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Lycii Fructus, a solanaceous drug, is widely used as functional foods and in Traditional Chi-

nese Medicine. Samples collected from different regions of China have been found to be not

identical in chemical compositions whichmight affect the biological activities. Althoughmany

chromatographic and spectrometric methods have been reported to determine the concen-

tration of betaine and other bioactive amino acids, disturbance resulted from other polar

substances with low UV-absorbance and expensive mass facilities reduced the applicability of

these techniques. In the present study, the strong cation exchange solid phase extraction

procedure incorporated with 1H NMR was successfully developed as a rapid and reliable

method that can simultaneously determine betaine, citric acid, threonine, alanine, and proline

in various Lycii Fructus. In addition, ERETIC 2 method based on PULCON principle was also

applied and compared with conventional method. This feasible and practical method offers a

very powerful tool for the quality control of commercial Lycii Fructus from different sources.

Copyright © 2018, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan
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1. Introduction

Wolfberry fruits, a solanaceous origin, also known as Lycii

Fructus are rich in polysaccharides, alkaloids, carotenoids,

fatty acids, essential trace elements, and amino acids and

have been used for centuries in Traditional Chinese Medicine

to nourish the liver and kidney and protect the eyesight. Lycii

Fructus had been demonstrated to display various biological

functions, such as anti-inflammatory and hepatoprotective

activities, and the prevention of tumor growth [1e3]. Accord-

ing to Taiwan Herbal Pharmacopeia, Lycium barbarum L. and L.

chinenseMill. fromNingxia province of China are the authentic

medicinal herbs of Lycii Fructus [4]. Different sources of Lycii

Fructus had been reported to show different chemical com-

positions which might affect the biological activities. There-

fore, establishment of composition fingerprint profile of Lycii

Fructus for quality control is warranted. Currently, the qua-

ternary ammonium cation betaine has been used as one of the

biomarkers for Lycii Fructus identification and quality control

of commercial products [1]. Betaine is one of the major com-

ponents in the fruits of Lycium species and exhibits anti-

inflammatory, hepatoprotective, and anti-tumor activities

[5e7]. Although high performance liquid chromatography

(HPLC) [8,9] had been reported to determine the components

of Lycii Fructus, betaine was difficult to be distinguished from

other amino acids or citric acid due to lack of UV-

chromophore. In addition, liquid chromatographyemass

spectrometry (LC-MS) method [10e12] which can solve the

detection limit of low UV-absorbance substances still requires

expensive mass facilities and tedious pretreatment proced-

ures. High-resolution nuclear magnetic resonance (NMR)

spectroscopy has become an increasingly important quanti-

tative tool, providing high specificity and sensitivity for

detecting natural products, even those without UV chromo-

phore [13e17]. In our previous studies, 1H NMR spectroscopy

was successfully used to quantify bioactive constituents from

many natural products, including Coptidis Rhizoma, Codonopsis

Radix, Ginkgo Folium, Phellodendri Cortex, and Nothapodytes foe-

tida [18e22]. Herein we report a rapid quantitative 1H NMR

method that can simultaneously quantify betaine, citric acid,

and other amino acids with low UV-absorbance such as

threonine, alanine, and proline in Lycii Fructus, respectively.

To quantify these chargedmolecules with low UV-absorbance

in Lycii Fructus, the strong cation exchange solid phase

extraction (SCX-SPE) procedure was utilized to trap the

desired molecules in the aqueous extracts of Lycium fruits

from various sources and then the 1H NMR method was per-

formed.With the aid of the developedmethod, the quantity of

bioactive constituents in the commercial products of Lycii

Fructus could be analyzed quickly and conveniently.
2. Materials and methods

2.1. Chemicals and materials

Deuterium oxide (D2O, 99.98%), maleic acid, and succinic acid

were obtained from SigmaeAldrich (Milwaukee, WI, US). The

reference compounds (betaine, citric acid, proline, threonine,
and alanine) were purchased from Merck (Darmstadt, Ger-

many). The ultrapure water (H2O) was prepared with Milli-Q

water purification system (Millipore, Bedford, MA, US). The

analytical cartridge column was using Thermo Fisher Scien-

tific (Waltham, MA, US) HyperSep SCX strong cation

exchanger SPE columns (2000 mg). Lycium fruit samples 1e23

and 27e42 were purchased from the markets in China. Sam-

ples 24e26 were collected in Shanxi province of China in Oct,

2009. All samples were purchased and collected by Dr. Yong

Peng. The materials were identified by Prof. C. S. Kuoh

(Department of Life Science, National Cheng Kung University),

and voucher specimen (TSWu 20100708-01-42) have been

deposited in the Department of Chemistry, National Cheng

Kung University, Tainan, Taiwan.

