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Abstract In clinical practice, there are a number of cancer patients with clear family histories,
but the patients lack mutations in known familial cancer syndrome genes. Recent advances
in genomic technologies have enhanced the possibility of identifying causative genes in
such cases. Two siblings, an elder sister and a younger brother, were found to have
multiple primary lung cancers at the age of 60. The former subsequently developed breast
cancer and had a history of uterine myoma. The latter had initially developed prostate
cancer at the age of 59 and had a history of colon cancer. Single-nucleotide polymorphism
(SNP) genotyping revealed that ∼10% of the genomes were homozygous in both patients.
Exome sequencing revealed nonsynonymous mutations in five genes in the runs of
homozygosity: CHEK2, FCGRT, INPP5J, MYO18B, and SFI1. Evolutionary conservation of
primary protein structures suggested the functional importance of the CHEK2 mutation,
p.R474C. This mutation altered the tertiary structure of CHK2 by disrupting the salt bridge
between p.R474 and p.E394. No such structural changes were observed with the other
mutated genes. Subsequent cell-based transfection analysis revealed that CHK2 p.R474C
was unstable and scarcely activated. We concluded that the homozygous CHEK2 variant
was contributory in this case of familial cancer. Although homozygous inactivation of
CHEK2 in mice led to cancers in multiple organs, accumulation of additional human cases
is needed to establish its pathogenic role in humans.

INTRODUCTION

There are various degrees of inherited cancer susceptibility: rare high-penetrancemutations,
rare disease-causing variants, and common susceptibility alleles (Fletcher and Houlston
2010). In particular, the analysis of rare high penetrance mutations has contributed to under-
standing the molecular mechanisms of carcinogenesis. Autosomal-dominant syndromes
such as familial adenomatous polyposis and retinoblastoma have led to the discovery of tu-
mor-suppressor genes. Hereditary cancers can be either specific to a certain organ or pre-
sent in multiple organs. Examples of the former are breast cancer with BRCA1/BRCA2
mutations and retinoblastoma with RB1 mutations. An example of the latter is Li–Fraumeni
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syndrome caused by mutations in TP53 (Malkin et al. 1990). Lynch syndrome is caused by
defective DNAmismatch repair enzymes (Vasen et al. 1999) and usually manifests as colorec-
tal cancer but often accompanies malignancies in other organs. However, in clinical practice,
there are a number of cancer patients with clear family histories, but the patients lack muta-
tions in known familial cancer syndrome genes. Recent advances in genomic technologies
like exome and whole-genome sequencing have enhanced the possibility of identifying
causative genes in such cases.

In this report, we describe the exome analysis of siblings who suffered from multiple pri-
mary lung cancer as well as cancers in other organs. The analysis revealed that homozygous
inactivation of CHEK2 was linked to the case.

RESULTS

Description of Patients
The family tree of the two patients is shown in Figure 1. Their parents suffered from and died
of cancers in various organs. The male patient, FL1, had a history of colon cancer and devel-
oped prostate andmultiple primary lung cancer with no history of smoking. At the age of 59,
he was diagnosed with prostate cancer (Gleason score 4 + 3 = 7, cT2N0M0), and hormone
therapywas initiated. At the age of 60, left lobectomywas performed as part of the treatment
for multiple primary lung cancer. His major lesion was located at LS8, measuring 1 cm in
diameter, and histological analysis revealed it to be a minimally invasive adenocarcinoma.

The female patient, FL2, was 6 years older than the male patient. At the age of 38, she
was diagnosed with uterine myoma and developed multiple primary lung cancer at the age
of 60 with no history of smoking. Three primary tumors were located in the right lobe. The
loci, diameters, and histology of these lesions were as follows: RS1, 4 cm, invasive adenocar-
cinoma; RS4, 1 cm, minimally invasive adenocarcinoma; and RS6, 1 cm, adenocarcinoma in
situ. These lesions were surgically resected. This patient subsequently developed multiple
primary lung cancer in the left lobe and breast cancer at the age of 71. The loci, diameters,
and histology of the lung tumors were as follows: LS8, 2.5 cm, invasive adenocarcinoma, ac-
inar pattern predominant; LS8, 1.9 cm, invasive adenocarcinoma, papillary pattern predom-
inant; LS8, 2 cm, invasive adenocarcinoma, papillary pattern predominant; and LS10, 1.8 cm,
invasive adenocarcinoma, papillary pattern predominant. The lung and breast tumors were
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Figure 1. Family tree of the patients.
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surgically resected. The lung cancer EGFR mutation status was L858R and wild type, prob-
ably because of heterogeneity among tumor nodules. Histological and molecular analysis
of the breast cancer revealed it to be an invasive ductal carcinomawith a predominant ductal
component, estrogen receptor–negative, progesterone receptor–negative, and HeR2-pos-
itive. Micrographic views of both patients’ lung cancers are shown in Figure 2.

