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The promising results of immunotherapy in tumors have changed the current

treatment modality for cancer. However, the remarkable responses are limited

to a minority of patients, which is due to immune suppression in the tumor

microenvironment (TME). These include the pre-exists of suppressive immune

cells, physical barriers to immune infiltration, antigen and antigen presentation

deficiency, and expression of inhibitory immune checkpoint molecules.

Recently, increasing evidence reveal that tumor metabolism, especially

abnormal glucose metabolism of tumors, plays an essential role in tumor

immune escape and is a potential target to combine with immunotherapy.

By glucose uptake, tumor cells alter their metabolism to facilitate unregulated

cellular proliferation and survival and regulate the expression of inhibitory

immune checkpoint molecules. Meanwhile, glucose metabolism also

regulates the activation, differentiation, and functions of immunocytes. In

addition, tumor mainly utilizes glycolysis for energy generation and cellular

proliferation, which cause the TME to deplete nutrients for infiltrating immune

cells such as T cells and produce immunosuppressive metabolites. Thus,

therapeutics that target glucose metabolism, such as inhibiting glycolytic

activity, alleviating hypoxia, and targeting lactate, have shown promise as

combination therapies for different types of cancer. In this review, we

summarized the functions of glucose metabolism in the tumor cells, immune

cells, and tumor microenvironment, as well as strategies to target glucose

metabolism in combination with immune checkpoint blockade for

tumor therapy.
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Introduction

During the past decade, multiple immunotherapies, such as

immune checkpoint blockade, adoptive cell therapy, and cancer

vaccines, have revolutionized the treatment of cancer (1–3).

Notably, immune checkpoint inhibitors (ICIs) that restore the

antitumor immune response of T-cells by blocking the ligation of

coinhibitory signaling molecules (PD-1/PD-L1, CTLA4/B7) have

become one of the most promising immunotherapies (4). Indeed,

remarkable efficacy of ICIs has been shown in patients with several

types of cancer (5, 6). However, most patients with cancer remain

unresponsive to immunotherapy due to the tumor adopting

multiple mechanisms to weaken the antitumor immune response.

On one hand, tumor cells dampen immune responses through

intrinsic mechanisms, such as loss of antigen presentation or

expression of immunosuppressive molecules. On the other hand,

the tumor microenvironment (TME), such as stromal barriers,

hypoxia, insufficient vascularization, nutrient deficiencies, and

metabolic disorders, also facilitates immunosuppression and limits

anticancer immune responses.

Recently, the role of glucose metabolism in immune

microenvironment has gained increased attention. Growing

evidence reveals that glucose metabolism is able to aid tumor

escape from immune surveillance and impede immunotherapy.

Elevated glucose metabolism in tumor cells facilitates

unregulated cellular proliferation and regulates the expression

of inhibitory immune checkpoint molecules, such as PD-L1 (7).

Meanwhile, glucose metabolism also regulates the activation and

differentiation of immunocytes. It was reported that glycolysis

could promote the function of T-cells and enhance the secretion

of IFN-g (8). Tumor-associated macrophage enhances glucose

uptake and promotes differentiation of M1 macrophage, which

increases the expression of pro-inflammatory cytokines and

promotes tumor progression (9). Additionally, abnormal

glucose metabolism also promotes the formation of the

immunosuppressive microenvironment. Tumors mainly utilize

glycolysis for energy generation, which causes depletion of

nutrients for infiltrating immune cells and production of

immunosuppressive metabolites (8, 10). Moreover, high

glucose metabolism transforms TME into acidic and hypoxic

phenotypes, which dampen the cytotoxicity activity of T-cells

(11–13). Indeed, targeting tumor cell glycolysis not only inhibits

tumor cell growth, but also preserves the antitumor T-cell

function (14).

In conclusion, aberrant glucose metabolism in tumors may lead

to immune cell dysfunction, which may account for the failure of

immunotherapy. An in-depth understanding of tumor

immunometabolism may contribute to discovering novel promising

approaches to boost T-cells activity. Here, we reviewed the

characteristics of glucose metabolism in tumor microenvironment,

discussed the regulatory role of glucose metabolism in antitumor

immune response, and summarized the potential therapeutic
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strategies targeting glucose metabolism to enhance the efficacy of

cancer immunotherapy, especially ICIs.
Characteristics of glucose
metabolism in the tumor
microenvironment

