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Abstract: In this paper, an adaptive collaborative Gaussian Mixture Probability Hypothesis Density
(ACo-GMPHD) filter is proposed for multi-target tracking with automatic track extraction. Based on
the evolutionary difference between the persistent targets and the birth targets, the measurements
are adaptively partitioned into two parts, persistent and birth measurement sets, for updating
the persistent and birth target Probability Hypothesis Density, respectively. Furthermore,
the collaboration mechanism of multiple probability hypothesis density (PHDs) is established,
where tracks can be automatically extracted. Simulation results reveal that the proposed filter yields
considerable computational savings in processing requirements and significant improvement in
tracking accuracy.
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1. Introduction

In multi-target tracking (MTT) in clutters, the correspondence between the targets and the
measurements is unknown, while the target number is unknown and even time-varying. The objective
of MTT is to recursively estimate the target number and target states from a sequence of noisy and
cluttered measurement sets [1,2].

One common approach for multi-target tracking is the combination of state estimation and data
association, along with track initialization and termination [3]. In fact, data association and state
estimation are coupled issues, i.e., the association risk triggers the measurement misuse and the
estimation error increases the association risk. In other words, their direct combination above is in
principle not suitable to the high uncertainty case; for example, dense targets/dense clutter [4].

Another approach is to apply random finite sets (RFSs) to represent the collection of individual
targets and measurements, and hence recast the MTT problem as the Bayesian estimation problem
based on finite set statistics so as to avoid data association risk [4]. However, the propagation of the
multi-target posterior probability density function (PDF) is computationally intensive, which stems
from the high-dimension integrations in multi-target state space. Mahler [5] proposed the first-order
moment called the probability hypothesis density (PHD) of the PDF of the random set of state vectors.
Vo and Ma [6] proved that the PHD surface is a Gaussian mixture (GM) in both the linear and Gaussian
cases. Clark and Vo [7] analyzed the convergence property of the Gaussian Mixture Probability
Hypothesis Density (GMPHD) filter. Up to now, PHD-related applications have been extended to
many fields including visual target tracking [8], maneuvering target tracking [9,10], ground target
tracking [11], extended target tracking [12,13], and sensor management [14].
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However, there are still two important but open issues about PHD:
The first is that the computational burden is still too intensive in many actual applications,

especially in the case of dense clutters and intensive targets. One possible solution is to discern the
measurement originality based on tracking gating [15,16]. Nevertheless, such a decision still faces
mistake risks.

The second issue is that additional track extraction is needed because the standard PHD only
outputs the track points without the corresponding track identities. But the presented track extraction
algorithm [17,18] is too complex to implement.

In this paper, we present an adaptive collaborative GMPHD (ACo-GMPHD) filter with
the capability for automatic track extraction for fast multi-target tracking in dense clutter.
In the ACo-GMPHD, the persistent and birth target PHDs are updated respectively based on the
corresponding measurement subsets, instead of based on all measurements, so that the computational
complexity is expected to be reduced. Meanwhile, the collaboration mechanism among these PHDs
regarding measurement utilization is adaptively established to avoid decision risks triggered by
measurement partitions. In addition, permanent tracks and temporary tracks can be automatically
extracted from the persistent and birth target PHDs. Simulations show that the proposed ACo-GMPHD
greatly reduces the computational cost and significantly improves the track extraction, compared with
the well-known GMPHD filter.

The remainder of this work is organized as follows. Section 2 presents the MTT problem and
briefly introduces the standard PHD filter. The ACo-GMPHD is proposed in Section 3, and compared
with the GMPHD filter via simulation in Section 4. Finally, Section 5 concludes this paper.

