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Reverse engineering of a 
Hamiltonian by designing the 
evolution operators
Yi-Hao Kang1, Ye-Hong Chen1, Qi-Cheng Wu1, Bi-Hua Huang1, Yan Xia1 & Jie Song2

We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the 
evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. 
Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts 
of moving states in a D-dimension (D ≥ 3) system. The numerical simulation shows that the present 
scheme not only contains the results of TQD, but also has more free parameters, which make this 
scheme more flexible. An example is given by using this scheme to realize the population transfer for a 
Rydberg atom. The influences of various decoherence processes are discussed by numerical simulation 
and the result shows that the scheme is fast and robust against the decoherence and operational 
imperfection. Therefore, this scheme may be used to construct a Hamiltonian which can be realized in 
experiments.

Executing computation and communication tasks1–4 with time-dependent interactions in quantum information 
processing (QIP)5–12 have attracted more and more interests in recent years. It has been shown that, the adiabatic 
passage, resonant pulses, and some other methods can be used to realize the evolution process. Among of them, 
the adiabatic passage techniques are known for their robustness against variations of experimental parameters. 
Therefore, many schemes have been proposed with adiabatic passage techniques in quantum information pro-
cessing field. For example, rapid adiabatic passage, stimulated Raman adiabatic passage, and their variants13–22 
have been widely used to perform population transfers in two- or three-level systems. The system keeps in the 
instantaneous ground state of its time-dependent Hamiltonian during the entire evolution process under an adi-
abatic control of a quantum system. To ensure that the adiabatic condition is always satisfied, the control param-
eters in the Hamiltonian should be well designed, which usually issue in relatively long execution time. Although 
little heating or friction will be created when the system remains in the instantaneous ground state, the long time 
required may make the operation useless or even impossible to implement because decoherence would spoil the 
intended dynamics. On the other hand, using resonant pulses, the scheme may has a relatively high speed, but 
it requires exact pulse areas and resonances. Therefore, accelerating the adiabatic passage towards the perfect 
final outcome is a good idea and perhaps the most reasonable way to actually fight against the decoherence that 
is accumulated during a long operation time. Consequently, some alternative approaches have been put forward 
by combining the virtues of adiabatic techniques and resonant pulses together for achieving controlled quantum 
state evolutions with both high speed and fidelity, such as optimal control theory23–25 and composite pulses26,27. 
Recently, by designing nonadiabatic shortcuts to speed up quantum adiabatic process, a new technique named 
“shortcuts to adiabaticity” (STA)28–39 opens a new chapter in the fast and robust quantum state control. As two 
famous methods of STA, “Transitionless quantum driving” (TQD)31–34 and inverse engineering34–38 based on 
Lewis-Riesenfeld invariants40 have been intensively focused, They have been applied in different kinds of fields 
including “fast quantum information processing”, “fast cold-atom”, “fast ion transport”, “fast wave-packet split-
ting”, “fast expansion”, etc.41–60. For example, with invariant-based inverse engineering, a fast population trans-
fer in a three-level system has been achieved by Chen and Muga56. Chen et al.57 have proposed a scheme for 
fast generation of three-atom singlet states by TQD. These schemes have shown the powerful application for 
invariant-based inverse engineering and TQD in QIP.

It has been pointed out in ref. 34 that, invariant-based inverse engineering and TQD are strongly related and 
potentially equivalent to each other. Invariant-based method is convenience and effective with a Hamiltonian 
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which admits known structures for the invariants. But for most systems, the invariants are unknown or hard 
to be solved. As for TQD, it will not meet this difficult point. However, some terms of Hamiltonian constructed 
by TQD, which are difficult to be realized in experiments, may appear when we accelerate adiabatic schemes. 
Therefore, how to avoid these problematic terms is a notable problem. Till now, some schemes61–70 have been pro-
posed to solve the problem of the TQD method recently. For example, Ibáñez et al.64 have produced a sequence 
of STA by examining the limitations and capabilities of superadiabatic iterations. Ibáñez et al.65 have also studied 
the STA for a two-level system with multiple Schrödinger pictures, and subsequently, Song et al.66 have expanded 
the method in a three-level system based on two nitrogen-vacancy-center ensembles coupled to a transmission 
line resonator. Moreover, without directly using the counterdiabatic Hamiltonian, Torrontegui et al.67 have used 
the dynamical symmetry of the Hamiltonian to find alternative Hamiltonians that achieved the same goals as 
speed-up schemes with Lie transforms. Chen et al.70 have proposed a method for constructing shortcuts to adia-
baticity by a substitute of counterdiabatic driving terms.