Highly proliferative cancer cells uptake large amounts of

glucose for energy generation in the TME. Likewise, the

differentiation and activation of immunocytes in the TME also

rely on glucose metabolism, thus creating a competition for

glucose between cancer and immune cells (15). The intensive

glycolysis of tumor cells impedes T-cell access to glucose,

thereby impairing their appropriate proliferation and function

(16). Dysregulation of glucose metabolism in the TME can affect

the biological activity of tumor cells and also regulate the effector

functions of immune cells. Therefore, a better understanding the

changes of glucose metabolism in the TME and their impacts on

antitumor immune response may help uncover potential

metabolic targets to inhibit tumor growth and enhance the

efficacy of immunotherapy.
Glucose metabolism of tumor cells

Notably, the level of glycolysis is increased in tumors despite

sufficient oxygen levels. This phenomenon of metabolic

reprogramming, also known as the Warburg effect, is considered

a crucial feature of cancer metabolism (17, 18). Although oxidative

phosphorylation (OXPHOS) is a more efficient pathway for ATP

generation, tumor cells have a lower rate of OXPHOS (18).

Apparently, glycolysis is an important metabolic pathway for

highly proliferative cancer cells, which can supply essential

metabolic intermediates to synthesize biomolecules, such as

nucleotides, lipids, and amino acids (19). The programs of

glucose metabolism of tumor cells consume lots of glucose, then

convert glucose into pyruvate and generate ATP. Further metabolic

reactions of pyruvate release lactate into the TME. Activation of

PI3K/AKT signaling in tumor cells increases glucose transporters

(GLUTs) at the plasma membrane and promotes glucose uptake.

AKT has also been found to activate the glycolytic enzymes (20).

Upregulation of glycolytic metabolism in tumors results in glucose

depletion, hypoxia, and lactate accumulation in the TME. In return,

hypoxia further promotes glycolysis in tumor cells by stabilizing

hypoxia-inducible factor-1a (HIF-1a), which induces the

transcription of glycolytic enzymes (21). The high levels of lactate

result in acidic conditions that promote tumor progression and

metastasis (22, 23). However, glucose depletion and hypoxia impose

metabolic stress on T-cells and impair the cytolytic activity (16). In

addition, lactate has diverse effects on immune cells, including

polarizing macrophages towards the anti-inflammatory M2 type,
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supporting regulatory T-cells or suppressive myeloid populations,

and interfering with dendritic cell (DC) maturation (24, 25).

Collectively, these findings indicate that glycolytic activity not

only provides advantages to cancer cells to grow under hypoxia

and glucose deprivation conditions but also creates an

immunosuppressive microenvironment to regulate surrounding

cells that contributes to tumor immune evasion. Therefore,

targeting glucose metabolism to improve the TME is a rational

and promising strategy for anticancer therapy.
Glucose metabolism of immune cells
in tumor

Importantly, metabolic reprogramming also occurs within

immune cells (26). T-cells are critical executors in tumor cell

killing. The reprogramming of glucose metabolism is involved in

the differentiation and activation of T-cells. Briefly, naïveCD4+ and

CD8+ T-cells have minimal metabolic activity and engage in

OXPHOS to generate energy. Upon activation, the activated T-

cells are accompanied by metabolic changes that increase glucose

uptake and upregulate glycolysis to support their growth and

function (27). The glucose metabolism of activated T-cells is

regulated by several signaling pathways, including the PI3K/

AKT/mTOR and AMPK pathways (28, 29). The PI3K/AKT/

mTOR pathway senses nutrient availability and promotes glucose

uptake and glycolysis (30), whereas AMPK induces a metabolic

switch toward OXPHOS by inhibiting mTOR signaling (31, 32).

Hence, glucose depletion within the TME enhances AMPK

activation, which may inhibit effector function of T-cells (33).

Nutrient competition between cancer and immune cells

contributes to functional exhaustion of CD8+ T-cells (34, 35).

Exhausted T-cells also exhibit dysregulated metabolism with

repressed glycolytic and mitochondrial function (36, 37). In

addition, CD8+ memory T-cells are an important member of the

adaptive immune systemandplay a crucial role in long-term tumor

control. During the differentiation of activated effector T-cells into

memory T-cells, there is also a metabolic shift to increase

mitochondrial metabolism for energy production (38). Inhibition

of mTOR signaling enhances CD8+ memory T cell formation but

compromises effector T-cell activity (39). Antitumor CD4+ T-cells

sharemetabolicprofileswith activatedCD8+T-cells (40).However,

not all CD4+ T-cells undergo metabolic transition after activation.

