteration of EGFR signaling pathways [15, 16],

degradation of p53 [17] and degradation of pRB [18], respectively. These effects result in trig-

gering several cascade events, which cause cell transformation, immune evasion and cancer

progression [6, 19–26]. E6 and E7 oncoproteins are known as Ideal targets for the immuno-

therapy of HPV-associated cancers [27–31] since they are consistently expressed in almost all

cervical cancer cells, but not in healthy cells, and are essential for the generation and mainte-

nance of malignancy. Additionally, E5, E6, and E7 oncoproteins are structurally different from

human cell proteome. Therefore, their side effects on healthy tissues are expected to be negligi-

ble [8].

Currently, there are three commercially available HPV prophylactic vaccines [32]. How-

ever, none of them showed an effective therapeutic effect on pre-existing HPV infection or its

associated cancers [33–35]. Due to the high prevalence and mortality, there is an urgent need

to develop an effective therapeutic HPV vaccine for clearance of these infections/cancers. So

far, different therapeutic vaccines have been developed [27–31, 36–45]. However, they have

induced inadequate immune responses, and thus further studies are needed to develop an

effective therapeutic vaccine.

Among various therapeutic vaccines, peptide-based vaccines have appeared as attractive

candidates to treat cervical and other HPV-associated cancers. Peptide-based vaccines have

some advantages such as easy production and transportation, high selectivity, multivalency

capability and epitope accessibility. With the development of genome sequencing techniques,

the prediction of potential B and T cell epitopes has opened a promising view to developing

peptide-based vaccines against infectious diseases and cancers. Currently, several therapeutic

peptide-based HPV vaccines are in different phases of clinical trials [46].

Host genetic polymorphisms influence the immune response to a pathogen in the target

population. HLA genes are the most polymorphic genes in the human genome. The vast HLA

polymorphism and restriction phenomenon, result in serious problems in vaccine design and

population coverage [47–50] because each allele binds to a particular group of peptides. How-

ever, many of HLA-I alleles can be classified by their similar peptide-binding properties into

groups, covering over 80% of HLA-A and B alleles. Each HLA-I supertype (HLA-A�01:01,

HLA-A�02:01, HLA-A�03:01, HLA-A�24:02, HLA-A�26:01, HLA-B�07:02, HLA-B�08:01,

HLA-B�15:01, HLA-B�27:05, HLA-B�39:01, HLA-B�40:01 and HLA-B�58:01) represent a

group of HLA molecules which bind to a similar set of peptides [51].

The previous studies have shown that the presence of high immunogenic CD8+ cytotoxic T

lymphocytes (CTLs) epitopes in vaccine formulation is essential for inducing a robust immune
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response. However, the addition of CD4+ T cell epitopes can significantly augment its strength

and duration [49, 52, 53]. CD8+ CTLs commonly recognize intracellular-originated peptides

presented by MHC-I molecules. They accommodate peptides with 8–11 residues; the ideal

length is 9 residues. While CD4+ Helper T Lymphocytes (HTLs) commonly recognize extra-

cellular-originated peptides presented by MHC-II molecules. They accommodate peptides

with 10–30 residues or even more; the ideal length is 12–16. The strength of the interaction

between a T cell receptor and a peptide-MHC complex (pMHC), depends on the presented

peptide and the MHC structure [49, 54]. The binding of a peptide to MHC-I molecule is the

most selective stage in the way of peptide presentation [55].

Bioinformatics tools can predict the potential immunogenic epitopes from thousands of

epitopes in a short time [56]. Generally, the algorithms of these tools range from ones pro-

grammed to determine peptide- MHC molecule binding data to those based on structural sim-

ilarity, molecular modeling, and molecular docking [57]. Peptides that bind to a specific MHC

molecule have sequence similarity. Therefore, peptide sequence patterns have been used to

predict their binding to MHC molecules [58]. In recent years, the accuracy of these methods

has increased strikingly, and more than 90% of natural epitopes have been recognized at a high

specificity of 98% [59]. This improvement in performance was achieved by the expanding

experimental binding data, available in the immune epitope database (IEDB) and analysis
resource (http://www.iedb.org/), and by the improvement of machine-learning algorithms

[60].

Regarding the fundamental importance of epitope prediction in vaccine development, we

investigated the best potential CD8+ T cell epitopes from the E5, E6, and E7 oncoproteins of

four prevalent hrHPV genotypes (16, 18, 31 and 45) in the world and Iran [61], as shown in

Fig 1.

Fig 1. The most prevalent oncogenic HPV types among women with cervical cancer in the world and Iran, 2017 (http://www.hpvcentre.net/datastatistics.php).

https://doi.org/10.1371/journal.pone.0205933.g001
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Materials and methods

Plan of the study

A two-step plan was designed to identify the most probable CD8+ T cell epitopes (Fig 2). For the

first step, MHC-I and II binding, MHC-I processing, MHC-I population coverage and MHC-I

immunogenicity prediction analyses, and for the second step, MHC-I and II protein-peptide

docking, epitope conservation, and cross-reactivity with host antigens analyses were considered.

The second step analyses were performed only for the selected peptides in the first step.

Protein sequences

In Jan 2018, in order of priority, the RefSeq, reviewed or unreviewed sequences of hrHPV

oncoproteins (E5, E6, and E7) were retrieved from the National Center for Biotechnology

Information database (NCBI) (http://www.ncbi.nlm.nih.gov/) and UniProtKB/Swiss-Prot

Fig 2. The flow chart of the study: It represents the two-step epitope selection plan implemented to identify the most

probable epitopes of hrHPV oncoproteins.

https://doi.org/10.1371/journal.pone.0205933.g002
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database (http://www.uniprot.org/). The isoform sequences of HPV16, 18, 31, and 45 oncopro-

teins were retrieved from HPV T cell Antigen Database (http://cvc.dfci.harvard.edu/hpv/

HTML/search.php). All the sequences are accessible in supporting information (S1 File).

MHC-I binding prediction

Binding of epitopes to MHC-I molecules is an essential step for antigen presentation to CTLs.

Herein, it was predicted by four online servers, as illustrated in Table 1. The HLA supertypes

and frequently occurring HLA-I alleles provided by the servers were included in the analysis.

However, when an allele (e.g., HLA-B�14:02) was not provided, but its allele group (i.e.,

HLA-B�14) was available, we used the allele group instead of the allele. The used human and

mouse alleles, or allele groups are provided in supporting information (S1 Table).