In this paper, inspired by TQD and the previous schemes61–70, a new scheme for reverse engineering of a 
Hamiltonian by designing the evolution operators is proposed for eliminating the terms of Hamiltonian which are 
hard to be realized in practice. The present scheme is focus on only one or parts of moving states in a D-dimension 
(D ≥​ 3) system, that is different from TQD with which all instantaneous eigenstates evolve parallel. According to 
the numerical simulation, the present scheme not only contains the results of TQD, but also has more free param-
eters, which make this scheme more flexible. Moreover, the problematic terms of Hamiltonian may be eliminated 
by suitably choosing these new free parameters. For the sake of clearness, an example is given to realize the pop-
ulation transfer for a Rydberg atom, where numerical simulation shows the scheme is effective. Therefore, this 
scheme may be used to construct a Hamiltonian which can be realized in experiments.

The article is organized as follows. In the section of “Reverse engineering of a Hamiltonian”, we will introduce 
the basic principle of the scheme for reverse engineering of a Hamiltonian by designing the evolution opera-
tors. In the section of “The population transfer for a Rydberg atom”, we will show an example using the present 
scheme to realize the population transfer for a Rydberg atom. Finally, conclusions will be given in the section of 
“Conclusion”.

Reverse engineering of a Hamiltonian
We begin to introduce the basic method of the scheme for reverse engineering of a Hamiltonian by designing the 
evolution operators. Firstly, we suppose that the system evolves along the state |φ1(t)〉​ and the initial state of the 
system is |ψ(0)〉​. So, the condition |φ1(0)〉​ =​ |ψ(0)〉​ should be satisfied. We can obtain a complete orthogonal basis 
{|φn(t)〉​} through a process of completion and orthogonalization. Therefore, the vectors in basis {|φn(t)〉​} satisfy 
the orthogonality condition 〈​φm(t)|φn(t)〉​ =​ δmn and the completeness condition φ φ∑ =t t( ) ( ) 1n n n . Since the 
system evolves along |φ1(t)〉​, the evolution operator can be designed as

∑φ φ λ φ φ= +
≠

U t t t t( ) ( ) (0) ( ) ( ) (0) ,
(1)m n

mn m n1 1
, 1

where parameters λmn(t) (m, n ≠​ 1) are chosen to satisfy the unitary condition UU† =​ U†U =​ 1. Submitting the 
unitary condition into Eq. (1), we obtain

∑λ λ δ= ≠ .
≠

⁎t t m n( ) ( ) ( , 1)
(2)k

mk nk mn
1

Secondly, according to Schrödinger equation (ħ =​ 1), we have

ψ ψ
ψ ψ

∂ =
∂ = .

i t H t t
i U t H t U t

( ) ( ) ( ) ,
( ) (0) ( ) ( ) (0) (3)

t

t

On account of the arbitrariness of |ψ(0)〉​, Eq. (3) can be written by

∂ = .i U t H t U t( ) ( ) ( ) (4)t

The Hamiltonian can be formally solved from Eq. (4), and be given as

∑

∑
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By submitting Eq. (2) into Eq. (5), the Hamiltonian in Eq. (5) can be described as

∑ ∑φ φ λ λ φ φ= + .
≠




⁎H t i t t i t t t t( ) ( ) ( ) ( ) ( ) ( ) ( )
(6)k

k k
l m n

ml nl m n
, , 1

Different from TQD, which gives Hamiltonian in the following from

∑ φ φ= H t i t t( ) ( ) ( ) ,
(7)k

k k
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the present scheme has more free parameters λmn(t). Therefore, this scheme may construct some new and differ-
ent Hamiltonians. Moreover, when parameters λmn (m, n ≠​ 1) are independent of time, Eq. (6) will degenerate 
into Eq. (7), which shows that the present scheme contains the results of TQD. On the other hand, once the 
unitary condition UU† =​ U†U =​ 1 for evolution operator is satisfied, the Hamiltonian given in Eq. (6) should be a 
Hermitian operator, because

= ∂

= ∂ − ∂

= − ∂

= .