Regulatory T-cells (Treg), a subset of CD4+ T-cells, play a critical

role in dampening antitumor immune response. Low-glucose

availability induces FOXP3 expression, increasing T cell

differentiation to Tregs (39). This immunosuppressive subset has

low levels of glycolysis and predominantly depends on

mitochondrial respiration and fatty acid oxidation for their

metabolism (41, 42). In addition, lactate is preferentially utilized

by Tregs since they prefer oxidative metabolism (42). The distinct

metabolic programs enable Treg cells tomaintain optimal function

in the lactate-rich TME (42).
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The activation of natural killer (NK) cells depends on glycolysis

and OXPHOS to supply energy (43). Therefore, the lack of glucose in

the TME affects the function of NK cells. It has been reported that the

glycolytic rate ofNKcellswas suppressed in lung cancer,which further

weakened the cytotoxicity and cytokine production (44). Glycolysis is

not the only way of glucosemetabolism, gluconeogenesis also plays

a significant role in TME (45). Gluconeogenesis is the process of

generating glucose from non-carbohydrate substrates. Fructose-

1,6-bisphosphatase (FBP1), a key enzyme in gluconeogenesis, is

upregulated inmurineNKcells (44). FBP1 represses the expression

of glycolytic genes and reverses the direction of glycolysis to

promote glucose synthesis (46). Therefore, inhibition of FBP1

strongly restores glycolytic metabolism and improve the function

of NK cells (44).

Similarly, other innate immune cells employ specific

metabolic programs upon activation. DCs are professional

antigen presenting cells that phagocytize and present antigen

to T-cells after maturation. This process is accompanied by an

increase in glycolysis through PI3K/AKT pathway in response to

Toll-like receptor (TLR) signals (47). Activated DCs require high

glycolytic metabolism, which is critical for DC continued

survival and secretion of pro-inflammatory cytokines (48).

Thus, glucose competition in the TME may affect DC function

and limit the activity of T-cells (49). Macrophages reprogram

their metabolism in the TME through elevated glycolysis while

maintaining a tumor-promoting function (50). Tumor-associate

macrophages (TAMs) are categorized into inflammatory (M1)

and immunosuppressive (M2) phenotypes, which have distinct

metabolic programs. The pro-inflammatory M1 macrophages

enhance glycolysis and fatty acid synthesis (FAS) to support

their function (51). Conversely, like Treg cells, anti-

inflammatory M2 macrophages rely more on fatty acid

oxidation (FAO) and OXPHOS to maintain their tumor-

promoting function (50, 52). The myeloid-derived suppressor

cells (MDSCs) also exhibit characteristic metabolic phenotypes.

It is generally believed that both aerobic glycolysis and OXPHOS

were upregulated in MDSCs (53). Recent study shows that

MDSCs consume the most glucose per cell in the TME and

account for one-third of glucose uptake in the whole tumor,

limiting the availability of glucose to other immune cells (54).

And blocking glycolysis has been shown to inhibit the expansion

and function of MDSCs (55). Hypoxia and lactate in the TME

can polarize macrophages toward M2 anti-inflammatory

phenotype, promote MDSC suppressive function, and reduce

dendritic cell activation and stimulatory effects (56–58).
Targeting glucose metabolism to
enhance cancer immunotherapy

Multiple researches have shown that glycolytic activity of

glucose metabolism not only provides an intrinsic growth
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advantage for cancer cells but also exerts inhibitory effects on

antitumor immune cells by creating an immunosuppressive

microenvironment. Thus, improving the immune state of

TME via metabolic intervention is expected to provide

promising strategies for enhancing the therapeutic effect of

tumors. To date, several drugs have been proposed to target

tumor glucose metabolism for cancer treatment (Table 1). Here,

we summarize the therapeutic strategies targeting glucose

metabolism and advances in glucose metabolism intervention

combined with ICI immunotherapy.
Strategies of targeting glucose
metabolism within the TME

Inhibiting glycolytic activity of tumor cells
The enhanced glycolytic activity of cancer cells results in

deprivation of glucose and accumulation of lactate, which inhibit

the effector function of antitumor immune cells and promote the

differentiation and recruitment of immunosuppressive cell

populations. Therefore, weakening tumor aerobic glycolysis by

either inhibiting glycolysis-related enzymes or using the

competitive glucose analog may help to inhibit tumor growth.

2-Deoxyglucose (2-DG) is a glucose analog and inhibitor of

hexokinase used to reduce glycolysis. Studies revealed it could

inhibit cancer cell proliferation and promote the formation

of memory CD8+ T-cells, but it also impairs the effector function

of T-cells (59, 60). Dichloroacetate (DCA) is an inhibitor of

phosphofructokinase-1 and can induce a shift from glycolysis to

OXPHOS and inhibits tumor cells’ growth (61, 62). However,

these two drugs also inhibit T-cell function and promote

immunosuppression because they are not specific to tumor cell

metabolism. Therefore, the targeting specificity of tumor cells is

critical for applying glycolysis inhibitors.
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Targeting lactate in the TME
The enhanced glycolytic activity of tumor cells can release large

amounts of lactate, leading to the formation of acidic TME (63).