IEDB MHC-I binding prediction

Currently, eight prediction methods are available in the IEDB MHC-I binding prediction tool,

i.e., IEDB recommended [62], Consensus [69], NetMHCpan3 [59, 70], artificial neural network
(ANN) [71, 72], SMM with a peptide-MHC binding energy covariance matrix (SMMPMBEC)

[73], stabilized matrix method (SMM) [74], CombLib_Sidney2008 [75], PickPocket [76],

netMHCcons [77] and netMHCstabpan [78]. The IEDB-recommended and consensus are not

Independent methods; they use ANN, SMM and CombLib_Sidney2008 methods to generate a

representative index for each predicted pMHC; The median of percentile ranks (PRs) or bind-

ing scores obtained from the used methods is reported as a representative PR or consensus
score in the IEDB-recommended or consensus method respectively. The PR is calculated by

comparing the half maximal inhibitory concentration (IC50) of subjected peptide against a

group of random peptides from Swiss-Prot database. The IC50 value, expressed as nanomolar,

shows binding affinity. The lower IC50 or PR means higher binding affinity. As a rough guide-

line, peptides with IC50 values <50nM are considered as high affinity, 50-500nM intermediate

affinity and more than 500-5000nM low affinity. No known T cell epitope has got an IC50 value

>5000nM to date [60].

In this study, IEDB recommended method was used. The outputs for each pMHC in this

method consisted of a median PR, a method-specific IC50, and a method-specific PR. Predic-

tions were made against 76 frequently occurring human MHC-I alleles (including 12 HLA

supertypes) and 6 MHC-I mouse alleles. Epitope length was set on 8, 9, 10, and 11mer. Pep-

tides with median PR<2.0 are applied for the analysis.

NetMHCpan4 MHC-I binding prediction. NetMHCpan4 server predicts binding of pep-

tides to the known MHC molecules using ANNs method. It is trained on a combination of nat-

urally eluted ligands (55 human and mouse MHC-I alleles) and binding affinity data (172 MHC

molecules from human, mouse, cattle, primates, and swine). Besides, the user can perform a

prediction against any custom MHC-I molecule by uploading its full-length sequence [66].

In this study, predictions were performed for 8, 9, 10, and 11mer peptides against 76 fre-

quently occurring human MHC-I alleles and 8 MHC-I mouse alleles. PR thresholds for strong

Table 1. Predictor servers used for MHC-I epitope binding prediction.

Server name Link Prediction method References

IEDB MHC-I binding (IEDB recommended) http://tools.iedb.org/mhci/ ANN, SMM and CombLib_Sidney2008 [60, 62–65]

NetMHCpan4 http://www.cbs.dtu.dk/services/NetMHCpan/ ANN [66]

Rankpep http://imed.med.ucm.es/Tools/rankpep.html PSSM [67, 68]

SYFPEITHI http://www.syfpeithi.de/0-Home.htm Published motifs [54]

https://doi.org/10.1371/journal.pone.0205933.t001
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and weak binders were set on 0.5 and 2.0, respectively. Peptides with PR<2.0 were applied for

the analysis.

Rankpep MHC-I binding prediction. Rankpep predicts binder peptides of a given pro-

tein sequence or sequence alignments to MHC-I and II molecules. The algorithm of Rankpep

based on the comparison of sequence similarities, using position-specific scoring matrices
(PSSMs) method. It employs profiles of a group of aligned peptides recognized to bind to a

specific MHC molecule and creates a consensus sequence by determining the most common

residue for each position. Then, it allocates an optimal score to the consensus sequence, com-

pares the score of the subjected peptide with the optimal score, and gives the peptide a percen-

tile optimal value for comparison. Finally, it highlights strong binders in red [67, 68].

Herein, the prediction was made against 31 frequently occurring HLA-I and 7 H2-I alleles.

The server did not provide all common lengths of epitopes for all the MHC alleles. Thus, the

used alleles and their provided epitope lengths are shown together, as given in supporting

information (S1 Table).

SYFPEITHI MHC-I binding prediction. SYFPEITHI (http://www.syfpeithi.de/0-Home.

htm/) is a database of over 7000 published and verified peptide sequences of human, mouse,

and other organisms, known as natural binders of MHC-I and II molecules. When SYF-

PEITHI analyzes a peptide for binding prediction against a specific MHC-I allele, its scoring

system evaluates every residue of the query and gives it an arbitrary value between 1 and 15,

according to whether it is an anchor, auxiliary anchor, or preferred residue. It allocates the

value 1 to those residues which slightly preferred in that particular position, 15 to the Ideal

anchor residues, and -1 to -3 to those residues which exhibit an adverse effect on the binding

ability. The sum of these values is the score of the peptide. The maximal score could vary

between different MHC alleles [54, 79].

Herein, the prediction was made against 26 frequently occurring HLA-I alleles and 5

H2-I alleles. Epitope length was set on 8, 9, 10, and 11mer. Every predicted pMHC which got

a score less than 70% of the reference sequence score was excluded from the analysis. The

allele-specific reference sequence was selected from Rankpep’s consensus sequence [68], or

our SYFPEITHI predicted epitopes, whichever got the highest score in SYFPEIHI server.

The reference sequences, their sources, and their scores are given in supporting information

(S2 Table).

MHC-II binding prediction

Recognition of high immunogenic CD8+ T cell epitopes was the primary aim of this study.

Therefore, all predictions were primarily made against epitopes with 8–11 residue length.

However, it was valuable to determine that which 9mer MHC-I epitope is the core peptide of

the MHC-II epitope(s) too. The core peptide lies on the MHC-II molecule grooves, and play

the central role in constructing pMHC. With this strategy, the short minimal predicted epi-

topes could be used in designing of synthetic long peptides (SLPs), resulting in peptide loading

to both MHC-I and II molecules.

IEDB MHC-II binding prediction. In this study, the MHC-II binding prediction was

made by IEDB MHC-II binding predictor (http://tools.iedb.org/mhcii/) [60, 63, 64]. IEDB

possess seven prediction methods for MHC-II binding prediction: IEDB-recommended, con-
sensus [63], NetMHCIIpan[80], NN- align [81], SMM-align [82], Combinatorial Libraries [75]

and Sturniolo's method [83]. Herein, the IEDB-recommended method was used, and all pep-

tides with PR<2.0 were selected for the analysis.

The prediction was made against 35 human alleles (IEDB reference set) and three mouse

alleles, given in supporting information (S3 Table). The server has fundamentally set the
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epitope length on 15mer. Each IEDB-recommended method participated in the prediction pro-

cess offered a core Peptide (9mer) for each predicted epitope (15mer). We associated the 9mer

MHC-II core peptides with the 9mer MHC-I predicted epitopes to determine that which

MHC-I epitope is the core peptide of the MHC-II epitope(s) too.