†

† †

†

†

H t i U t U t

i U t U t iU t U t

iU t U t

H t

( ) ( ( )) ( )

( ( ) ( )) ( ) ( ( ))

( ) ( ( ))

( ) (8)

t

t t

t

As an extension, for a N-dimension system (N ≥​ 4), the evolution operator can be designed as

∑ ∑φ φ λ φ φ= | 〉〈 | + | 〉〈 | ≤ ≤ − .
= ≠

= 

U t t t t s N( ) ( ) (0) ( ) ( ) (0) , (1 2)

(9)
j

s

j j
m n j

mn m n
1 ,

j s1,2, ,

Then, the initial state |ψ(0)〉​ of the system can be expressed by the superposition of {|φj(0)〉​} (j =​ 1, 2, …​, s). 
Thus, the system can evolve along more than one moving states in this case. This might sometimes help us to 
simplify the design of the system’s Hamiltonian.

The population transfer for a Rydberg atom
For the sake of clearness, we give an example to emphasize the advantages of the scheme. Here, we consider a 
Rydberg atom with the energy levels shown in Fig. 1. The transition between |1〉​ and |3〉​ is hard to realize. So, the 
Hamiltonian of the Rydberg atom is usually written as the following form

= Ω + Ω + . .ϕH t t t e H c( ) ( ) 1 2 ( ) 2 3 , (10)i t
12 23

( )

where, Ω12 and Ω23 are the Rabi frequencies of laser pulses, which drive the transitions |1〉​ ↔​ |2〉​ and |2〉​ ↔​ |3〉​, 
respectively, and they are ϕ-dephased from each other. Suppose the initial state of the three-energy-level Rydberg 
atom is |1〉​, the target state is |Ψ​tar〉​ =​ cos μ|1〉​ +​ sin μ|3〉​. We choose a complete orthogonal basis as below

φ α β β α β
φ α β β α β
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3

With the unitary condition in Eq. (2), the evolution operator can take this form
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According to Eq. (6), the evolution operator in Eq. (12) gives the following Hamiltonian
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Figure 1.  Energy levels of the three-energy-level Rydberg atom. 
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For simplicity, we set θ =​ 0 here, the Hamiltonian in Eq. (13) can be written by

λ β α

β α λ β α

β α λ α β

= + −

+ − −

+ + − .


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 
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H t i
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( sin cos cos )( 2 3 3 2 ) (14)

Here, the Hamiltonian in Eq. (14) is already a Hermitian operator. To eliminate the terms with |1〉​ 〈​3| and |3〉​ 〈​1|, 
which are difficult to realize for the three-energy-level Rydberg atom, we set λ β α+ =


sin 0. Eq. (14) will be 

changed into
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For simplicity, we suppose the initial time is ti =​ 0 and the final time is tf =​ T, so T is the total interaction time. 
To satisfy the boundary conditions α(0) =​ 0, α(T) =​ μ, α α= =

 
T(0) ( ) 0, β(0) =​ β(T) =​ 0, β β= =  T(0) ( ) 0 and 

avoid the singularity of Hamiltonian, we choose the parameters as
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where A is an arbitrary constant. Then, the Hamiltonian in Eq. (15) can be written by

π π α µ π α β

π π α µ π α β

= Ω − + Ω −

Ω =






 +






−














Ω =






 −






−














.

H t i t i t

t A
T

t
T T

t
T

t A
T

t
T T

t
T

( ) ( )( 2 1 1 2 ) ( )( 2 3 3 2 ),

( ) sin 2 cos 2
3

1 cos 2 sin cot ,

( ) sin 2 sin 2
3

1 cos 2 cos cot
(17)

1 2

1

2

2

2

For the sake of obtaining a relatively high speed, the values of Ω1T and Ω2T in Eq. (17) should not be too large. 
Noticing that, with A increasing, πA increases while cot β decreases. Therefore, to obtain a relatively small |Ω1T| 
and |Ω2T|, A should be neither too large nor too small. Therefore, we choose A =​ 1 here. However, we can see 
from Eq. (17) that the functions of Rabi frequencies Ω1(t) and Ω2(t) are too complex for experimental realization. 
Fortunately, we can solve the problem by using simple functions to make a curve fitting for the Ω1(t) and Ω2(t). As 
an example, µ = π

4
 is taken here. We use Ω′ t( )1  and Ω′ t( )2  in the following, which are linear superposition of the 