Lactic acid increases the expression of IL-8 and VEGF, which

promotes tumor metastasis and progression (22). Yet, lactate

inhibits the proliferation and cytotoxicity of T and NK cells, but

promotes the survival of Treg and MDSC cell populations (42, 64).

Hence, inhibiting the production of lactate or neutralizing lactate in

the TME may improve the efficacy of immunotherapy. Lactate

dehydrogenase (LDH), which is comprised of two major subunits,

LDH-A and LDH-B, catalyzes the reversible reaction between

pyruvate and lactate. LDH-A has a higher affinity for pyruvate

and favors the conversion of pyruvate to lactate, making LDH-A a

target of interest (65). LDH-A inhibitors, such as FX11 and

galloflavin, have been reported to reduce tumor growth (66).

Another approach to targeting lactate is to inhibit lactate

transporters monocarboxylate transporter (MCT) 1-4. MCT

inhibitor lenalidomide has been reported to suppress tumor cell

proliferation and enhance IL-2 and IFN-g secretion of T-cells (67).

In a mouse model of breast cancer, blockade of MCT1/MCT4

combined with ICI enhances antitumor immune responses

compared to ICI alone (14). Further, neutralizing lactic acid with

bicarbonate or proton pump inhibitors can improve the low pH of

TME. Importantly, oral bicarbonate combined with anti-PD-1

immunotherapy inhibits tumor growth in a melanoma mouse

model (68, 69).

Alleviating hypoxia in the TME
The rapid proliferation of tumor cells results in massive oxygen

consumption and hypoxia in the TME. Under hypoxic conditions,

HIFs are stabilized to promote the expression of glycolytic genes and

cytokines that promote tumor metabolism and angiogenesis (70).

Furthermore, intra-tumoral hypoxia inhibits the function of T-cells

and supports the generation of immunosuppressive cells, such as
TABLE 1 Potential targets for modulating glucose metabolism.

Intervention Target Representative drugs

Inhibiting glycolytic activity HK 2-DG

PFK-1 DCA

GLUT1 WZB117

Targeting lactate in the TME LDH-A FX11, Galloflavin

MCTs Lenalidomide, AZD3965

Acidic pH Bicarbonate

Proton pump Omeprazole

Alleviating hypoxia in the TME Hypoxia Supplemental oxygen, Evofosfamide

Mitochondrial respiratory complex I Metformin

Targeting PI3K/AKT/mTOR signaling pathway mTOR Rapamycin

PI3K isoforms AZD8835, BKM120

AKT AKTi, Ipatasertib
HK, Hexokinase; 2-DG, 2-Deoxyglucose; PFK-1, Phosphofructokinase-1; DCA, Dichloroacetate; GLUT1, glucose transporter 1; LDH-A, Lactate dehydrogenase-A; MCTs,
Monocarboxylate transporters; mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol-3 kinase.
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Treg and M2 macrophages (71, 72). As oxygen is a determinant of

energy production needed for the differential and activation of effector

T-cells, alleviating hypoxia can boost antitumor immune responses.

Studies have confirmed that supplemental oxygen increased T-cell

infiltration and inflammatory cytokine production, and decreased

Treg cell, which can enhance the antitumor immunity of T-cells in

mice with lung tumors (73). Similar results can be obtained with the

use of metformin, which reduces tumor hypoxia and improves T-cell

response in a mouse model of melanoma (89).

Targeting PI3K/AKT/mTOR signaling pathway
The PI3K/AKT/mTOR is an important pathway involved in

cell proliferation. This pathway also senses nutrients and plays a

key role in promoting glycolysis in tumor cells and effector T-

cells (39). Analogs of rapamycin can reduce cancer cell aerobic

glycolysis and proliferation. However, these drugs can also

suppress the function of effector T-cells and endow T-cell with

a memory phenotype (74). For example, the mTORC1 inhibitor

rapamycin enhances the formation of CD8+ memory T-cells and

also inhibits immune response of CD8+ T-cells (75). Likewise,

PI3K inhibitor skews T-cell differentiation toward memory

phenotypes and improves in vivo persistence and antitumor

activity in mice with acute myeloid leukemia (76). Among the

PI3K isoforms, PI3Ka and PI3Kb are ubiquitously expressed,

whereas PI3Kg and PI3Kd are found primarily in leukocytes.