Homozygosity Mapping
We analyzed the general structures of the two patients’ genomes with single-nucleotide
polymorphism (SNP) genotyping. As part of the routine analyses, we performed homozygos-
ity mapping using the SNP-genotyping data, which involved screening for runs of homozy-
gous genotypes in each sibling. The total lengths of homozygous segments (>1 Mb) in
autosomal chromosomes were 217 and 315 Mb for FL2 and FL1, respectively (Table 1;
Fig. 3). Because ∼10% of genomic regions were homozygous for both patients, we conclud-
ed that there was consanguineous marriage between their parents. Overlapping homozy-
gous regions (63 Mb) between them were candidate regions for searching causative
mutations for this family. For Chromosome X, 13 runs of homozygosity (total length
29 Mb) were detected in the female patient FL2, which were identified as possible targets.
No aberrant copy-number variants were detected (Fig. 3).

Exome Sequencing
Next, to identify causative mutations in coding regions, we performed whole-exome se-
quencing. After we removed polymerase chain reaction (PCR)-duplicated reads from the
more than 190 million reads for each sibling, we obtained sequence data on protein coding
regions with a mean depth of 95× (Table 2). Approximately 10,000 variants with amino acid
changes were detected in each sibling, and 80% of them were shared between the siblings
(Table 3). Of the novel variants identified using public variant databases (the Database for
Short Genetic Variations [dbSNP], phase 1 of the 1000 Genome Project, and the Exome
Sequencing Project of the National Heart, Lung, and Blood Institute [NHLBI]), five missense

A B

Figure 2. Microscopic view of multiple lung cancers. Hematoxylin and eosin staining and immunostaining
with TTF1 and Nepsin A. (A) FL1. (B) FL2. Both exhibit histology of invasive adenocarcinoma.

Table 1. Runs of homozygosity

Sample Segments Mean (bp) Total (bp)

FL1 65 4,850,810 315,302,625

FL2 59 4,167,608 245,888,862

Data for Chr X were not included for FL1 because he is male.
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variants were found in the runs of homozygosity detected above. Single missense mutations
were identified in CHEK2 (Fig. 4A), FCGRT, INPP5J, MYO18B, and SFI1 (Table 4). The var-
iants, with the exception of MYO18B, have been recorded in ClinVar (Landrum et al. 2016;
http://www.ncbi.nlm.nih.gov/clinvar/) with low allele frequencies (< 0.03%), and their
“Clinical Significance” in the database was “Uncertain significance” (CHEK2) or “NA”
(FCGRT, INPP5J, and SFI1). None of them have been recorded in the Human Gene
Mutation Database (HGMD) public entries (http://www.hgmd.cf.ac.uk/ac/index.php).

Figure 3. Patients’ runs of homozygosity. Patient siblings were analyzed using single-nucleotide polymor-
phism (SNP) arrays, and runs of homozygous genotypes were screened using PLINK. The circles, starting
from outside going inward, represent the human chromosomes (Chr 1–22, X), runs of homozygosity (red
bars, FL2; blue bars, FL1), B allele frequency (BAF) (red plots, FL2; blue plots, FL1), and log R ratio (LRR) (orange
plots, FL2; light blue plots, FL1). The value range of the BAF plot is 0 to 1. The value range of LRR plot is−4 to 2
(“0” is marked by black lines).

Table 2. Exome sequencing statistics

Sample Total reads Mapped reads Mapping rate On targets (bases) Mean depth

FL1 195,020,136 191,742,948 98.3% 4,929,447,566 95.05

FL2 198,040,764 194,986,150 98.5% 4,922,943,301 94.93
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Evaluation of Candidate Genes by Primary and Tertiary Structures
First, the effects of these missense variants were predicted using the Variant Effect Predictor
at Ensembl (McLaren et al. 2010), for which SIFT (Sorting Intolerant from Tolerant) (Kumar
et al. 2009) and PolyPhen (Polymorphism Phenotyping) (Adzhubei et al. 2010) are used.
Three variants in CHEK2, FCGRT, and SFI1 were predicted to be “deleterious” or “probably
damaging” by SIFT or PolyPhen. For these three genes, we examined whether the amino
acid substitutions affected protein function based on evolutionary conservation using
SIFT. SFI1 did not have enough homologs deposited in the UniProt database and could
not be subjected to the analysis. p.R474 of CHK2 (protein corresponding to CHEK2) was
conserved in 98% of homologs. p.R218 of FCGRT was less conserved and appeared only
in 14% of the homologs. Other amino acids such as histidine (27%) and cysteine (12%)
also appeared in the homologs at this position.