2. Problem Formulation

2.1. Additional Gaussian Noise Model

In an MTT scenario, targets appear and disappear randomly. A new target appears in the
surveillance region either by spontaneous birth or by spawning from an existing target. The number
of the newly-born targets is assumed to be Poisson-distribution. A target may disappear at the next
instant. Here, pS,k(xk−1) represents the probability that a target corresponding to the state xk−1 at k− 1
survives up to k. For a target in the surveillance region, its movement is depicted by an additional
Gaussian noise model:

pk|k−1 (x|ζ) = N (x; f (ζ), Qk−1) (1)

define N (·; m, P) is a Gaussian density function with mean m and covariance P, so here, m = f (ξ),
P = Qk−1; One corresponding measurement will be obtained according to the following additional
Gaussian noise model:

pk(z|x) = N (z; h(x), Rk) (2)

where f is the state mapping for k− 1 to k; Qk−1 is the covariance of process noise; h is the mapping
from the state to the measurement; and Rk is the covariance of measurement noise.

Denote xk,i as the i-th target state, zk,j as the j-th measurement, and Nk and Mk as the target
number and measurement number, respectively. Now the multi-target states and observation sensor
measurements are represented by the random finite sets (RFS) Xk =

{
xk,1, . . . , xk,Nk

}
∈ F (X ) and

Zk =
{

zk,1, . . . , zk,Mk

}
∈ F (Z), respectively. Here, F (X ) and F (Z) are the space of all finite subsets

of state space X and measurement space Z , respectively. The RFS of the target states is as stated in [19]:

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1(ζ)

⋃ Bk (3)

and the RFS of sensor measurements is:
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Zk =

 ⋃
x∈Xk

Θk(x)

⋃Ck (4)

where
⋃

ζ∈Xk−1

Sk|k−1(ζ) is the survival target RFS inherited from the RFS Xk−1; Bk is the birth target

RFS;
⋃

x∈Xk

Θk(x) is the RFS of the detected target-originated measurements; and Ck is the RFS of clutter.

2.2. The PHD Filter

In the PHD filter, the following common assumptions [6] are made:

A.1: each target state evolves and generates one measurement independently;
A.2: any clutter is Poisson distributed and independent of target-originated measurements;
A.3: the predicted multi-target RFS is Poisson distributed and independent.

Given the posterior intensity Dk−1(x), the intensity function Dk|k−1(x) is:

Dk|k−1(x) = γk|k−1(x) +
w

ps,k(τ) fk|k−1(x|τ)Dk−1(τ)dτ (5)

and the posterior intensity Dk(x) is:

Dk(x) = (1− pD,k(x))Dk|k−1(x) + ∑
z∈Zk

pD,k(x)gk (z|x) Dk|k−1(x)
κk(z) +

∫
pD,k(τ)gk (z|τ) Dk|k−1(τ)dτ

(6)

where pD,k(x) is the detection probability of an individual target with state x; γk|k−1(·) is the birth
target PHD at time k; κk(·) is the intensity of the clutter RFS.

Lemma 1. If the multi-target PHD at time k− 1 is represented as the sum of multiple PHDs with each PHD
having the following Gaussian mixture form [6]:

Dk−1(x) =
Nk−1

∑
i=1

W(i)
k−1(x) (7)

with

W(i)
k−1(x) =

Ni
k−1

∑
j=1

ω
(i,j)
k−1N

(
x; m(i,j)

k−1, P(i,j)
k−1

)
(8)

then the predicted PHD will be

Dk|k−1(x) =
Nk−1

∑
i=1

W(i)
k|k−1(x) (9)

with

W(i)
k|k−1(x) =

Ni
k−1

∑
j=1

ω
(i,j)
k|k−1N

(
x; m(i,j)

k|k−1, P(i,j)
k|k−1

)
(10)

where
ω
(i,j)
k|k−1 = pS,kω

(i,j)
k−1 (11)

and m(i,j)
k|k−1 is the predicted mean; P(i,j)

k|k−1 is the predicted covariance.