PI3Ka/d inhibition promotes antitumor immunity through

enhancement of CD8+ T-cell activity and suppression of Tregs

(77). Interestingly, recent evidence suggests that rapamycin

combined with immunotherapy promote cytotoxic and

memory function of T-cells in glioblastoma (78). Therefore,

blockade of PI3K/AKT/mTOR signaling may be an attractive

strategy to be used in combination with immunotherapy.
Advances in targeting glucose
metabolism combined with immune
checkpoint inhibitors

Immune checkpoint inhibitors restore the antitumor immunity

of T-cells by blocking the binding of inhibitory immune checkpoint

ligands and receptors. Undoubtedly, ICIs have achieved good

results in some malignant tumors. Recent evidence has indicated

that immune checkpoint signaling can regulate metabolism of

cancer cells and T-cells. Indeed, several studies suggest that the

interaction of PD-1 and PD-L1 impairs the metabolic feature of T-

cells, including inhibiting aerobic glycolysis via suppression of

PI3K/AKT/mTOR signaling (79, 80). Similar to PD-1signaling,

CTLA-4 ligation to CD80/CD86 inhibits the glucose metabolism

of T-cells by reducing AKT phosphorylation and activation (81).

Hence, checkpoints signaling would impact the activation and

antitumor function of T-cells (80). In addition, immune

checkpoints also affect metabolism of tumor cells. PD-L1 in
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tumor cells has been shown to upregulate aerobic glycolysis by

increasing the activity of PI3K/AKT/mTOR pathway (82).

Consequently, PD-1/PD-L1 axis supports the survival and

progression of cancer cells. Thus, inhibition of PD-1/PD-L1

signaling might restore the metabolic requirements of T-cells

while simultaneously inhibiting glycolysis levels in tumor cells.

Indeed, the ICIs differentially influence the metabolic programs in

the TME by increasing the glucose availability to T-cells and in

contrast inhibiting the rate of glycolysis in cancer cells. In tumors,

the TME imposes many metabolic stresses on immune cells,

especially the antitumor effector T-cells. Therefore, the metabolic

treatments that modulate glucose metabolism to improve the TME

could be attractive adjuvants to be used in combination with ICIs.

Recently, researchers constructed a nanosystem embedded

with lactate oxidase (LOX) and a glycolysis inhibitor for lactate

consumption and modulation of metabolism. This nanosystem

can inhibit tumor growth by blocking glycolysis and removing

lactic acid in the TME. Importantly, this metabolic regulation

strategy can effectively improve the therapeutic effect of anti-PD-

L1 therapy and avoid systemic toxicity (83). In addition, other

studies also found that neutralizing tumor acidity with oral

bicarbonate impaired the tumor growth in melanoma mice,

further combining bicarbonate with anti-PD1 improved

antitumor response and prolonged mouse survival (68).

Metformin can inhibit oxygen consumption in tumor cells to

reduce intra-tumoral hypoxia. A combination of metformin with

PD-1 antibody improves T-cell function and tumor clearance in

mice with melanoma (84). Favorable treatment outcomes were

also observed in melanoma patients receiving metformin in

combination with ICIs (85).Similarly, patients with non-small

cell lung cancer receiving concurrent metformin and ICIs showed

higher response rate and overall survival (86). A Phase I clinical

trial reported that evofosfamide in combination with ipilimumab

improved immune activity in advanced solid tumors (87). Future

studies focusing on metabolic modulation therapy in combination

with ICIs are clearly warranted.
Conclusion and perspectives

Increasing evidence indicates that cellular metabolism could

remodel TME and regulate antitumor immunity. These provide

opportunities to target metabolism as a means to enhance

immunotherapy. Varieties of strategies targeting glucose

metabolism have been developed for tumor therapy, but their

efficacy needs to be further explored. Moreover, the similarity of

metabolism between tumor cells and T-cells raises the concern that

targeting tumor metabolism might undermine the immune response

of activated T-cells. In fact, several studies have suggested that drugs

targeting tumor aerobic glycolysis also significantly inhibit T-cell

function and promote immunosuppression (59). Therefore, special

attention should be devoted to targeting tumor cells and avoiding
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systemic toxicity. Using more specific inhibitors or nano-delivery

technology may be the way to address the toxic effects.

In addition to glucose metabolism, tumor cells also obtain

energy and substances through other metabolic pathways, such as

amino acid and fatty acid metabolism. Hence, it is unlikely that a

single enzymeor transporter targeting specificpathwaywill provide

a perfect solution. Instead, approaches intervening metabolic

targets in combination with other therapies, including ICIs, may

offer the most significant potential to improve clinical efficacy.
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