Second, we examined how the amino acid substitutions affect the tertiary structure of the
proteins. The tertiary structure of the inactive CHK2 homodimer (PDB code: 3i6w) is shown in
Figure 4B (Cai et al. 2009). p.R474 is located away from the ATP-binding region; however, it
forms a salt bridge with the well-conserved p.E394 at the end of the activation segment (Fig.
4C). This salt bridge is evolutionarily well-conserved among other kinases. However, the mu-
tation p.R474C destroys this salt bridge and is likely to make the protein unstable (Fig. 4C).
Previously, the active CHK2 homodimer structure (PDB code: 2cn5) with the swapped and
ordered activation segment was reported (Fig. 4D; Oliver et al. 2006). Interestingly, the ac-
tive dimer also has the salt bridge involving p.R474; however, the partner, p.E394, is provid-
ed from the other chain. This suggests that protein stability of both inactive and active states
might be disturbed by p.R474C. Using predictionmodels, p.R474Cwas also predicted to be
“disease causing” byMutationTaster2 (Schwarz et al. 2014) and “most likely to interfere with
function” by Align GVGD (Mathe et al. 2006).

The tertiary structure of FCGRT-immunoglobulin Fc fragment complex was determined.
p.R210 contacts the carboxyl terminus of the immunoglobulin Fc fragment. Although there is
a salt bridge between p.R210 and the Fc fragment, the carboxyl terminus is usually not im-
portant for the overall structure of the protein. In addition, p.R210 is not well conserved, and
glutamine (Q) is observed in amino acid position 210 in homologs. Thus, p.R210Q is not like-
ly to affect the function and the structure of the protein.

Table 3. Variants detected by exome sequencing

Variants FL1 FL2 Shared

Nonsynonymous SNV 9072 9212 7282

Stopgain SNV 81 80 56

Stoploss SNV 19 18 15

Splicing SNV 74 65 54

Nonframeshift insertion 82 83 61

Frameshift insertion 105 104 89

Splicing insertion 41 41 34

Nonframeshift deletion 98 96 67

Frameshift deletion 90 106 77

Splicing deletion 19 18 16

Total 9681 9823 7751

SNV, single-nucleotide variant.
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The tertiary structure of SFI1 was partially determined. The amino acid substitution site is
outside of the determined structure. The structure model of INPP5J was partially generated
using a homologous protein (INPP5B). However, amino acid sequences of the mutated re-
gion differ. Thus, evaluating the significance of the mutations in these proteins from their ter-
tiary structures is difficult.

CHK2 p.R474C Protein Is Poorly Activated in the Cell upon DNA Damage
CHK2 is a cell cycle checkpoint regulator activated by DNA damage. The above analysis and
the function of CHK2 suggest that CHEK2 is a contributory gene for this familial case. We
therefore examined the function of CHK2 p.R474C with a cell transfection experiment.
We introduced expression vectors encoding wild-type or p.R474C CHEK2 cDNA into
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Figure 4. CHEK2mutation. (A) Sanger sequencing of p.R474Cmutation from patient siblings. (B) Structure of
inactive CHK2 homodimer (PDB code: 3i6w). Most residues in the activation segment are disordered and in-
visible. (C ) Enlarged view of the salt bridge between p.R474 and p.E394. (D) Structure of active CHK2 homo-
dimer with ADP (PDB code: 2cn5). The activation segment is visible and swapped. (E) Enlarged view of the
interchain salt bridge between p.R474 and p.E394. The molecular graphics were generated with UCSF
Chimera (Pettersen et al. 2004).
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NIH3T3 cells by the calcium phosphate-DNA precipitation method (Fig. 5). The expression
of wild-type CHK2 protein was observed, and the protein was activated by phosphorylation
after ultraviolet (UV) exposure. Unlike wild-type CHK2, p.R474C was scarcely expressed or
phosphorylated regardless of UV exposure. Thus, CHK2 p.R474C was unstable and poorly
activated by DNA damage in the cell.