MHC-I processing prediction

MHC-I T cell epitope processing predictions of E5, E6, and E7 oncoproteins are made by the

IEDB combined predictor (http://tools.iedb.org/processing/). This tool combines predictors of

three main steps of MHC-I antigen presentation pathway (proteasomal processing, transporter

associated with antigen processing (TAP) transport, and MHC-I binding) and calculates a

total processing score for each predicted epitope. It allows the user to choose a method from

ANN, SMM, SMMPMBEC, Comblib_Sidney2008, NetMHCpan, NetMHCcons and PickPocket
methods for the binding prediction. In the current update (2018), the IEDB team has changed

the choice of the recommended prediction method for the processing tool to be NetMHCpan
3.0 rather than a consensus, since the processing tools requiring an IC50 value, which the con-
sensus method does not provide. Furthermore, NetMHCpan 3.0 has provided all MHC alleles

and has performed the predictions very well in recent comparisons [65].

There are two types of proteasomes, the housekeeping types which are expressed instinc-

tively, and immuno types which are provoked by IFN-γ secretion. The immunoproteasomes

are believed to improve the efficiency of antigen presentation [62, 65]. In this study, the immu-

noproteasome option was selected.

The program outputs for every predicted epitope consisted of proteasome score, TAP

score, MHC score, processing score (proteasome + TAP score), total score (Proteasome + TAP

+ MHC score), and MHC-I IC50. The TAP scoring system calculates a–log (IC50) value for the

binding of a peptide (or N-terminal of its precursors) to the TAP molecules. The higher TAP

score, the higher transport rate. [62, 65, 84].

Herein, the analysis was made against the human and mouse MHC-I alleles used later in

the IEDB binding prediction, with the IEDB-recommended method and other default settings

of the program. Epitopes with IC50 <1000 nM for HLA-I alleles and<5000 nM for H2-I alleles

were included in the analysis.

MHC-I immunogenicity prediction

Several factors could clarify the difference between epitope and non-epitope peptides; An

essential factor is epitope immunogenicity, i.e., it could be recognized by T cells. Some amino

acids, particularly those with large and aromatic side chains (especially tryptophan, phenylala-

nine, and Isoleucine), are associated with immunogenicity. Moreover, the positions P4–6 of a

peptide are more critical for immunogenicity [85].

In this study, the MHC-I immunogenicity of all predicted epitopes was determined by the IEDB

web server (http://tools.iedb.org/immunogenicity/)[85]. This tool uses the properties of amino acids

and their locations to predict the immunogenicity of a pMHC. The default option was selected to

specify which positions of the query peptide to be masked from the analysis, because it masked posi-

tions which are also suggested for the most frequent human MHC-I allele, HLA-A�02:01.

Population coverage prediction

IEDB population coverage prediction tool (http://tools.iedb.org/population/) [86] is used to

predict the HLA-I population coverage of all 8-11mer predicted epitopes in the first step. This

tool can accept a target population by two query levels: 1) area-country-ethnicity and 2) eth-

nicity alone. It can integrate allele frequency information retrieved from the Allele Frequency
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Net Database (AFND) (http://www.allelefrequencies.net/default.asp) [87]. IEDB also accepts

custom populations with allele frequencies defined by users. Since, HLA-I and HLA-II T cell

epitopes elicit immune responses from two different T cell populations (CTL and HTL, respec-

tively), the server provided three different population coverage modes: 1) HLA-I lonely, 2)

HLA-II lonely, and 3) HLA-I and HLA-II together.

Herein, the MHC-I promiscuous predicted epitopes and their binding HLA-I alleles

(IC50<500nM or PR<2.0) were entered as inputs for the analysis against the world population.

Molecular docking analysis

The primary aim of molecular docking is the prediction of the binding site of a ligand at a pro-

tein receptor surface, and then docking and modeling the ligand into the recognized site. In this

study, the binding ability of the first step selected peptides to human and mouse MHC mole-

cules, was analyzed by CABS-dock (http://biocomp.chem.uw.edu.pl/CABSdock/) server. The

server uses a multistage procedure that involves multiple programs, with the Cα–Cβ–side chain

(CABS) model at its heart. The detailed information about these stages is given in supporting

information (S2 File) [88, 89]. Also, Fig 3 shows the pipeline of CABS-dock protocol [88].

CABS-dock gets the 3D structure of the receptor and the sequence of the peptide as obliga-

tory inputs. Furthermore, there are some non-obligatory inputs as recommendations which

could improve outputs. In this study, duplicate dockings for each peptide (6240 dockings in

total) were done against the most significant human/mouse MHC-I and II molecules which

had at least one well-structured protein data bank (PDB) file in the RCSB Protein Data Bank

(https://www.rcsb.org/), as shown in Table 2. These PDB files are in the complex with their

peptidic ligand and some X-ray crystallography solution molecules (heteroatoms). Thus, these

excess molecules, as well as redundant MHC molecules were removed before executing dock-

ing process. Since, the binding site of epitopes on the MHC molecules was well-known previ-

ously, the unlikely regions to bind masked before the analysis.

CABS-dock returns ten representative models (medoids) as the best-simulated models and

ranks them by cluster density (CD). Cluster density is equal to the number of elements in a

cluster divided by their average ligand root mean square deviation (RMSD). The higher CD

value implies greater accuracy. Ligand RMSD value shows the differentiation measure between

cluster elements. As a guideline; RMSD < 3.0 Å means high accuracy; RMSD� 3.0 and� 5.5

Å means medium accuracy and RMSD> 5.5 Å means low accuracy [88]. Herein, the RMSD

and CD of the best-simulated models were selected for the analysis. The best model, which has

the highest CD value, is not necessarily the top-ranked model, because, in some cases, peptides

were not attached to their binding site properly. Thus, these malformed models were excluded

from the analysis. It is important to note that, due to the different frequency of MHC alleles in

human populations, the equal CD value of different MHC alleles, don’t have equal value

regarding population coverage. Thus, to involve the effect of population coverage, the CD

value of every model was multiplied by its allele population coverage (divided by hundreds for

more facility) to obtain a weighted index. Then, the sum of all HLA-I or II weighted indexes of

each peptide was calculated to get a total docking score (TDS), used as a score to compare the

candidate peptides. It is the first time that the TDS has been formulated and used for this pur-

pose. This formula is also applicable to the similar docking scores obtained from other servers.

Epitope conservancy analysis

The use of highly conserved epitopes in a vaccine formulation reduces the risk of tumor

immune escape and provides broader protection against different virus strains or genotypes.

Thus, the conserved areas are preferred to use in therapeutic vaccines, if they are appropriate
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epitopes. Herein, the epitope conservancy analyses for the first step selected peptides were

done in three levels:

1. Inter-isoform conservancy: the percent of conservancy between all isoforms of each E5, E6,

or E7 oncoprotein.