Lemma 2. Given the predicted PHD Dk|k−1(x)and the measurements Zk, the updated PHD [6] is:

Dk(x) =
Nk−1

∑
i=1

W(i)
k (x) (12)
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with

W(i)
k (x) =

Ni
k−1

∑
j=1

(1− pD,k)ω
(i,j)
k|k−1N

(
x; m(i,j)

k|k−1, P(i,j)
k|k−1

)
+

Ni
k−1

∑
j=1

∑
z∈Zk

ω
(i,j)
k (z)N

(
x; m(i,j)

k (z), P(i,j)
k

)
(13)

where

ω
(i,j)
k (z) =

ω
(i,j)
k|k−1 pD,k

c(z) +
Nk−1

∑
i=1

Ni
k−1

∑
j=1

ω
(i,j)
k|k−1 pD,kN

(
z; h(m(i,j)

k|k−1), S(i,j)
k|k−1

)N (z; h(m(i,j)
k|k−1), S(i,j)

k|k−1

)
(14)

Remark 1. As shown in the PHD recursions specified by Lemmas 1–2, the output from the PHD filter provides a
multimodal density from which we need to estimate the states of the targets at each time, while it does not output
target tracks. Moreover, the persistent target PHD and birth target PHD are jointly processed indifferently.
In fact, the birth PHD reflects the nature of the birth target and is used for capturing newborn targets while
the persistent PHD is updated for track maintenance of the surviving targets. Utilizing their difference is
expected to further improve both tracking performance and calculation efficiency. Furthermore, all measurements
(most of them are just clutter, for example in sea surveillance and ground tracking) are utilized to update the
PHD, and hence most computational resources are wasted. These facts motivated us to establish the adaptive
multi-PHD filter framework with track extraction and adaptive processing via both adaptive measurement
partition and multi-PHD collaboration.

3. Adaptive Collaborative GMPHD (ACo-GMPHD) Filter

Figure 1 is the ACo-GMPHD framework consists of persistent PHDs, birth PHDs, and
pre-persistent PHDs. Here, each PHD is specialized for a certain permanent/new-born/temporary
target. In order to improve the computational efficiency, after the prediction of persistent PHDs and
pre-persistent PHDs, the measurements in the surveillance area are adaptively partitioned into the
persistent measurements and the birth measurements. Furthermore, the persistent PHDs and the
pre-persistent PHDs are updated only using the persistent measurements, hence avoiding unnecessary
data processing.
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Remark 2. One may wonder whether the measurement partition in the ACo-GMPHD filter introduces several
decision risks. In fact, the measurements away from the confidence region have little contribution to the persistent
targets, and hence the weight of the Gaussian components would not be underestimated in updating the persistent
PHD. In other words, the partition of the measurements has nothing to do with updating the persistent targets
in setting the large-confidence region. For the birth target, when the confidence region is large, the birth
measurements may be possibly partitioned into the persistent measurements, which may lead to missing the birth
target. Here the measurement which does not contribute to the update of the persistent PHDs will be introduced
into the birth measurement set, which can avoid the birth target missing. In general, adaptive measurement
partition is effective as shown in the later simulation.

3.1. Prediction of Persistent PHD

Given the persistent PHD set {Ŵ(i)
p,k−1, l̂(i)p,k−1, Ξ̂(i)

p,k−1}
Np,k−1

i=1
and the pre-persistent PHD set

{Ŵ(i)
b/p,k−1, l̂(i)b/p,k−1, Ξ̂(i)

b/p,k−1}
Nb/p,k−1

i=1
, the target intensity is represented in the Gaussian mixture form

of multiple PHDs:

Dp
k−1(x) =

Np,k−1

∑
i=1

Ŵ(i)
p,k−1(x) +

Nb/p,k−1

∑
i=1

Ŵ(i)
b/p,k−1(x) (15)

with

Ŵ(i)
p,k−1(x) =

Ni
p,k−1

∑
j=1

ω̂
(i,j)
p,k−1N

(
x; m̂(i,j)

p,k−1, P̂(i,j)
p,k−1

)
(16)

Ŵ(i)
b/p,k−1(x) =

Ni
b/p,k−1

∑
j=1

ω̂
(i,j)
b/p,k−1N

(
x; m̂(i,j)

b/p,k−1, P̂(i,j)
b/p,k−1

)
(17)

where Ŵ(i)
p,k−1(x) and Ŵ(i)

b/p,k−1(x) denote the i-th persistent PHD and the i-th pre-persistent PHD;

l̂(i)p,k−1 and l̂(i)b/p,k−1 are the corresponding labels; and Ξ̂(i)
p,k−1 and Ξ̂(i)

b/p,k−1 are the corresponding deleting
thresholds, respectively.