Variants in Other Disease-Related Genes
We surveyed variants in potential hereditary loci including those in TP53 (causative gene for
Li–Fraumeni syndrome), BRCA2 (causative gene for hereditary breast/ovarian cancer), and
mismatch repair genes (MSH2, MSH6, PMS2, and EPCAM, i.e., causative genes for Lynch
syndrome), but found only common SNPs. Allele frequencies of these SNPs were 27%–

100% in the Japanese population. According to ClinVar, rs1042522 (TP53, p.P72R) and
rs169547 (BRCA2, p.V2466A) are “Benign” or of “Uncertain significance,” and all variants
(rs1126497, rs2303424, rs1042821, rs2228006, and rs1805323) in mismatch repair genes
are “Benign.” We did not detect any variants in the coding regions of lung cancer–related
genes, including YAP1 and EGFR. These genes are not likely affecting our patients’
phenotypes.

Among the variants detected in the runs of homozygosity common to both siblings, five
were recorded as disease-associated variants in the HGMD public entries. However, they are
related to diabetes or insulin secretion (rs757110 in ABCC8, rs5215 and rs5219 in KCNJ11),
carotid intima media thickness (rs2468844 in SAA2), and oligospermia (rs11703684 in
PIWIL3). The allele frequencies of these variants in the Japanese population are 19%–

89%; therefore, they are unlikely to be involved in our patients’ phenotypes.

Table 4. A list of novel homozygous variants in runs of homozygosity common to both siblings

Positiona Ref Var

Allelic read
depth
(ref/var)

Gene
symbol

RefSeq, CCDS, predicted
mutation at nucleotide,

and protein levelb SIFTc PolyPhencFL1 FL2

Chr 19:
50027791

G A 0/48 0/42 FCGRT NM_004107.4,
CCDS12770.1,
c.629G>A, p.R210Q

Deleterious Probably
damaging

Chr 22:
26388338

G T 0/96 0/67 MYO18B NM_032608.5,
CCDS54507.1,
c.6166G>T, p.V2056L

Tolerated Benign

Chr 22:
29090061

G A 0/231 0/187 CHEK2 NM_007194.3,
CCDS13843.1,
c.1420C>T, p.R474C

Deleterious Probably
damaging

Chr 22:
31522910

A G 0/26 0/21 INPP5J NM_001002837.2,
CCDS46687.1,
c.394A>G, p.S132G

Deleterious Benign

Chr 22:
31904305

G A 1/60 0/73 SFI1 NM_001007467.2,
CCDS43004.1,
c.35G>A, p.S12N

Deleterious Probably
damaging

RefSeq, Reference Sequence Database; CCDS, Consensus Coding DNA Sequence; SIFT, Sorting Intolerant from Tolerant;
PolyPhen, Polymorphism Phenotyping.
aLoci in GRCh37/hg19.
bA canonical transcript is indicated even if there are several alternative transcripts.
cThe effects of variants were predicted using the Variant Effect Predictor at Ensembl (http://www.ensembl.org/info/docs/
tools/vep/index.html).
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DISCUSSION

CHK2 is a cell cycle checkpoint regulator activated by DNA damage. Upon DNA damage,
CHK2 is phosphorylated by ataxia telangiectasia mutated (ATM), or ATM- and Rad3-related
(ATR) kinases. The activated protein inhibits CDC25C phosphatase, which prevents the cell’s
entry into mitosis. It has also been shown to stabilize the tumor-suppressor protein p53 lead-
ing to cell cycle arrest in G1. In addition to this main pathway, CHK2 is involved in various
other pathways inside the cell (Antoni et al. 2007; Tung and Silver 2011).

It has been debated in previous studies whether CHEK2 was a high-penetrance cancer-
causative gene. At first, CHEK2 was claimed to be one of several causative genes for
Li–Fraumeni syndrome (Bell et al. 1999). However, one of the reported CHEK2 mutations
was found to be a SNP in the duplicated region of CHEK2 (Sodha et al. 2000), and it is
now generally accepted that CHEK2 is not a causative gene of Li–Fraumeni syndrome
(Sodha et al. 2002). Mutations inCHEK2 such asCHEK2∗1100delC in the Dutch/Finnish pop-
ulation and p.S428F in the Ashkenazi Jew population are carried by ∼1% of people in these
populations (Fletcher and Houlston 2010). In particular, CHEK2∗1100delC is prevalent in the
Caucasian population, and a large cohort study demonstrated that it was a rare disease-caus-
ing variant for breast cancer whose odds ratio for unselected patients was 2.7 (Weischer et al.
2008). The protein resulting fromCHEK2∗1100delC lacks the kinase domain, is unstable, and
is associated with complete loss of expression of the protein (Bahassi el et al. 2007).
However, it is difficult to demonstrate thatCHEK2 acts as a tumor-suppressor gene (i.e., func-
tioning through somatic loss or inactivation of thewild-type allele) because of its low risk ratio
and low allele frequency. It should be noted that somatic mutations inCHEK2 are infrequent.
For example, in lung cancer, the incidence of CHEK2 mutations and copy-number variants