2. Inter-type conservancy: the percent of conservancy between HPV16 and 31 (alpha-Papillo-

mavirus 9), as well as between HPV18 and 45 (alpha- Papillomavirus 7).

3. Inter-hrHPV conservancy: complete (100%) conservancy between all hrHPVs (HPV16, 18,

31, 33, 35, 39, 45, 51, 52, 56, 58, and 59).

Fig 3. The pipeline of CABS-dock protocol: The fully automated CABS-dock procedure contains four main stages, shown in the blue

boxes.

https://doi.org/10.1371/journal.pone.0205933.g003
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The selected peptides in the first step were analyzed to find inter-strains and inter-types

conservancy percentages by IEDB tool, conservation across antigens, (http://tools.iedb.org/

conservancy/). The inter-hrHPVs conservancy analysis was done by the IEDB and ExPASy

ClustalW servers (https://embnet.vital-it.ch/software/ClustalW.html).

Cross-reactivity with host antigens

Cross-reactivity with host antigens can cause adverse immune responses. Therefore, the

selected peptides in the first step were checked for similarities with the mouse and human pro-

teomes by the NCBI BLASTp tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Results

Regarding the studies, different peptides usually get different scores/ranks in different analyses.

This inconsistency indicates that these results needed to be analyzed with an integrated

approach. Indeed, integrated approach is more practical and efficient in such conditions in

comparison with analysis by analysis filtering approach, in which those epitopes are chosen for

the next analysis that have gotten an acceptable score in the previous analysis. Herein, the inte-

grated approach was applied in both steps of epitope selection.

Since the ultimate goal of the discovery of therapeutic epitopes is to use them in human vac-

cines, only the scores/ranks of human alleles were used to rank epitopes in some studies. How-

ever, investigators usually test therapeutic vaccines on mouse species in preclinical trials, thus

in the current study, the binding status of the predicted epitopes to mouse MHC-I alleles was

also studied by several binding predictors and molecular docking, as well.

As stated above, CTL-mediated responses play a crucial role in killing the malignant cells.

Besides, the binding of epitopes to MHC-I molecules is the most selective step for antigen pre-

sentation to CTLs. Therefore, in the first step, the selection was made primarily by the compar-

ison of obtained MHC-I binding, processing and immunogenicity scores/ranks, and

population coverage percentages. However, the MHC-II binding ranks were actually of sec-

ondary importance to the selection process as an added advantage. Additionally, the popula-

tion coverage has a dual application. First, it determines the coverage of a given peptide in the

target population. Second, it is the best index for summarizing and evaluating of the HLA-I

binding predictions too, since it is calculated from the results of HLA-I binding prediction

analyses.

Table 2. MHC alleles used for molecular docking analysis against the selected peptides in the first step.

Human MHC-I Human MHC-II Mouse MHC-I Mouse MHC-II

Allele PDB ID Allele PDB ID Allele PDB ID Allele PDB ID

HLA-A�02:01 4UQ3 HLA-DRB1�01:01 4AH2 H-2-Db 1JUF H-2-IAb 4P23

HLA-A�24:02 5HGA HLA-DRB1�03:01 2Q6W H-2-Dd 5IVX H-2-IAd 2IAD

HLA-A�01:01 4NQV HLA-DRB1�04:01 5LAX H-2-Kb 4PV9 H-2-Ag7 1ESO

HLA-A�03:01 3RL2 HLA-DRB1�11:01 6CPL H-2-Kd 5GSV H-2-IEk 1FNG

HLA-A�11:01 1X7Q HLA-DRB1�15:01 5V4M H-2-Kk 1ZTV

HLA-B�07:02 5EO1 HLA-DRB5�01:01 1FV1 H-2-Ld 1LDP

HLA-B�08:01 3SPV

HLA-B�27:05 1OGT

HLA-B�35:01 3LKN

HLA-B�27:05 4UQ3

https://doi.org/10.1371/journal.pone.0205933.t002
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In the first step, ten peptides (Tables 3–5) from each HPV genotype oncoprotein (120 pep-

tides in total), which got better results in the first step analyses were selected for the second

step analyses, including protein-peptide molecular docking, epitope conservation, and cross-

reactivity with host antigens. The individual detailed results of the MHC-I and II binding (S3

File), MHC-I immunogenicity (S4 File) and MHC-I population coverage (S5 File) predictions,

Table 3. The predicted epitopes from E5 oncoproteins in the first step selection.