According to Lemma 1, the predicted persistent PHD is:

Dp
k|k−1(x) =

Np,k−1

∑
i=1

W(i)
p,k|k−1(x) +

Nb/p,k−1

∑
i=1

W(i)
b/p,k|k−1(x) (18)

where

W(i)
p,k|k−1(x) =

Ni
p,k−1

∑
j=1

ω
(i,j)
p,k|k−1N

(
x; m(i,j)

p,k|k−1, P(i,j)
p,k|k−1

)
(19)

W(i)
b/p,k|k−1(x) =

Ni
p,k−1

∑
j=1

ω
(i,j)
b/p,k|k−1N

(
x; m(i,j)

b/p,k|k−1, P(i,j)
b/p,k|k−1

)
(20)

3.2. Prediction of Birth PHDs

According to reference [19], we choose the scheme of calculating birth PHD Db
k−1:

Db
k−1 =

Nb,k−1

∑
i=1

Ŵ(i)
b,k−1(x) (21)



Sensors 2016, 16, 1666 6 of 16

with

Ŵ(i)
b,k−1(x) =

Ni
b,k−1

∑
j=1

ω̂
(i,j)
b,k−1N

(
x; m̂(i,j)

b,k−1, P̂(i,j)
b,k−1

)
(22)

where ω̂
(i,j)
b,k−1, m̂(i,j)

b,k−1, and P̂(i,j)
b,k−1 are calculated based on the measurements which were not utilized for

track update at time k− 1.
According to Lemma 1, the predicted birth PHD is:

Db
k|k−1 =

Nb,k−1

∑
i=1

W(i)
b,k|k−1(x) (23)

where

W(i)
b,k|k−1(x) =

Ni
p,k−1

∑
j=1

ω
(i,j)
b,k|k−1N

(
x; m(i,j)

b,k|k−1, P(i,j)
b,k|k−1

)
(24)

3.3. Measurement Partition

As the integral of the PHD equals the expectation of the target number in the surveillance region,
the PHD should be updated by using the target-oriented measurements instead of all the measurements.
Different kinds of PHDs such as the persistent PHD and the birth PHD should be updated based on
the different measurement sets. Thus, we partitioned the measurement space through utilizing the
information of the Gaussian terms.

The innovation covariances of the persistent and pre-persistent PHDs are:

S(i,j)
p,k|k−1 = HkP(i,j)

p,k|k−1HT
k + Rk, s = 1, . . . , Np,k−1, t = 1, . . . , Ns

p,k−1 (25)

S(s,t)
b/p,k|k−1 = HkP(s,t)

b/p,k|k−1HT
k + Rk, s = 1, . . . , Nb,k−1, t = 1, . . . , Ns

b,k−1 (26)

The shortest Mahalanobis distance between a real measurement zi
k ∈ Zk and the predicted

measurement is:

dk = min

 min
i = 1, . . . , Np,k−1
j = 1, . . . , Ni

p,k−1

(
zi

k − Hkm(i,j)
p,k|k−1

)T (
S(i,j)

p,k|k−1

)−1 (
zi

k − Hkm(i,j)
p,k|k−1

)
,

min
s = 1, . . . , Nb/p,k−1
t = 1, . . . , Ns

b/p,k−1

(
zi

k − Hkm(s,t)
b/p,k|k−1

)T (
S(s,t)

b/p,k|k−1

)−1 (
zi

k − Hkm(s,t)
b/p,k|k−1

)


(27)

If dk < τα, then the measurement zi
k will be assigned to the persistent measurement set Zp

k ⊆ Zk,
where the threshold τα denotes the α quantile of the upper-tail of a chi-squared distribution with nz

degrees of freedom [1], where nz is the measurement dimension.
The birth measurement set Zb

k ⊆ Zk is

Zb
k =

{
zi

k ∈ Zk|zi
k /∈ Zp

k

}
(28)
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3.4. Update of Persistent PHD