None WT R474C

UV (100J/m2): - +        - +       - +

Blot:Anti-HA

IP: Anti-HA
Blot: Anti-phospho-CHK2

+HA-CHK2

CHK2

CHK2-P

CHK2-P

Blot:Anti-γ-tub

Blot:Anti-GFP

Figure 5. Protein expression assay of CHK2. NIH3T3 cells were mock-transfected (None) or transfected with
expression vectors containing HA-taggedwild-type (WT) or mutantCHEK2. After treatment with or without UV
radiation, cell lysates were analyzed by western blotting with an anti-HA-tag antibody (top panels).
Alternatively, ectopic CHK2 protein was immunoprecipitated from the cell lysate with anti-HA epitope anti-
body and subsequently analyzed by western blotting using antiphosphorylated CHK2 antibody (second pan-
els from top). CHK2-P, phosphorylated CHK2. The bottom panels and the second panels from the bottom are
controls. γ-tub, γ-tubulin.
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is 0.99% (22/2219) and 0.54% (6/1112), respectively (Catalogue of Somatic Mutations in
Cancer; http://cancer.sanger.ac.uk/cosmic).

Two recent studies reported on the homozygous mutation of CHEK2∗1100delC (Adank
et al. 2011; Huijts et al. 2014). Both studies indicated that homozygotes had increased breast
cancer risk compared with the heterozygotes of CHEK2∗1100delC. It is important to note
that seven of 10 homozygous breast cancer patients developed multiple primary tumors
(Adank et al. 2011), and three of five developed contralateral breast cancer (Huijts et al.
2014). van Puijenbroek et al. reported a sporadic case of colorectal cancer with homozygous
CHEK2∗1100delC deletion (van Puijenbroek et al. 2005). This patient manifested no signifi-
cant clinical phenotypes, but died at the relatively early age of 52.

Unlike the Caucasian population, there are no CHEK2 variants comparable with
CHEK2∗1100delC in the Asian population (Chen et al. 2008; Choi et al. 2008). The incidence
of inactivating mutations is less in the Asian population. The case described here is a very rare
case of homozygous inactivatingmutations inCHEK2 in the Asian population.

In the NHLBI Exome Sequencing Project (http://evs.gs.washington.edu/EVS/), heterozy-
gous p.R474H variants (by a base change in neighboring nucleotide position of the p.R474C
variant) had been detected in a European– and African–American population. Allele
frequency in this database (3733 individuals) is 0.03%. During preparation of this manuscript,
a British individual with a heterozygous p.R474C variant was recorded in the 1000 Genomes
Project phase 3 (http://www.1000genomes.org/). Allele frequency in the 1000 Genomes
Project (2503 individuals including 504 East Asian) is 0.02%. So far, no homozygous variant
of p.R474 has been detected in healthy individuals.

The main question is whether the homozygous inactivation of the CHEK2 gene consti-
tutes a new disease entity. Although other reported cases did not manifest such strong
clinical phenotypes as our case study, there was high incidence of multiple primary
tumors. With regard to the sporadic case, if a suitable treatment was performed, the patient
might have developed cancers in other organs (van Puijenbroek et al. 2005). Although het-
erozygous CHEK2 mutations were previously denied as the cause of multiple familial can-
cers, these data suggest the possibility that homozygous inactivation of this protein may
lead to multi-organ cancer. A mouse model in which the wild-type Chek2 has been replaced
by a CHEK2∗1100delC allele exhibited a similar phenotype: mice homozygous for
CHEK2∗1100delC produced significantly more tumors than wild-typemice, whereas hetero-
zygousmicewere not statistically different fromwild type (Bahassi el et al. 2009). The severity
of the symptoms is likely to be variable for CHEK2mutations, and accumulation of more cas-
es will clarify CHEK2’s role in cancer development.