Protein Epitope Location Immunogenicity Population Proteasomal TAP Processing

(length) Score Coverage Cleavage score score score

HPV16-E5 FLIHTHARF 72–80 (9) 0.21 97.75% 1.31 1.12 2.43

SAFRCFIVY 55–63 (9) 0.28 70.69% 1.55 1.43 2.98

STYTSLIIL 37–45 (9) 0.06 99.70% 1.67 0.53 2.20

YTSLIILVL 39–47 (9) 0.20 99.93% 1.57 0.40 1.97

FLLCFCVLL 15–23 (9) 0.03 62.23% 1.47 0.39 1.86

YIIFVYIPL 63–71 (9) 0.30 76.67% 1.18 0.51 1.70

LSVSTYTSL 34–42 (9) -0.18 93.47% 1.52 0.49 2.01

FVYIPLFLI 66–74 (9) 0.20 89.59% 1.14 0.34 1.48

FIVYIIFVY 60–68 (9) 0.39 53.36% 1.36 1.32 2.68

IIFVYIPLF 64–72 (9) 0.19 99.99% 1.28 1.19 2.47

HPV18-E5 ATAFTVYVF 47–55 (9) 0.23 100.0% 1.50 1.10 2.59

CAYAWVLVF 29–37 (9) 0.31 78.10% 1.45 1.20 2.65

SPATAFTVY 45–53 (9) 0.26 82.84% 1.46 1.17 2.63

MCAYAWVLVF 28–37 (10) 0.32 96.23% 1.45 1.13 2.58

YAWVLVFVY 31–39 (9) 0.26 62.06% 1.29 1.43 2.71

LHIHAILSL 64–72 (9) 0.13 84.77% 1.51 0.47 1.98

FTVYVFCFL 50–58 (9) 0.18 79.20% 1.36 0.47 1.83

LLLHIHAIL 62–70 (9) 0.30 57.57% 1.57 0.45 2.02

TSPATAFTVY 44–53 (10) 0.28 90.18% 1.46 1.28 2.74

MLLLHIHAI 61–69 (9) 0.19 85.90% 1.05 0.21 1.25

HPV31-E5 FVIHTHASF 72–80 (9) 0.08 100.0% 1.11 1.17 2.28

LSVSVYATL 34–42 (9) -0.06 100.0% 1.48 0.49 1.97

SVYATLLLL 37–45 (9) 0.05 99.80% 1.28 0.60 1.88

VVFIYIPLF 64–72 (9) 0.28 99.59% 1.41 1.21 2.62

VSVYATLLL 36–44 (9) 0.07 100.0% 1.43 0.52 1.95

VYATLLLLI 38–46 (9) 0.02 99.96% 1.29 0.40 1.70

YVVFIYIPL 63–71 (9) 0.36 77.99% 1.13 0.51 1.64

LIHTHARFL 73–81 (9) 0.05 100.0% 1.50 0.47 1.97

FLLCFCVLL 15–23 (9) 0.03 57.05% 1.47 0.39 1.86

FIYIPLFVI 66–74 (9) 0.23 70.90% 1.35 0.35 1.70

HPV45-E5 CAFAWLLVF 29–37 (9) 0.30 69.65% 1.35 1.17 2.53

YVCAFAWLL 27–35 (9) 0.35 52.04% 1.45 0.49 1.94

VYVCAFAWLL 26–35 (10) 0.33 99.98% 1.45 0.62 2.06

LHMHALHTL 64–72 (9) 0.05 99.56% 1.58 0.47 2.05

VITSPLTAF 42–50 (9) -0.12 98.75% 1.41 1.19 2.59

FLLCFSVCL 6–14 (9) -0.10 56.13% 1.68 0.41 2.09

FAWLLVFLF 31–39 (9) 0.18 59.90% 1.12 1.22 2.34

VYVCAFAWL 26–34 (9) 0.27 99.86% 1.16 0.62 1.77

SPLTAFAVY 45–53 (9) 0.24 57.26% 1.32 1.17 2.49

MFVLHMHAL 61–69 (9) -0.08 92.98% 1.64 0.48 2.12

https://doi.org/10.1371/journal.pone.0205933.t003
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as well as, MHC-I and II molecular docking (S6 File) and epitope conservation (S7 File) analy-

ses are given in supporting information, as 15 Excel files. Indeed, CABS-dock returns ten rep-

resentative medoids as the best-simulated models and ranks them by cluster density (CD).

Cluster density is derived from two factors (the number of elements in a cluster and their aver-

age ligand RMSD) that is an advantage for this server.

Table 4. The predicted epitopes from E6 oncoproteins in the first step selection.

Protein Epitope Location Immunogenicity Population Proteasomal TAP Processing

(length) Score Coverage Cleavage score score score

HPV16-E6 FAFRDLCIVY 52–61 (10) 0.19 83.26% 1.94 1.24 3.18

IVYRDGNPY 59–67 (9) 0.09 86.66% 1.13 1.42 2.55

CYSLYGTTL 87–95 (9) 0.02 99.94% 1.58 0.49 2.06

VYDFAFRDL 49–57 (9) 0.33 99.99% 1.35 0.41 1.75

KFYSKISEY 75–83 (9) -0.33 99.57% 1.39 1.49 2.88

SEYRHYCYSL 81–90 (10) -0.07 99.96% 1.59 0.47 2.25

KLPQLCTEL 18–26 (9) -0.09 99.98% 1.41 0.52 1.93

ISEYRHYCY 80–88 (9) 0.08 24.94% 1.57 1.28 2.85

EYRHYCYSL 82–90 (9) -0.11 99.91% 1.59 0.49 2.08

YCYSLYGTTL 86–95 (10) -0.10 99.99% 1.58 0.49 2.06

HPV18-E6 KLPDLCTEL 13–21 (9) 0.05 99.99% 1.65 0.44 2.09

TVLELTEVF 37–45 (9) 0.23 99.27% 1.43 1.20 2.63

FAFKDLFVVY 47–56 (10) 0.01 86.98% 1.90 1.23 3.12

LELTEVFEF 39–47 (9) 0.33 49.80% 1.40 1.07 2.47

DFYSRIREL 70–78 (9) 0.11 87.51% 1.64 0.44 2.08

FEFAFKDLF 45–53 (9) 0.01 75.51% 1.15 1.07 2.22

FAFKDLFVV 47–55 (9) -0.05 96.60% 1.02 0.09 1.11

AFKDLFVVY 48–56 (9) 0.11 95.40% 1.90 1.36 3.25

LQDIEITCVY 25–34 (10) 0.38 51.48% 1.31 1.25 2.56

SVYGDTLEK 84–92 (9) 0.14 58.01% 0.94 0.31 1.24

HPV31-E6 FAFTDLTIVY 45–54 (10) 0.26 93.1% 1.87 1.24 3.11

RYSVYGTTL 80–88 (9) 0.07 100.0% 1.48 0.61 2.09

KVSEFRWYRY 72–81 (10) 0.45 68.2% 1.43 1.40 2.83

FRWYRYSVY 76–84 (9) 0.00 66.2% 1.45 1.32 2.77

YRYSVYGTTL 79–88 (10) -0.04 100.0% 1.48 0.55 2.03

LSSALEIPY 15–23 (9) 0.18 61.3% 1.00 1.21 2.22

KVSEFRWYR 72–80 (9) 0.40 99.9% 0.90 0.77 1.67

AFTDLTIVY 46–54 (9) 0.20 97.6% 1.87 1.34 3.21

KLHELSSAL 11–19 (9) -0.17 99.96% 1.39 0.54 1.93

FAFTDLTIV 45–53 (9) 0.20 95.45% 1.03 0.11 1.13

HPV45-E6 IVYRDCIAY 54–62 (9) 0.16 81.72% 1.55 1.42 2.97

KLPDLCTEL 13–21 (9) 0.05 99.99% 1.65 0.44 2.09

YSRIRELRY 72–80 (9) 0.32 85.96% 1.46 1.25 2.71

ATLERTEVY 37–45 (9) 0.29 97.51% 1.40 1.37 2.79

FAFKDLCIVY 47–56 (10) -0.08 83.30% 1.90 1.28 3.15

DFYSRIREL 70–78 (9) 0.11 98.61% 1.56 0.44 1.99

YQFAFKDL 45–52 (8) 0.01 80.70% 1.44 0.51 1.95

NPAEKRRHL 113–121 (9) 0.02 45.86% 1.62 0.33 1.95

RTEVYQFAF 41–49 (9) 0.08 99.99% 1.49 1.06 2.55

YSRIRELRYY 72–81 (10) 0.33 80.75% 1.30 1.25 2.56

https://doi.org/10.1371/journal.pone.0205933.t004
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In the second step, five peptides out of ten selected peptides in the first step (Tables 6–8),

which got better results in all analyses of both steps, were selected as the final-predicted epi-

topes. None of the final predicted epitopes showed more than 90% sequence similarity with

mouse and human proteomes.