According to Lemma 2, the persistent PHD is updated based on the persistent measurement
set Zp

k :

Dp
k|k(x) =

Np,k−1

∑
i=1

W(i)
p,k|k(x) +

Nb/p,k−1

∑
i=1

W(i)
b/p,k|k(x) (29)

with

W(i)
p,k|k(x) =

1− pD,k + ∑
z∈Zp

k

pD,kgk(z|x)
Lp,k(z)

W(i)
p,k|k−1(x) (30)

W(i)
b/p,k|k(x) =

1− pD,k + ∑
z∈Zp

k

pD,kgk(z|x)
Lp,k(z)

W(i)
b/p,k|k−1(x) (31)

Lp,k(z) = cp(z) +
∫

pD,kg(z|x)Dp
k|k−1(x)dx (32)

where cp(z) is the clutter intensity in the survival region; l(i)p.k = l(i)p.k−1; Ξ(i)
p.k = Ξ(i)

p.k−1; l(i)b/p.k = l(i)b/p.k−1;

and Ξ(i)
b/p.k = Ξ(i)

b/p.k−1.
The corresponding measurement weight of the persistent measurement is:

Ψp
k|k(z) =

pD,kgk(z|x)Dp
k|k−1(x)

Lp,k(z)
=

Np,k−1

∑
i=1

Ni
p,k−1

∑
j=1

ω
(i)
p,k|k(z) +

Nb/p,k−1

∑
i=1

Ni
b/p,k−1

∑
j=1

ω
(i)
b,k|k(z) (33)

The measurement set for updating the birth PHDs is defined as:

Zp/b
k =

{
z ∈ Zp

k |Ψ
p
k|k(z) < Tz

}
(34)

where Tz is the threshold for selecting the invalid measurements. Now the birth measurement set
contains two parts:

Zb
k = Zb

k

⋃
Zp/b

k (35)

The integrals of the persistent and pre-persistent PHDs are:

ω̂
(i)
p,k =

Ni
p,k−1

∑
j=1

(1− pD,k)ω
(i,j)
p,k|k−1 +

Ni
p,k−1

∑
j=1

∑
z∈Zp

k

ω
(i,j)
p,k|k(z) (36)

ω̂
(i)
b/p,k =

Ni
b/p,k−1

∑
j=1

(1− pD,k)ω
(i,j)
b/p,k|k−1 +

Ni
b/p,k−1

∑
j=1

∑
z∈Zp

k

ω
(i,j)
b/p,k|k(z) (37)

Denote the persistent PHD index set by Ip =
{

1, . . . , Np,k−1

}
and the pre-persistent PHD index

set by Ib/p =
{

1, . . . , Nb/p,k−1

}
. The invalid persistent and pre-persistent PHD index sets are:

Lp =
{

i ∈ IP|ω̂
(i)
p,k < T0

}
(38)

Lb/p =
{

i ∈ Ib/P|ω̂
(i)
b/p,k < T0

}
(39)

where T0 is the upper-bound threshold of the weight of the invalid PHD. The invalid PHDs are treated
as the additional birth PHDs in the following processing.
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3.5. Update of Birth PHDs

For any birth PHD, its prediction is:

Db
k|k−1(x) =

Nb,k−1

∑
i=1

W(i)
b,k|k−1(x) + ∑

i∈Lp

W(i)
p,k|k−1(x) + ∑

i∈Lb/p

W(i)
b/p,k|k−1(x) =

Nb,k

∑
i=1

W(i)
b,k|k−1(x) (40)

with
Nb,k = Nb,k−1 + |Lp|+ |Lb/p|

where |Lp| represents the cardinality of the persistent targets; |Lb/p| represents the cardinality of the
invalid persistent targets.