2.2. Sample preparation

Lycium fruit samples were air-dried at room temperature for

three days and pulverized. Five grams of samples was

extracted three timeswith 50mLH2O by sonication for 30min.

The afforded solution was combined and filtered through a

0.45 mmmembrane filter. The aqueous filtrate was transferred

to a 250 mL volumetric flask and diluted to 250 mL with H2O.

The strong cation exchanger SPE column was activated with

8mL 0.1 N acetic acid andwashedwith 200mLMilli-Qwater to

obtain pH 7. Then, 25 mL of diluted solution was passed

through the SPE cartridge at a flow rate of 4 mL/min, and the

cartridge was then washed with 30 mL H2O. The internal

standard 0.5 mg maleic acid was added to the elution solvent,

and the solvent was evaporated to dryness in vacuo to afford

LYW. LYW was dissolved in 0.6 mL of D2O for NMR analysis.

The SPE cartridge was then washed with 25 mL 5% ammonia

water. The internal standard 0.5 mg succinic acid was added

to the elution buffer and evaporated to dryness in vacuo to

obtain LYN. LYN was also dissolved in 0.6 mL of D2O for NMR

analysis.

2.3. 1H NMR spectrometric parameters

1H NMR spectra were recorded on a Bruker AVANCE Ⅲ

400 MHz spectrometer in D2O solvent systems, and all

chemical shifts are reported in parts per million (ppm, d). For

each sample, 100 scans were recorded with the following

parameters: spectrum resolution 0.39 Hz/point; spectral

width, 6393.862 Hz; A 90� pulse was used to obtain the

maximum sensitivity; relaxation delay, 20 s; and acquisition

time, 2.56 s. For quantitation the peak area was used, and the

start and end points for the integration of each peak were

selected manually. In addition, quantitative determination

(qNMR) of targeted molecules in reference materials has

been established using the ERETIC 2 methodology (elec-

tronic reference to access in vivo concentrations 2) based on

the PULCON principle (pulse length based concentration

determination). The NMR parameters for ERETIC 2 are the

same as mentioned above. Bruker TopSpin version 3.0 soft-

ware was used.

The amounts of citric acid were calculated by the following

formula:

fð0:5 mg=116Þ � ½ðA1� 2Þ=N� �MW

https://doi.org/10.1016/j.jfda.2018.01.001
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The amounts of betaine, threonine, alanine, and proline

were calculated by the following formula:

fð0:5 mg=192Þ � ½ðA2� 4Þ=N� �MW

A1: the area ratio of target signal to internal standard

maleic acid;

A2: the area ratio of target signal to internal standard

succinic acid;

N: the number of proton atom in target signal;
Fig. 1 e The structures of analytical co

Fig. 2 e 1H NMR spectra of (a) internal standard (maleic acid) an

betaine, threonine, and alanine. All compounds were detected
MW: molecular weight (maleic acid (IS): MW ¼ 116; citric

acid: MW ¼ 192; succinic acid (IS): MW ¼ 118; threonine:

MW ¼ 119; alanine: MW ¼ 89; betaine: MW ¼ 117; proline:

MW ¼ 115)

2.4. Recovery test and limit of detection

Known amounts of pure betaine and citric acid were spiked to

samples to evaluate the% recovery. The recovery samples and

a blank recovery sample were processed and analyzed as

described above.
mpounds and internal standards.

d citric acid (b) internal standard (succinic acid), proline,

in D2O system.

https://doi.org/10.1016/j.jfda.2018.01.001
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3. Results and discussion

The structures of the target compounds including betaine,

citric acid, proline, threonine, alanine, and internal standards

including maleic acid, and succinic acid, are shown in Fig. 1.

These target compounds were effectively extracted with

water by sonication and then collected through SCX-SPE.