It should be noted that the siblings’mother had lung cancer and their father had prostate
and gastric cancer and FL1’s son had neuroblastoma, subsequently leading to their death.
Given this family history, it is possible that there are additional contributory genes and an au-
tosomal-dominant syndrome, which is the more common mode of inheritance in hereditary
cancer syndromes. Such genes might bemissed in the variant analysis because of no reliable
Asian controls or small exon level copy-number variants that are not detectable by exome
sequencing and SNP arrays.

METHODS

DNA Extraction
Genomic DNA fromperipheral bloodmonocytes was extracted with aQIAampDNAMini Kit
(QIAGEN). DNA concentration was determined with the use of a Qubit dsDNA HS Assay Kit
(Life Technologies). DNA samples were examined by electrophoresis on 1% agarose gels to
confirm a lack of significant degradation.

Homozygous inactivation of CHEK2 in lung cancer

C O L D S P R I N G H A R B O R

Molecular Case Studies

Kukita et al. 2016 Cold Spring Harb Mol Case Stud 2: a001032 9 of 12

http://cancer.sanger.ac.uk/cosmic
http://cancer.sanger.ac.uk/cosmic
http://cancer.sanger.ac.uk/cosmic
http://cancer.sanger.ac.uk/cosmic
http://cancer.sanger.ac.uk/cosmic
http://cancer.sanger.ac.uk/cosmic
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://www.1000genomes.org/
http://www.1000genomes.org/
http://www.1000genomes.org/
http://www.1000genomes.org/
http://www.1000genomes.org/


Tissue Preparation
Formalin-fixed, paraffin-embedded tissue sections were prepared as part of routine medical
practices. In addition to hematoxylin/eosin, the sections were stained with anti-TTF1 and
anti-Napsin A.

SNP Array Experiment
SNP array experiments were performed with an Illumina Omni1-Quad chip (which inter-
rogates more than one million loci). Base-calling and calculation of BAF and LRR (or
log2(Robserved/Rexpected), where R is probe intensity) were done by GenomeStudio
(Illumina). Because BAF is one allele frequency of two alleles, its value is around 0 or 1 for
homozygotes and around 0.5 for heterozygotes. Rexpected is interpolated from the observed
allelic ratio with respect to the canonical genotype clusters (Peiffer et al. 2006), and LRR rep-
resents relative copy-number status of the position. For normal-copy-number regions, the
value is around 0. Positive and negative values are gain and loss changes, respectively.
The mean SNP call rate was >99.6%. Runs of homozygous genotypes within individuals
were screened using PLINK (Purcell et al. 2007) with homozygous segment criteria: 1000
kb length, 100 SNPs, 50 kb/SNP density, and 1000 kb largest gap. The circle plot diagram
shown in Figure 3 was drawn using Circos (Krzywinski et al. 2009).

Exome Sequencing and Data Analysis
Patients’ DNA fragments of exonic regions were enriched with SureSelect Human All Exon
50 M kit (Agilent). Recovered DNA fragments were sequenced as 90-bp paired-end reads
on an Illumina HiSeq 2000. Total reads obtained were 195,020,136 and 198,040,764 for pa-
tient FL1 and FL2, respectively. These exome sequencing procedures were done by BGI
exome service. We aligned paired-end reads to the human reference genome (hg19)
with Burrows–Wheeler alignment (BWA) (Li and Durbin 2009) and created .bam
files using SAMtools (Li et al. 2009). Base call quality recalibration and local realignment
were also performed using the Genome Analysis Toolkit (GATK) (DePristo et al. 2011).
Sequence variants were detected by UnifiedGenotyper in GATK (DePristo et al. 2011).
Variants in positions with low coverage (less than eight reads) were discarded. Annotation
for detected variants was performed using ANNOVAR (Wang et al. 2010). Novel and known
variants were discriminated using variant data: dbSNP build 135 (http://www.ncbi.nlm.nih.
gov/SNP/), phase 1 data of 1000 Genomes Project (http://www.1000genomes.org/),
and 5400 exome data of Exome Sequencing Project (https://esp.gs.washington.edu/
drupal/).