Table 5. The predicted epitopes from E7 oncoproteins in the first step selection.

Protein Epitope Location Immunogenicity Population Proteasomal TAP Processing

(length) Score Coverage Cleavage score score score

HPV16-E7 RAHYNIVTF 49–57 (9) 0.18 99.98% 1.48 1.18 2.66

STHVDIRTL 71–79 (9) 0.27 99.35% 1.79 0.42 2.21

LEDLLMGTL 79–87 (9) -0.13 51.13% 1.70 0.29 1.98

LQPETTDLY 15–23 (9) 0.18 81.48% 1.16 1.24 2.40

TLHEYMLDL 7–15 (9) -0.05 96.26% 1.17 0.37 1.53

LLMGTLGIV 82–90 (9) 0.11 40.60% 0.97 0.11 1.08

DRAHYNIVTF 48–57 (10) 0.22 80.89% 1.48 1.00 2.48

GQAEPDRAHY 43–52 (10) 0.23 49.47% 1.57 1.30 2.87

QAEPDRAHY 44–52 (9) 0.14 57.01% 1.57 1.22 2.79

GTLGIVCPI 85–93 (9) 0.15 42.66% 0.76 0.17 0.93

HPV18-E7 SSADDLRAF 78–86 (9) 0.11 99.69% 1.40 1.07 2.47

FQQLFLNTL 86–94 (9) 0.07 95.89% 1.71 0.46 2.17

QLFLNTLSF 88–96 (9) -0.05 88.83% 1.30 1.14 2.44

TLQDIVLHL 7–15 (9) 0.16 99.98% 1.57 0.47 2.04

LRAFQQLFL 83–91 (9) -0.03 62.34% 1.74 0.45 2.20

RAFQQLFL 84–91 (8) -0.10 99.98% 1.74 0.62 2.36

QQLFLNTLSF 87–96 (10) 0.03 39.85% 1.30 1.10 2.40

RAEPQRHTM 53–61 (9) 0.01 99.95% 0.97 0.26 1.22

SADDLRAF 79–86 (8) 0.10 74.99% 1.40 1.09 2.49

RAFQQLFLNTL 84–94 (11) -0.08 64.77% 1.70 0.62 2.32

HPV31-E7 TSNYNIVTF 49–57 (9) 0.17 99.95% 1.51 1.01 2.51

TLQDYVLDL 7–15 (9) 0.02 99.77% 1.30 0.34 1.64

GQAEPDTSNY 43–52 (10) 0.02 44.68% 1.48 1.30 2.78

QAEPDTSNY 44–52 (9) -0.06 56.83% 1.48 1.22 2.70

QPEATDLHCY 16–25 (10) 0.12 42.18% 1.47 1.10 2.57

TPTLQDYVL 5–13 (9) -0.07 45.76% 1.63 0.19 1.81

LLMGSFGIV 82–90 (9) 0.03 46.52% 1.02 0.10 1.12

YVLDLQPEA 11–19 (9) -0.05 79.18% 1.42 -0.23 1.18

IRILQELLM 76–84 (9) 0.00 62.34% 0.96 0.20 1.16

VDIRILQEL 74–82 (9) 0.18 27.17% 1.43 0.32 1.75

HPV45-E7 TLQEIVLHL 7–15 (9) 0.24 99.96% 1.45 0.33 1.77

NELDPVDLL 19–27 (9) 0.06 51.21% 1.44 0.36 1.80

LQQLFLSTL 87–95 (9) -0.06 37.63% 1.59 0.44 2.03

QLFLSTLSF 89–97 (9) -0.20 99.33% 1.30 1.14 2.44

SSAEDLRTL 79–87 (9) 0.19 99.03% 1.56 0.39 1.95

ELDPVDLLCY 20–29 (10) 0.01 57.92% 1.45 1.17 2.63

LRTLQQLFL 84–92 (9) -0.16 59.86% 1.80 0.43 2.23

RETLQEIVL 5–13 (9) 0.12 46.68% 1.76 0.38 2.15

LHLEPQNEL 13–21 (9) 0.03 74.50% 1.36 0.45 1.81

QQLFLSTLSF 88–97 (10) -0.13 37.17% 1.30 1.17 2.46

https://doi.org/10.1371/journal.pone.0205933.t005
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Discussion

High prevalence and mortality of oncogenic infectious pathogens such as HPV and Helicobac-

ter pylori have caused serious problems for humans. Currently, people who are infected with

hrHPVs but show normal cytology or precancerous lesions do not have any treatment option,

causing the disease progress toward invasive carcinoma in some cases. Unfortunately, no

FDA-approved immunotherapy exists for pre-existing HPV infections or their related cancers

to date. Immunotherapy of HPV-associated cancers by DNA or peptide-based vaccines,

depends on the recognition of highly immunogenic epitopes, inducing robust and specific

immune responses, particularly cell-mediated responses against the malignant cells.

The primary aim of this study was the prediction of CD8+ T cell epitope from the E5, E6

and E7 oncoproteins, using a comprehensive two-step selection plan. These proteins chose

because they play a pivotal role in the cell transformation, immune evasion, and maintenance

of malignancy, as well as, their permanent expression (E6 and E7) by the malignant cells [24–

26]. Expression of E5 oncoprotein occurs in the early phase of HPV infection. Evidence indi-

cates that E5 play a prominent role in the genesis of HPV-associated cancers, but is not essen-

tial for cancer progression [90], since when HPV genome integrates into the host genome, it

usually results in the disruption of E1, E2, and E5 genes. Therefore, targeting E5 protein pro-

vides an opportunity for treatment of HPV infections and preventing the precancerous lesions

from the progression to established carcinomas [20, 91]. Some genotypes of hrHPVs are more

involved in the genesis of epithelial tissue malignancies [61]. Thus, in this study, hrHPV16, 18,

31 and 45 were targeted due to their high prevalence in the HPV-associated cancers, especially

cervical carcinoma.

Table 6. The predicted epitopes from E5 oncoproteins in the second step selection.