Moreover, D2O (residue solvent peak dH 4.75 ppm) was used

as NMR solvents to effectively dissolve all the target com-

pounds. The analysis of their respective 1H NMR spectra

revealed that the signals of betaine (d 3.21, 9H), citric acid (d

2.81, 2.99, 2H), proline (d 4.08, 1H), threonine (d 1.28, 3H), and

alanine (d 1.43, 3H) werewell separated from the other signals,

and thus these signals were selected as the target peaks for
Table 1 e Contents of betaine, citric acid, threonine, alanine, a

NO. Collection place Betaine Citric a

1 Ningxia, China 0.44 (1.56) 1.17 (0.

2 Ningxia, China 0.65 (0.11) 1.27 (0.

3 Ningxia, China 0.59 (1.78) 2.15 (6.

4 Ningxia, China 0.21 (4.15) 1.42 (0.

5 Ningxia, China 0.84 (2.44) 2.51 (2.

6 Ningxia, China 0.70 (1.01) 1.59 (1.

7 Nei Mongol, China 0.92 (7.35) 1.83 (1.

8 Nei Mongol, China 0.67 (2.52) 1.31 (0.

9 Nei Mongol, China 0.81 (1.85) 1.07 (0.

10 Nei Mongol, China 0.48 (0.51) 1.07 (0.

11 Qinghai, China 0.50 (8.64) 1.14 (4.

12 Qinghai, China 0.61 (4.19) 0.89 (0.

13 Qinghai, China 0.59 (0.34) 1.41 (0.

14 Qinghai, China 0.52 (1.49) 0.89 (0.

15 Qinghai, China 0.94 (0.73) 1.41 (1.

16 Gansu, China 0.61 (8.48) 1.31 (3.

17 Gansu, China 0.70 (2.34) 1.08 (1.

18 Gansu, China 0.59 (3.42) 1.40 (0.

19 Gansu, China 1.04 (1.50) 0.79 (1.

20 Xinjiang, China 1.01 (3.94) 1.24 (1.

21 Xinjiang, China 0.74 (1.80) 1.33 (1.

22 Xinjiang, China 0.99 (3.47) 0.81 (5.

23 Shanxi, China 1.09 (5.95) 0.89 (4.

24b Shanxi, China 0.77 (8.41) 1.95 (0.

25b Shanxi, China 0.80 (0.58) 1.95 (0.

26b Shanxi, China 0.46 (1.42) 1.25 (0.

27 Shaanxi, China 0.62 (2.42) 1.16 (0.

28 Sichuan, China 0.38 (2.80) 1.59 (1.

29 Hebei, China 0.51 (6.26) 0.94 (4.

30 Beijing, China 0.77 (2.03) 1.50 (1.

31 Beijing, China 0.88 (1.93) 1.60 (1.

32 Beijing, China 0.62 (2.47) 1.32 (3.

33 Beijing, China 0.95 (3.13) 2.10 (1.

34 Beijing, China 0.77 (6.29) 1.83 (0.

35 Beijing, China 1.17 (3.91) 1.77 (0.

36 Beijing, China 0.54 (1.21) 1.25 (1.

37 Beijing, China 0.78 (1.55) 0.98 (1.

38 Beijing, China 0.81 (2.60) 1.25 (1.

39 Beijing, China 0.83 (8.06) 1.28 (1.

40 Beijing, China 0.64 (5.84) 1.32 (2.

41 Beijing, China 0.57 (5.74) 1.26 (4.

42 Beijing, China 0.77 (2.67) 1.06 (1.

a Recorded on % (w/w) of Lycium species.
b Samples 24e26 were L. chinense samples, and others were L. barbarum.
c % RSD, all experiments were based on triplicate measurements.
quantitation (Fig. 2). In addition, maleic acid (d 6.36, 2H) and

succinic acid (d 2.37, 4H) in D2O solvent systemwere chosen as

the internal standards in the samples except those detected

by ERETIC 2 and the signals of internal standards were also

well separated from the target signals.

The calibration curve for each compound using the ratio of

the peak area of the compound and the internal standards,

were determined in the range of 0.0625e2.0mg/mL to evaluate

the accuracy of this method at different concentrations.