Construction of Expression Vectors and Protein Expression Analysis
We amplified CHEK2 coding sequences from cDNAs of both a patient with the mutant gene
(p.R474C) and a person with wild-type CHEK2, using a 5′-side primer with HA-tag, 5′-AGA
TCT CTCGAG ACCATG TAC CCATACGAT GTT CCAGAT TAC GCT TCT CGGGAG TCG
GAT GTT GAG G-3′, and a 3′-side primer, 5′-GTT AAC GAA TTC CGG AGT TCA CAA CAC
AGC AGC A-3′. CHEK2 fragments were inserted into the XhoI–EcoRI site of pMSCVpuro
(Clontech). CHEK2 coding regions in plasmid constructs were confirmed to be same to
RefSeq NM_007194.3 except p.R474C using Sanger sequencing. The plasmid constructs
were transfected into NIH3T3 cells, and protein expression was analyzed as described in
our previous work (Yoshida et al. 2013).
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ADDITIONAL INFORMATION

Data Deposition and Access
The SNP-genotyping and exome sequencing data were deposited in the Japanese
Genotype-phenotype Archive (JGA) under accession number JGAS00000000057
(https://ddbj.nig.ac.jp/jga/viewer/view/studies) under Type I security. The CHEK2 variant
p.R474C has been deposited in the ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) database
under accession number SCV000282240.
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and Cardiovascular Diseases (Approval No. 1603315234).

Acknowledgments
This work was partly supported by the Ministry of Education, Culture, Sports, Science &
Technology in Japan (JSPS KAKENHI) under Grant Number 25430180, the Osaka
Community Foundation, the Charitable Trust Osaka Cancer Research Foundation, and the
Osaka Medical Research Foundation for Intractable Diseases (Y.K.). This work was also partly
supported by the Platform for Drug Discovery, Informatics, and Structural Life Science from
the Japan Agency for Medical Research and Development (T.K.).

Author Contributions
K.Ka. and Y.K. conceived and designed the experiments. Y.K., N.Y.K., I.N., and J.K. per-
formed the experiments. Y.K., T.K., J.K., and K.Ka. analyzed the data. J.O., M.H., and
K.Ko. contributed materials/analysis tools. K.Ka. and Y.K. wrote the manuscript.

REFERENCES

Adank MA, Jonker MA, Kluijt I, van Mil SE, Oldenburg RA, Mooi WJ, Hogervorst FB, van den Ouweland AM,
Gille JJ, Schmidt MK, et al. 2011. CHEK2∗1100delC homozygosity is associated with a high breast cancer
risk in women. J Med Genet 48: 860–863.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. 2010. A
method and server for predicting damaging missense mutations. Nat Methods 7: 248–249.

Antoni L, Sodha N, Collins I, Garrett MD. 2007. CHK2 kinase: cancer susceptibility and cancer therapy—two
sides of the same coin? Nat Rev Cancer 7: 925–936.

Bahassi el M, Penner CG, Robbins SB, Tichy E, Feliciano E, YinM, Liang L, Deng L, Tischfield JA, Stambrook PJ.
2007. The breast cancer susceptibility allele CHEK2∗1100delC promotes genomic instability in a knock-in
mouse model. Mutat Res 616: 201–209.

Bahassi el M, Robbins SB, Yin M, Boivin GP, Kuiper R, van Steeg H, Stambrook PJ. 2009. Mice with the
CHEK2∗1100delC SNP are predisposed to cancer with a strong gender bias. Proc Natl Acad Sci 106:
17111–17116.

Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ,
Fraumeni JF, et al. 1999. Heterozygous germ line hCHK2 mutations in Li–Fraumeni syndrome. Science
286: 2528–2531.

Cai Z, Chehab NH, Pavletich NP. 2009. Structure and activation mechanism of the CHK2 DNA damage check-
point kinase. Mol Cell 35: 818–829.

ChenW, Yurong S, LianshengN. 2008. Breast cancer low-penetrance allele 1100delC in theCHEK2 gene: not
present in the Chinese familial breast cancer population. Adv Ther 25: 496–501.

Choi DH, Cho DY, Lee MH, Park HS, Ahn SH, Son BH, Haffty BG. 2008. The CHEK2 1100delC mutation is not
present in Korean patients with breast cancer cases tested for BRCA1 and BRCA2mutation. Breast Cancer
Res Treat 112: 569–573.

Referees

Raymond D. Kim
Anonymous

Received February 25, 2016;
accepted in revised form July 26,
2016.