Gaussian or trigonometric functions, to make a curve fitting for the Ω1(t) and Ω2(t),
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In this case, we have Ω′ ≤ .T 3 1541  and Ω′ ≤ .T 2 962 .
To compare the values of Ω1(t) and Ω′ t( )1 , Ω2(t) and Ω′ t( )2 , we plot Ω1T and Ω′ t( )1  versus t/T with μ =​ π/4 and 

A =​ 1 in Fig. 2(a) and plot Ω2T and Ω′ t( )2  versus t/T with μ =​ π/4 and A =​ 1 in Fig. 2(b). From Fig. 2(a,b), one can 
find that the curves of Ω1(t) and Ω′ t( )1  (Ω2(t) and Ω′ t( )2 ) are well matched with each other. Therefore, we may use 
Ω′ t( )1  Ω′ t( ( ))2  instead of Ω1(t) (Ω2(t)) to obtain the same effect. To test the effectiveness of the approximation by 
using Ω′ t( )1  Ω′ t( ( ))2  instead of Ω1(t) (Ω2(t)), a simulation for the varies of populations of states |1〉​, |2〉​ and |3〉​ 
when the Rydberg atom is driven by laser pulses with Rabi frequencies Ω1(t) and Ω2(t) with parameters μ =​ π/4 
and A =​ 1, is shown in Fig. 3(a). We can see from Fig. 3(a) that the evolution is consonant with the expectation 
coming from the evolution operator in Eq. (12). As a comparison, a simulation for the varies of populations of 
states |1〉​, |2〉​ and |3〉​ when the Rydberg atom is driven by laser pulses with Rabi frequencies Ω′​1(t) and Ω′​2(t) with 
parameters μ =​ π/4 and A =​ 1, is shown in Fig. 3(b). As shown in Fig. 3(a,b), we can conclude that the 
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approximation by using Ω′ t( )1  Ω′ t( ( ))2  instead of Ω1(t) (Ω2(t)) is effective here. In addition, seen from Fig. 3, the 
population of intermediate state |2〉​ reaches a peak value about 0.72, because the system does not evolve along the 
dark state of the Hamiltonian of the system but a nonadiabatic shortcut, which greatly reduces the total evolution 
time.

Since most of the parameters are hard to faultlessly achieve in experiment, that require us to investigate the 
variations in the parameters caused by the experimental imperfection. We would like to discuss the fidelity  
F =​ |〈​Ψ​tar|φ1(T)〉​|2 with the deviations δT, δΩ′1 and δΩ′2 of total interaction time T, Rabi frequencies of laser pulses 
Ω′1 and Ω′2 being considered.

Firstly, we plot F versus δΩ′ Ω′/1 1 and δΩ′ Ω′/2 2 with parameters μ =​ π/4 and A =​ 1 in Fig. 4 (a). Moreover, we 
calculate the exact values of the fidelities F at some boundary points of Fig. 4 (a) and show the results in Table 1. 
According to Table 1 and Fig. 4 (a), we find that the final fidelity F is still higher than 0.9822 even when the devi-
ation δ δΩ′ Ω′ = Ω′ Ω′ =/ / 10%1 1 2 2 . Therefore, the realizing of the population transfer for a Rydberg atom given in 
this paper is robust against deviations δΩ′1 and δΩ′2 of Rabi frequencies Ω′1 and Ω′2 for laser pulses.

Secondly, we plot F versus δΩ′ Ω′/1 1 and δT/T with parameters μ =​ π/4 and A =​ 1 in Fig. 4 (b). Moreover, δΩ′ Ω′/1 1 
and δT/T with corresponding fidelity F are shown in Table 2. Seen from Table 2 and Fig. 4 (b), we obtain that the 
fidelity F is still high than 0.9729 even when the deviation δ δΩ′ Ω′ = =T T/ / 10%1 1 . So, the scheme is insensitive 
to deviations δΩ′1 and δT.

Thirdly, F versus δΩ′ Ω′/2 2 and δT/T with parameters μ =​ π/4 and A =​ 1 is plotted in Fig. 4 (c). And δΩ′ Ω′/2 2 and 
δT/T with corresponding fidelity F are given in Table 3. As indicated in Table 3 and Fig. 4 (c), the fidelity F is still 
high than 0.9588 even when the deviation δ δΩ′ Ω′ = =T T/ / 10%2 2 . Moreover, when deviations of δΩ′2 and δT 
have the different signs (one negative and one positive), the fidelity F can still keep in a high level. Hence, we can 
say the scheme suffers little from deviations δΩ′2 and δT.