Betaine, citric acid, proline, threonine, and alaninewere found

to show good linearity with r2 higher than 0.99 (0.9961, 0.9979,

0.9902, 0.9955 and 0.9956, respectively). In comparison, the

previously reported chromatographic method [7,8] only

showed linearity at the concentrations of 400e2000 ppm.
nd proline in 42 samples from the fruits of Lycium speciesa.

cid Threonine Alanine Proline

41)c 0.03 (6.67) 0.15 (0.34) 0.61 (4.14)

19) 0.03 (3.94) 0.19 (1.01) 0.71 (1.12)

43) 0.01 (3.84) 0.03 (6.14) 0.41 (2.08)

79) 0.06 (6.59) 0.06 (6.60) 0.12 (2.43)

00) e 0.20 (1.37) 0.39 (7.36)

01) 0.02 (1.01) 0.25 (1.01) 0.44 (1.01)

44) 0.01 (6.40) 0.16 (3.90) 0.40 (6.14)

80) 0.02 (7.33) 0.25 (3.55) 0.32 (6.89)

77) 0.03 (4.51) 0.15 (2.05) 0.65 (1.22)

10) 0.02 (1.21) 0.10 (1.12) 0.46 (7.56)

52) 0.03 (5.58) 0.15 (8.16) 0.71 (8.80)

11) 0.01 (5.55) 0.11 (3.98) 0.46 (2.96)

21) 0.03 (6.53) 0.22 (1.08) 0.85 (0.86)

53) 0.01 (3.65) 0.13 (2.09) 0.85 (2.20)

46) 0.04 (2.81) 0.15 (0.99) 0.92 (1.65)

07) 0.03 (0.87) 0.15 (3.43) 0.49 (8.47)

26) 0.02 (4.80) 0.14 (0.66) 0.18 (6.77)

41) 0.02 (3.01) 0.12 (4.29) 0.17 (7.90)

02) 0.04 (7.80) 0.20 (3.85) 0.67 (3.04)

68) 0.01 (8.30) 0.20 (3.61) 0.21 (2.43)

96) 0.01 (0.71) 0.14 (1.58) 0.28 (4.66)

16) 0.04 (4.94) 0.22 (5.96) 0.75 (7.22)

63) 0.02 (7.98) 0.21 (2.75) 0.47 (5.46)

66) 0.02 (7.14) 0.06 (6.23) 0.05 (3.17)

45) 0.04 (3.72) 0.12 (3.91) 0.03 (4.26)

37) 0.04 (6.42) 0.08 (1.43) e

57) 0.01 (5.94) 0.13 (7.06) 0.21 (8.06)

47) 0.04 (8.03) 0.08 (1.19) 0.06 (7.25)

98) 0.02 (6.79) 0.06 (2.53) 0.06 (7.36)

15) 0.01 (3.74) 0.12 (3.59) 0.21 (5.13)

34) 0.01 (7.59) 0.16 (2.48) 0.27 (8.76)

62) 0.01 (7.86) 0.09 (3.27) 0.04 (8.66)

48) 0.01 (4.29) 0.17 (2.53) 0.17 (7.55)

43) 0.02 (7.17) 0.14 (2.19) 0.15 (8.67)

58) 0.02 (5.83) 0.25 (2.33) 0.28 (7.26)

61) 0.01 (6.29) 0.14 (1.16) 0.29 (7.98)

57) 0.02 (4.08) 0.19 (3.16) 0.11 (3.42)

11) 0.03 (4.63) 0.24 (5.73) 0.58 (5.03)

45) 0.05 (6.78) 0.27 (6.17) 1.51 (5.80)

25) 0.01 (2.46) 0.15 (7.74) 0.48 (7.99)

37) 0.01 (5.55) 0.13 (7.27) 0.32 (1.12)

85) e 0.14 (1.20) 0.09 (6.70)
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Relative recovery tests were conducted using three

different quantities of the standards. The average relative

recoveries were calculated as ratios by spiking known

amounts of pure betaine and citric acid, and the experiments

were performed in triplicate. The average relative recoveries

of betaine and citric acid were determined as 99.34 ± 4.1% and

99.57 ± 3.5%, respectively. These data indicated that the
Fig. 3 e 1H NMR spectra of LYW from samples 3, 10, 15, 17, 22e2

(d 2.81, 2H).
reproducibility and recovery of the analysis process were

acceptable. The precision and recovery examinations all dis-

played that the established 1H NMR methods were valid for

the quantitative determination of the target compounds.

In addition, the Lycium fruit samples were only extracted,

passed through SPE cartridge and re-dissolved in D2O for

NMR analysis. The simple pre-treatment steps and brief
3, 25e29, 37, and 39. IS: maleic acid (d 6.36, 2H). 1: citric acid

https://doi.org/10.1016/j.jfda.2018.01.001
https://doi.org/10.1016/j.jfda.2018.01.001


Fig. 4 e 1H NMR spectra of LYN from samples 3, 10, 15, 17, 22e23, 25e29, 37, and 39. IS: succinic acid (d 2.37, 4H); 1: proline (d

4.08, 1H); 2: betaine (d 3.21, 9H); 3: threonine (d 1.28, 3H); 4: alanine (d 1.43, 3H).