Homozygous inactivation of CHEK2 in lung cancer

C O L D S P R I N G H A R B O R

Molecular Case Studies

Kukita et al. 2016 Cold Spring Harb Mol Case Stud 2: a001032 11 of 12

https://ddbj.nig.ac.jp/jga/viewer/view/studies
https://ddbj.nig.ac.jp/jga/viewer/view/studies
https://ddbj.nig.ac.jp/jga/viewer/view/studies
https://ddbj.nig.ac.jp/jga/viewer/view/studies
https://ddbj.nig.ac.jp/jga/viewer/view/studies
https://ddbj.nig.ac.jp/jga/viewer/view/studies
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/


DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA,
Hanna M, et al. 2011. A framework for variation discovery and genotyping using next-generation DNA se-
quencing data. Nat Genet 43: 491–498.

Fletcher O, Houlston RS. 2010. Architecture of inherited susceptibility to common cancer.Nat Rev Cancer 10:
353–361.

Huijts PE, Hollestelle A, Balliu B, Houwing-Duistermaat JJ, Meijers CM, Blom JC, Ozturk B, Krol-
Warmerdam EM, Wijnen J, Berns EM, et al. 2014. CHEK2∗1100delC homozygosity in the Netherlands—
prevalence and risk of breast and lung cancer. Eur J Hum Genet 22: 46–51.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: an in-
formation aesthetic for comparative genomics. Genome Res 19: 1639–1645.

Kumar P, Henikoff S, Ng PC. 2009. Predicting the effects of coding non-synonymous variants on protein func-
tion using the SIFT algorithm. Nat Protoc 4: 1073–1081.

Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, et al.
2016. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44:
D862–D868.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics
25: 1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome
Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools.
Bioinformatics 25: 2078–2079.

Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA,
et al. 1990. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neo-
plasms. Science 250: 1233–1238.

Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV. 2006. Computational approaches for predicting
the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods.
Nucleic Acids Res 34: 1317–1325.

McLarenW, Pritchard B, RiosD, Chen Y, Flicek P, CunninghamF. 2010. Deriving the consequences of genomic
variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26: 2069–2070.

Oliver AW, Paul A, Boxall KJ, Barrie SE, Aherne GW, Garrett MD, Mittnacht S, Pearl LH. 2006. Trans-activation
of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO J 25: 3179–3190.

Peiffer DA, Le JM, Steemers FJ, ChangW, Jenniges T, Garcia F, Haden K, Li J, ShawCA, Belmont J, et al. 2006.
High-resolution genomic profiling of chromosomal aberrations using Infiniumwhole-genome genotyping.
Genome Res 16: 1136–1148.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera
—a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ,
et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J
Hum Genet 81: 559–575.

Schwarz JM, Cooper DN, SchuelkeM, Seelow D. 2014. MutationTaster2: mutation prediction for the deep-se-
quencing age. Nat Methods 11: 361–362.

Sodha N, Williams R, Mangion J, Bullock SL, Yuille MR, Eeles RA. 2000. Screening hCHK2 for mutations.
Science 289: 359.

Sodha N, Houlston RS, Bullock S, Yuille MA, Chu C, Turner G, Eeles RA. 2002. Increasing evidence that germ-
line mutations in CHEK2 do not cause Li–Fraumeni syndrome. Hum Mutat 20: 460–462.

Tung N, Silver DP. 2011. Chek2 DNA damage response pathway and inherited breast cancer risk. J Clin Oncol
29: 3813–3815.

van Puijenbroek M, van Asperen CJ, van Mil A, Devilee P, van Wezel T, Morreau H. 2005. Homozygosity for a
CHEK2∗1100delC mutation identified in familial colorectal cancer does not lead to a severe clinical phe-
notype. J Pathol 206: 198–204.

Vasen HF, Watson P, Mecklin JP, Lynch HT. 1999. New clinical criteria for hereditary nonpolyposis colorectal
cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC.
Gastroenterology 116: 1453–1456.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-through-
put sequencing data. Nucleic Acids Res 38: e164.

Weischer M, Bojesen SE, Ellervik C, Tybjaerg-Hansen A, Nordestgaard BG. 2008. CHEK2∗1100delC genotyp-
ing for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls.
J Clin Oncol 26: 542–548.

Yoshida A, Yoneda-Kato N, Kato JY. 2013. CSN5 specifically interacts with CDK2 and controls senescence in a
cytoplasmic cyclin E–mediated manner. Sci Rep 3: 1054.

Homozygous inactivation of CHEK2 in lung cancer

C O L D S P R I N G H A R B O R

Molecular Case Studies

Kukita et al. 2016 Cold Spring Harb Mol Case Stud 2: a001032 12 of 12