Protein Epitope Docking Conservancy

TDS TDS Inter-isoform Inter-type� Inter-hrHPV

(HLA-I) (HLA-II) (% identity) (% identity) (100% identical)

HPV16-E5 FLIHTHARF 110 74 87.5 77.8 None

SAFRCFIVY 111 73 79.2 55.6 None

STYTSLIIL 131 62 16.7 44.4 None

YTSLIILVL 112 67 16.7 33.3 None

FLLCFCVLL 122 67 91.7 100.0 HPV16, 31 and 35

HPV18-E5 ATAFTVYVF 114 80 88.9 55.6 None

CAYAWVLVF 135 70 100.0 77.8 None

SPATAFTVY 117 61 88.9 77.8 None

MCAYAWVLVF 130 71 100.0 70.0 None

YAWVLVFVY 137 68 100.0 55.6 None

HPV31-E5 FVIHTHASF 143 71 14.3 77.8 None

LSVSVYATL 149 67 100.0 66.7 None

SVYATLLLL 139 72 100.0 44.4 None

VVFIYIPLF 130 78 71.4 66.7 None

VSVYATLLL 135 70 100.0 44.4 None

HPV45-E5 CAFAWLLVF 127 78 100.0 77.8 None

YVCAFAWLL 109 62 100.0 55.6 None

VYVCAFAWLL 127 56 100.0 60.0 None

LHMHALHTL 111 82 66.7 55.6 None

VITSPLTAF 125 69 100.0 88.9 None

�Between HPV16 and 31 (alpha- Papillomavirus 9), and between HPV18 and 45 (alpha- Papillomavirus 7)

https://doi.org/10.1371/journal.pone.0205933.t006
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There are several limitations for epitope prediction: 1) The major drawback of peptide-

based vaccines is low immunogenicity [92, 93]. Many studies have focused on enhancing

immunogenicity using immune stimulating agents or adjuvants to avoid this problem.

Another solution is the use of agonist epitopes [94]. Epitope immunogenicity is a crucial factor

in vaccine development. However, many of known natural epitopes when are analyzed in silico
by IEDB MHC-I immunogenicity predictor, do not obtain a high score. Therefore, in this study,

epitope selection was based on the integrated approach, in which one analysis does not play an

important role alone. 2) There are certain drawbacks associated with the function of each

method invented for the MHC-peptide binding prediction [95]. For this reason, several pre-

dictors and a molecular docking program were used to augment the prediction accuracy. 3)

Some web tools have been developed for MHC-II epitope prediction. Since MHC-II groove

can bind to peptides with variable lengths, and different peptides have the different number of

residues between their N-terminus and first anchor [54], the exact assignment of MHC-II core

peptide would be a difficult problem which reduces the success rate of these prediction tools.

Therefore, most MHC-II prediction tools did not usually make epitope predictions as accu-

rately noted for MHC-I molecules [64, 96]. In cancer immunotherapy, the CTL-mediated

responses play the central role in eradication of malignant cells, and the binding of epitopes to

MHC-I molecules is an essential step for antigen presentation to CTLs. Thus, in this study,

predicted epitopes were primarily selected by their MHC-I binding and processing scores.

However, the MHC-II binding scores were actually of secondary importance to the epitope

selection process as an extra advantage. Additionally, there are several other essential determi-

nants which significantly affect the outcomes, such as antigen processing, immunogenicity,

Table 7. The predicted epitopes from E6 oncoproteins in the second step selection.

Protein Epitope Docking Conservancy

TDS TDS Inter-isoform Inter-type� Inter-hrHPV

(HLA-I) (HLA-II) (% identity) (% identity) (100% identical)

HPV16-E6 FAFRDLCIVY 110 66 96.6 80.0 None

IVYRDGNPY 111 62 94.9 66.7 None

CYSLYGTTL 131 73 63.6 77.8 None

VYDFAFRDL 112 61 95.8 77.8 None

KFYSKISEY 122 63 90.7 66.7 HPV16 and 35

HPV18-E6 KLPDLCTEL 114 62 87.5 100.0 HPV18 and 45

TVLELTEVF 135 83 75.0 55.6 None

FAFKDLFVVY 117 78 87.5 80.0 None

LELTEVFEF 130 70 75.0 66.7 None

DFYSRIREL 137 53 87.5 100.0 HPV18 and 45

HPV31-E6 FAFTDLTIVY 143 68 86.7 80.0 None

RYSVYGTTL 149 70 100.0 77.8 None

KVSEFRWYRY 139 51 100.0 60.0 None

FRWYRYSVY 130 76 100.0 55.6 None

YRYSVYGTTL 135 76 100.0 80.0 None

HPV45-E6 IVYRDCIAY 127 69 100.0 55.6 None

KLPDLCTEL 109 65 56.3 100.0 HPV45 and 18

YSRIRELRY 127 57 100.0 88.9 None

ATLERTEVY 111 61 81.3 55.6 None

FAFKDLCIVY 125 83 62.5 80.0 None

�Between HPV16 and 31 (alpha- Papillomavirus 9), and between HPV18 and 45 (alpha- Papillomavirus 7)

https://doi.org/10.1371/journal.pone.0205933.t007
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population coverage, conservancy and cross-reactivity with host antigens. Vaccine develop-

ment requires a comprehensive approach to cover all these effectual elements, covered in this

study.

The primary aim of molecular docking is the recognition of binding site of a ligand at a pro-

tein receptor surface, and docking and modeling the ligand into this recognized site. In this

study, CABS-dock server was used for molecular docking analyses. CABS-dock has several

main advantages: 1) The method does not require any data about the peptide structure and its

binding site. 2) During docking process, peptide conformation is entirely flexible. 3) It is possi-

ble to apply dynamic conformational changes in the receptor structure and 4) to exclude some

receptor regions from the docking search, leading to the more efficient search in the vicinity of

the binding site at a sensible time. [88, 89].

In comparison with protein-ligand (small molecules) docking, Protein-peptide docking

analysis is more problematic, since significant conformational changes occur during the pro-

cess. As a general rule, how much the length of the query peptide to be longer, there are more

torsions and conformational flexibilities. Additionally, in comparison to Protein-Protein inter-

actions, Protein-peptide dockings are more transient, and their binding affinities are notably

weaker [88]. These factors make structural predictions of long peptides very challenging.

Therefore, in this study, 9mer peptides were preferred for selection compared to other possible

lengths. They are also preferred by all MHC-I molecules as epitope and by MHC-II molecules

as the core peptide of epitopes. Moreover, expansion of 9 or 10mer CTL epitopes to longer

peptides may create a practical alternative, containing both CD4+ HTL and CD8+ CTL epi-

topes; Especially, when CD4+ HTL epitopes, covering CTL epitopes, are not recognized [97].

Table 8. The predicted epitopes from E7 oncoproteins in the second step selection.