Table 2 e Contents of betaine, citric acid, threonine, alanine, and proline in samples 10 and 13 by conventional (adding
internal standards) method and NMR Digital ERETIC.a

Samples no. Betaine Citric acid Threonine Alanine Proline

10c 0.48 (0.50)b 1.14 (0.27) 0.02 (1.53) 0.10 (1.05) 0.46 (7.52)

13c 0.59 (0.36) 1.42 (0.09) 0.03 (6.10) 0.22 (1.11) 0.86 (0.76)

10d 0.48 (0.51) 1.07 (0.10) 0.02 (1.21) 0.10 (1.12) 0.46 (7.56)

13d 0.59 (0.34) 1.41 (0.21) 0.03 (6.53) 0.22 (1.08) 0.85 (0.86)

a Recorded on % (w/w) of Lycium species.
b % RSD, all experiments were based on triplicate measurement.
c Analysis by Digital ERETIC 2.
d Analysis by addition of internal stands.

j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 6 ( 2 0 1 8 ) 1 1 0 5e1 1 1 21110
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experiment time also indicated this method as a feasible and

practical tool for quality control and species authentication.

To demonstrate the practicality of the developed 1H NMR

method, 39 commercial L. barbarum products purchased from

different places in China and 3 wild samples of Lycium chinense

collected from Shanxi were analyzed using 1H NMR, as

reported in Table 1. Five grams of collected samples was

extracted with water, passed through a strong cation

exchanger SPE column and the cartridge was then washed

with water. Maleic acid (0.5 mg) was added to the solution and

the solvent was evaporated to dryness in vacuo to afford LYW

fraction. The SPE cartridge was then washed with 25 mL 5%

ammonia water. The internal standard 0.5 mg succinic acid

was added to the elution buffer and evaporated to dryness in

vacuo to obtain LYN fraction. All samples were analyzed in

triplicates to determine the contents of five target compounds,

and the analytical 1H NMR spectra of LYW and LYN from

samples 3, 10, 15, 17, 22, 23, 25e29, 37 and 39 were shown in

Figs. 3 and 4, respectively. The results obtained by the 1H NMR

method were found to be highly accurate and reproducible for

determining the target compounds with relative standard

deviations (RSD) � 8.80%. The percentages of betaine of 42

Lycium fruit samples were determined within the range be-

tween 0.21 and 1.17% (Table 1). Among them, sample 35 con-

tained the highest amount of betaine.

The advantages of the developed analytical method are

discussed as follows. The SCX-SPE pre-processingmethod can

collect charged compounds and separate out other interfering

compounds. 1H NMR can record compounds that are poorly

detected by measuring UV absorbance, including betaine and

amino acids. Moreover, 1H NMR method provides a quantita-

tive method of analyzing Lycii Fructus that does not require

preparation of compound derivatives, control of pH values, or

addition of NMR shifting reagents. In addition, several com-

pounds can be simultaneously quantitated in a highly specific

quality analysis. The analytical solvent system uses only

water without any other organic solvents, which is very safe,

convenient, uncomplicated, and green.

ERETIC 2 based on PULCON (Pulse Length-based Concen-

tration determination) principle is a new fully automated

concentration determination technology based on NMR

without addition of any internal standards [23]. A known

compound of interest is detected and defined as an ERETIC

reference. The analysis is performed using the same param-

eters. Then the amounts of target compounds are determined

by software processing. For example, samples 10 and 13 were

analyzed by ERETIC 2 software and compared to the original

method based on the addition of the internal standard to

samples. The results for the contents of betaine, citric acid,

proline, threonine, and alanine between the two methods

were very similar (Table 2), indicating that the NMR ERETIC 2

method can be conveniently applied to the quantification of

bioactive compounds in foods, plants, and medicines.

The developed 1H NMR method was successfully applied

for the rapid and reliable simultaneous determination of

betaine, citric acid, threonine, alanine, and proline in various

sources of Lycium fruits as well as those in commercial prod-

ucts. It offers a short analysis time and can serve as a useful

tool for the routine analysis of betaine and four other com-

pounds. Furthermore, application of the ERETIC 2 method is
more conveniently for quality control. Therefore, the ERETIC 2
1H NMR method is highly applicable in the quantitative

analysis of bioactive principles in the various samples of Lycii

Fructus.
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