According to Lemma 2, the birth PHDs are updated using the birth measurements Zb
k :

Db
k|k(x) =

Nb,k

∑
i=1

W(i)
b,k|k(x) (41)

W(i)
b,k|k(x) =

1− pD,k + ∑
z∈Zb

k

pD,kgk(z|x)
cb(z) +

∫
pD,kgk (z|x) Db

k|k−1(x)dx

W(i)
b,k|k−1(x) (42)

where cb(z) is the clutter intensity in the birth region.
Then the weight of the birth measurement and the integral of the birth PHD are calculated as:

Ψb
k|k(z) =

pD,kgk(z|x)Db
k|k−1(x)

Lb,k(z)
(43)

ω̂
(i)
b,k =

Ni
b,k−1

∑
j=1

(1− pD,k)ω
(i,j)
b,k|k−1 +

Ni
b,k−1

∑
j=1

∑
z∈Zp

k

ω
(i,j)
b,k|k(z) (44)

and the invalid measurement set is constructed:

Zk,BI =
{

z ∈ Zb
k |Ψ

b
k|k(z) < T

}
z

(45)

Denote Jb,k = |Zk,BI | as the number of birth PHDs at the next time step.

3.6. PHDs Management

3.6.1. Birth PHDs Management

If a birth PHD W(i)
b,k|k(x) has a large enough weight, such as ω̂

(i)
b,k ≥ T0, it can be reclassified as a

pre-persistent PHD. Then, the pre-persistent PHD set
{

W(j)
b/p,k|k(x), j = 1, . . . , Nb/p

k−1

}
is augmented by

W(i)
b,k|k(x) in the birth PHD set

{
W(i)

b,k|k(x), i = 1, . . . , Jb,k−1

}
.

3.6.2. Pre-Persistent PHDs Management

If a pre-persistent PHD W(j)
b/p,k|k(x) has a large enough weight, such as ω̂

(j)
b/p,k ≥ T0, it can

be reclassified as a persistent PHD. Then, the persistent PHD set
{

W(j)
p,k|k(x), j = 1, . . . , Np

k−1

}
is

augmented by W(j)
b/p,k|k(x) in the pre-persistent PHD set

{
W(j)

b/p,k|k(x), j = 1, . . . , Nb/p
k−1

}
.
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3.6.3. Persistent PHDs Management

A persistent PHD with a large enough large weight, for example ω
(i)
p,k ≥ T0, is outputted as the

stable track. Otherwise, if ω
(i)
p,k < T0 up to successive E0 time instants, then such a persistent PHD is

considered as the terminated track.

3.7. Birth Intensity Design

Here we adopt the strategy previously described in reference [20] as follows. A one-step
initialization method is utilized to select the reliable birth intensity components for the next time step.
The measurements near the current multi-target states are deleted to reduce the unnecessary birth
intensity components. Without velocity information, the a priori velocity is zero-mean and has the
covariance determined based on the maximum expected velocity (For more details, see reference [21]).
The invalid measurement set Zk,BI is assigned to determine the birth PHD at time k:

Db
k(x) =

Jb,k

∑
i=1

Ŵ(i)
b,k (x) (46)

with
Ŵ(i)

b,k (x) = ω̂
(i)
b,kN

(
x; m̂(i)

b,k, P̂(i)
b,k

)
(47)

m̂(i)
b,k = [zi, 0]T for zi ∈ Zk,BI (48)

P̂(i)
b,k =

[
Rk 0
0 V2

max IM/3

]
(49)

where the Gaussian term weight ω̂i
b,k is calculated according to reference [20]; IM is an M-by-M identity

matrix; and M is the cardinality of the measurement set Zk,BI .

3.8. Output Persistent PHD

At different times, the Gaussian terms with the same label represent the same target. The output
track information at time k is the state m̂(i)

p,k and covariance P̂(i)
p,k of the persistent PHDs respectively:

m̂(i)
p,k =

∫
xW(i)

p,k|k(x)dx∫
W(i)

p,k|k(x)dx
=

Ni
p,k−1

∑
j=1

(1− pD,k)ω
(i,j)
p,k|k−1

ω̂
(i)
p,k

m(i,j)
p,k|k−1 +

Ni
p,k−1

∑
j=1

∑
z∈Zp

k

ω
(i,j)
p,k|k(z)