Fourthly, we discuss the fidelity F when δΩ′1, δΩ′2 and δT are all considered. Some samples are given in Table 4. 
Table 4 shows that the fidelity F is still with a high level when the three deviations δΩ′1, δΩ′2 and δT are all consid-
ered. Moreover, in the worst case, when δ δ δΩ′ Ω′ = Ω′ Ω′ = = −T T/ / / 10%1 1 2 2 , the fidelity F is still higher than 
0.9469.

According to the analysis above, we summarize that, the scheme to realize the population transfer for a 
Rydberg atom is robust against operational imperfection.

To prove that the present scheme can be used to speed up the system’s evolution and construct the shortcut to 
adiabatic passages, we make a comparison between the present scheme and the fractional stimulated Raman 
adiabatic passage (STIRAP) method via dark state Ψ = Ω − Ω

Ω +Ω
t t t( ) ( ( ) 1 ( ) 3 )dark

t t
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( ) ( )
23 12

12
2

23
2

 of 

Hamiltonian shown in Eq. (10). According to STIRAP method, by setting boundary condition
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one can design the Rabi frequencies Ω12(t) and Ω23(t) as following
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c
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12 0
0

2

23 0
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2
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2

where Ω0 denotes the pulse amplitude, tc and t0 are some related parameters. Setting tc =​ 0.19tf and t0 =​ 0.14tf, Rabi 
frequencies Ω12(t) and Ω23(t) can well satisfy the boundary condition in Eq. (19). We plot Fig. 5 to show the 

t/T
(a)

t/T
(b)

Figure 2.  (a) Ω1T and Ω′T1  versus t/T with μ =​ π/4. (b) Ω2T and Ω2′T versus t/T with μ =​ π/4 and A =​ 1.
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fidelity F when the Rydberg atom is driven by laser pulses with Rabi frequencies Ω12(t) and Ω23(t) shown in 
Eq. (20) versus Ω0T. And a series of samples of Ω0T and corresponding fidelity F are shown in Table 5. From Fig. 5 
and Table 5, we can see that, to meet the adiabatic condition and obtain a relatively high fidelity by using STIRAP 
method, one should take Ω0T about 30. Moreover, when Ω0T =​ 3.154, the adiabatic condition is badly violated 
and the fidelity is only 0.5538 for STIRAP method. But for the present scheme, we can obtain F =​ 1.000 while 
Ω′ ≤ .T 3 1541  and Ω′ ≤ .T 2 962 . Therefore, the evolution speed with the present scheme is faster a lot comparing 
with that using STIRAP method. It confirms that the present scheme can be used to speed up the system’s evolu-
tion and construct the shortcut to adiabatic passages. Therefore, we conclude that the present scheme can con-
struct a Hamiltonian with both fast evolution process and robustness against operational imperfection.

(b) t/Tt/T

Populations

(a)

Populations

Figure 3.  (a) Populations of states |1〉​, |2〉​ and |3〉​ versus t/T when the Rydberg atom is driven by laser pulses 
with Rabi frequencies Ω1 and Ω2. (b) Populations of states |1〉​, |2〉​ and |3〉​ versus t/T when the Rydberg atom is 
driven by laser pulses with Rabi frequencies Ω′1 and Ω′2. Here we set the parameters μ =​ π/4 and A =​ 1.

(a)

(c)

(b)

Figure 4.  (a) Fidelity F of the target state versus δΩ′ Ω′/1 1 and δΩ′ Ω′/2 2. (b) Fidelity F of the target state versus 
δΩ′ Ω′/1 1 and δT/T. (c) Fidelity F of the target state versus δΩ′ Ω′/2 2 and δT/T. Here we set the parameters μ =​ π/4 
and A =​ 1.
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In the end, we discuss the fidelity F is robust to the decoherence mechanisms. In this scheme, the atomic 
spontaneous emission plays the major role. The evolution of the system can be described by a master equation in 
Lindblad form as following

∑ρ ρ ρ ρ ρ= +






− +








† † †i H L L L L L L[ , ] 1
2

( ) ,
(21)I

l
l l l l l l

δΩ′ Ω′/1 1 δΩ′ Ω′/2 2 F

10% 10% 0.9835

10% 0 0.9951

0 10% 0.9916

0 0 1.0000

−​10% 0 0.9938

0 −​10% 0.9902

−​10% −​10% 0.9822

10% −​10% 0.9875

−​10% 10% 0.9887

Table 1.   δΩ′ Ω′/1 1 and δΩ′ Ω′/2 2 with corresponding fidelity F.