Protein Epitope Docking Conservancy

TDS TDS Inter-isoform Inter-type� Inter-hrHPV

(HLA-I) (HLA-II) (% identity) (% identity) (100% identical)

HPV16-E7 RAHYNIVTF 120 61 100.0 66.7 None

STHVDIRTL 107 57 76.5 77.8 None

LEDLLMGTL 102 58 100.0 55.6 None

LQPETTDLY 107 65 82.4 77.8 None

TLHEYMLDL 90 55 94.1 66.7 None

HPV18-E7 SSADDLRAF 90 52 90.9 66.7 None

FQQLFLNTL 105 67 45.5 77.8 None

QLFLNTLSF 127 69 45.5 81.8 None

TLQDIVLHL 94 59 90.9 88.9 None

LRAFQQLFL 108 76 90.9 77.8 None

HPV31-E7 TSNYNIVTF 116 60 93.3 66.7 None

TLQDYVLDL 111 64 100.0 66.7 HPV18 and 35

GQAEPDTSNY 109 50 40.0 70.0 None

QAEPDTSNY 102 59 40.0 66.7 None

QPEATDLHCY 110 54 66.7 80.0 None

HPV45-E7 TLQEIVLHL 85 57 100.0 88.9 None

NELDPVDLL 98 68 100.0 55.6 None

LQQLFLSTL 100 60 100.0 77.8 None

QLFLSTLSF 108 66 100.0 88.9 None

SSAEDLRTL 84 55 26.7 66.7 None

�Between HPV16 and 31 (alpha- Papillomavirus 9), and between HPV18 and 45 (alpha- Papillomavirus

https://doi.org/10.1371/journal.pone.0205933.t008
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A large number of previous studies have used in silico analyses for epitope prediction

against different pathogens [94, 96, 98–103]. However, the prediction of T cell epitopes induc-

ing strong responses has remained a big challenge. For therapeutic HPV vaccines, many candi-

dates have been designed to trigger the activation of CTLs or HTLs, mostly by targeting two

major HPV oncoproteins, E6 or E7 [104], and in a few studies, E5 oncoprotein [98, 99]. As

well as, several clinical trials have been launched for immunotherapy of HPV-associated can-

cers [46], although, they have not been so immunogenic, to induce a sufficient cellular immu-

nity and eradicate malignant cells completely. Some studies have suggested that the use of E6

and E7 SLPs, containing both CD4+ HTL and CD8+ CTL epitopes, led to more potency and

durability of CD8+ T cell reactivity in vivo, in comparison with the minimal CTL epitopes [97,

105].

In 1993, As pioneers in HPV epitope studies, Feltkamp et al. recognized the HPV16-E7

sequence RAHYNIVTF as an MHC-I epitope that can provoke CTL-mediated responses and

eradicates established HPV l6-induced tumor cells in mice [106, 107]. This sequence is the first

HPV16-E7 predicted epitope in our study as well.

In 2015, Kumar et al. studied HPV16-E5 oncoprotein to predict the candidate T-cell and B-

cell epitopes [98]. They have screened 11 potent epitopes for MHC-I molecules according to

PR and the immunogenicity score, using IEDB MHC-I binding and immunogenicity predic-

tors. They found a 14mer potent epitope, SAFRCFIVYIIFVY, having the lowest PR and the

highest immunogenicity score, i.e., 0.5 and 0.70, respectively. Notably, our second HPV16-E5

predicted epitope, SAFRCFIVY, is the N-terminal part of SAFRCFIVYIIFVY, and our first

predicted epitope, FLIHTHARF, is the C-terminal part of the third epitope of their study,

VYIPLFLIHTHARF.

In 2017, Tsang et al. scanned the HPV16-E6 and E7 oncoproteins for the match peptides

with the consensus motif of HLA-A2 binding peptides [94]. The BIMAS algorithm [108] was

employed to rank probable binding peptides according to the predicted one-half-time dissociation
of pMHCs. Three potential CTL predicted epitopes of the E6 protein (KLPQLCTEL, KISEYR-

HYC, and QQYNKPLCDL) and three of the E7 protein (YMLDLQPET, TLHEYMLDL, and

RTLEDLLMGT) were selected. They showed the immunogenicity of these peptides was enhanced

when their agonist epitopes were used. The KLPQLCTEL and TLHEYMLDL sequences are the

seventh and the fifth predicted epitopes of HPV16-E6 and HPV16-E7 in our study, respectively.

Experimental evidences about hrHPV-derived epitopes in literatures are mostly limited to

E6 and E7 oncoproteins of HPV16 and 18. Among our first-step predicted epitopes:

FLLCFCVLL and YIIFVYIPL from the E5-derived epitopes [109], FAFRDLCIVY [110],

CYSLYGTTL [111], VYDFAFRDL [111, 112], KFYSKISEY [113], KLPQLCTEL [114–116],

ISEYRHYCY [117], EYRHYCYSL [111], KLPDLCTEL [116, 118–120], FAFKDLFVV [119,

120] and KLPDLCTEL [116, 118–120] from the E6-derived epitopes, RAHYNIVTF [121],

LEDLLMGTL [122], TLHEYMLDL [115, 122–124], LLMGTLGIV [115, 116, 125, 126],

QAEPDRAHY [117], GTLGIVCPI [115, 126], FQQLFLNTL [127] and TLQDIVLHL [119]

from the E7-drived epitopes were reported as T-cell epitopes experimentally. Besides,

IVYRDGNPY, CYSLYGTTL, KLPQLCTEL and ISEYRHYCY from the E6-derived epitopes,

and RAHYNIVTF and GTLGIVCPI from the E7-derived epitopes were also reported as HLA

ligands [128]. Others are novel epitopes that they also require experimental studies for

validation.

As far as we know, this is the first time that in a laborious in silico study for epitope predic-

tion, E5, E6 and E7 oncoproteins of hrHPV16, 18, 31 and 45 have been investigated altogether.

Moreover, in previous studies, usually only one predictor tool was used for making epitope

prediction, or if several tools were used, no integrated approach was employed to make the

conclusion. We believed that our predicted epitopes are valuable candidates for further in vitro
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and in vivo therapeutic vaccine studies. Additionally, the introduction of the ten epitopes for

each HPV genotype oncoprotein in the first step of the study shows which region of each

oncoprotein is rich of the epitope, and thus, is more suitable for use in the design of SLPs.

Notably, the previous in vivo studies have been conducted using SLPs of hrHPV-E6 and/or–E7

oncoproteins, in particular HPV16 oncoproteins [92, 129–133]. Furthermore, the two-step

plan of this in silico study, which each step includes several analyses to find proper epitopes by

an integrated approach, would provide a basis for rational epitope prediction. However, it

could be more efficient by adding other useful analyses. Further studies are recommended on

the peptide binding assays, the design of polyepitope constructions including E5, E6 and E7

epitopes, the expansion of the minimal CTL epitopes to longer peptides (SLPs), the use of vari-

ous adjuvants, involvement of delivery routes, mouse immunization with the designed con-

structs, evaluation of immune responses such as cytokines, antibodies, CTLs and tumor

growth for finding the best construct for clinical trials. It is important that improper vaccine

design and immunosuppressive microenvironment were known as the main reasons of the

failure in cancer immunotherapy by therapeutic cancer vaccines [134].
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