δΩ′ Ω′/1 1 δT/T F

10% 10% 0.9855

10% 0 0.9951

0 10% 0.9942

0 0 1.0000

−​10% 0 0.9938

0 −​10% 0.9855

−​10% −​10% 0.9729

10% −​10% 0.9879

−​10% 10% 0.9915

Table 2.   δΩ′ Ω′/1 1 and δT/T with corresponding fidelity F.

δΩ′ Ω′/2 2 δT/T F

10% 10% 0.9688

10% 0 0.9916

0 10% 0.9942

0 0 1.0000

−​10% 0 0.9902

0 −​10% 0.9855

−​10% −​10% 0.9588

10% −​10% 0.9974

−​10% 10% 0.9994

Table 3.   δΩ′2/Ω′2 and δT/T with corresponding fidelity F.

δΩ′ Ω′/1 1 δΩ′ Ω′/2 2 δT/T F

−​10% −​10% −​10% 0.9469

10% −​10% −​10% 0.9607

−​10% 10% −​10% 0.9853

−​10% −​10% 10% 0.9926

10% 10% −​10% 0.9990

10% −​10% 10% 0.9956

−​10% 10% 10% 0.9713

10% 10% 10% 0.9531

Table 4.   δΩ′ Ω′/1 1, δΩ′ Ω′/2 2 and δT/T with corresponding fidelity F.
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where, Ll is the Lindblad operator. There are two Lindblad operators here. They are = ΓL 1 21 1  and 
= ΓL 2 32 2 , in which, Γ​1 and Γ​2 are the atomic spontaneous emission coefficients for |2〉​ →​ |1〉​ and |3〉​ →​ |2〉, 

respectively. Fidelity F versus Γ​1T and Γ​2T is plotted in Fig. 6. From Fig. 6, we can see that the fidelity F decreases 
when Γ​1 and Γ​2 increase. When in the case of strong coupling Ω Ω Γ Γ, ,1 2 1 2, the influence caused by atomic 
spontaneous emission is little. For example, if Γ​1 =​ Γ​2 =​ 0.01 ×​ 3.154/T, the fidelity is 0.9901. Even when Γ​1 =​  
Γ​2 =​ 0.1 ×​ 3.154/T, the fidelity is 0.9101, still higher than 0.9. With current experimental technology, it is easy to 
obtain a laser pulse with Rabi frequency much larger than the atomic spontaneous emission coefficients. 
Therefore, the population transfer for a Rydberg atom with the reverse engineering scheme given here can be 
robustly realized.

Conclusion
In conclusion, we have proposed an effective and flexible scheme for reverse engineering of a Hamiltonian by 
designing the evolution operators. Different from TQD, the present scheme is focus on only one or parts of mov-
ing states in a D-dimension (D ≥​ 3) system. The numerical simulation has indicated that the present scheme not 
only contains the results of TQD, but also has more free parameters, which make this scheme more flexible. 

F

Figure 5.  Fidelity F of the target state versus Ω0T with the STIRAP method. 

Ω0T F

3.154 0.5538

5 0.6263

10 0.8516

15 0.9604

20 0.9898

25 0.9960

30 0.9992

Table 5.   Ω0T for STIRAP and corresponding fidelity F.

F

Figure 6.  Fidelity F of the target state versus Γ1/Ω0 and Γ2/Ω0. 
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Moreover, the new free parameters may help to eliminate the terms of Hamiltonian which are hard to be realized 
practically. Furthermore, owing to suitable choice of boundary conditions for parameters, by making a curve fit-
ting, the complex Rabi frequencies Ω1 and Ω2 of laser pulses can be respective superseded by Rabi frequencies Ω′1 
and Ω′2 expressed by the superpositions of the Gaussian or trigonometric functions, which can be realized with 
current experimental technology. The example given in Sec. III has shown that the present scheme can design a 
Hamiltonian to realize the population transfer for a Rydberg atom successfully and the numerical simulation has 
shown that the scheme is fast and robustness against the operational imperfection and the decoherence mecha-
nisms. Therefore, the present scheme may be used to construct a Hamiltonian which can be realized in 
experiments.
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