ω̂
(i)
p,k

m(i,j)
p,k|k(z) (50)

P̂(i)
p,k =

∫
(x−m̂(i)

p,k)(x−m̂(i)
p,k)

T
W(i)

p,k|k(x)dx∫
W(i)

p,k|k(x)dx

=
Ni

p,k−1

∑
j=1

(1−pD,k)ω
(i,j)
p,k|k−1

ω̂
(i)
p,k

[
P(i,j)

p,k|k−1 + (m(i,j)
p,k|k−1 − m̂(i)

p,k)(m
(i,j)
p,k|k−1 − m̂(i)

p,k)
T
]

+
Ni

p,k−1

∑
j=1

∑
z∈Zp

k

ω
(i,j)
p,k|k(z)

ω̂
(i)
p,k

[
P(i,j)

p,k|k +

(
m(i,j)

p,k|k(z)− m̂(i)
p,k)(m

(i,j)
p,k|k(z)− m̂(i)

p,k)
T
] (51)

Remark 3. The analysis for the complexity of the ACo-GMPHD is an open issue due to the measurement
partition is random. In principle, the ACo-GMPHD and the standard GM-PHD have the similar process
flowchart and hence their calculation burden is similar. Differing from the standard GM-PHD, the ACo-GMPHD
partitions all measurements into smaller sets and separately processes them. Since the computational complexity
of the standard GM-PHD increases exponentially with respect to the number of the related measurements,
the ACo-GMPHD is expected to be more cost-efficient, which coincides with the simulation result.
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4. Simulation Analysis

To verify the systematic performance of the ACo-GMPHD filter, we compared it with the standard
GMPHD filter which utilizes a priori birth target intensity and the GMPHD-I filter [20] via an MTT
simulation scenario, similar to reference [8]. The difference is that six targets are considered here,
instead of the three targets in reference [8]. The initial states, appearance, and disappearance of each
target are given in Table 1. True trajectories are shown in Figure 2.

Table 1. A List of Initial Target States.

Target Index Appearing Time (s) Disappearing Time (s) Initial States (m, m, m/s, m/s)

1 1 70 (−1000, −500, 10, 10)
2 20 80 (−1000, −500, −5, 0)
3 20 80 (1050, 1070, −5, 5)
4 50 100 (1050, 1070, −20, −5)
5 60 100 (−1000, −500, 0, 20)
6 1 70 (1050, −1070, −10, −10)
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Figure 2. Trajectories of the true targets and the clutters.

The detailed scenario parameters are given in Table 2.

Table 2. The Settings of the Simulation Scenario.

Category Parameters Value

Scenario

sampling period ∆ 1 s
region size (x-axis) [−1500 km, 1500 km]
region size (y-axis) [−1500 km, 1500 km]
clutter density λ 4× 10−6m−2

sensor noise covariance Rk diag(100 m2, 100 m2)
survival probability ps,k 0.99
detection probability pD,k 0.9
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Table 2. Cont.

Category Parameters Value

ACo-GMPHD

state transition matrix F
[

I2 ∆I2
02 I2

]
process noise standard deviation σv 5 m/s2

process noise covariance Qk σ2
v

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2 I2

]
measurement matrix Hk [I202]
maximum target speed vmax 50 m/s
initial birth Gaussian weight ω̂i

b,k 0.05
weight threshold T0 0.05
measurement weight threshold Tz 0.1
PHD deleting threshold E0 2

Priori birth target intensity γk|k−1(x) = 0.1N(x, x1,P)+ 0.1N(x, x2,Pγ) is provided for the standard

GMPHD filter with x1 = [−1000 m,−500 m, 0 m/s, 0 m/s]T , x2 = [1050 m, 1070 m, 0 m/s, 0 m/s]T ,
and Pγ = diag {100, 100, 100, 100}.

We used a performance evaluation metric called the optimal subpattern assignment (OSPA)
distance, which is specialized for the MTT filter accuracy test [22]. We selected OSPA parameters:
p = 2 and c = 100.

We ran 100 Monte Carlo (MC) trials for each filter to obtain the OSPA distance and the averaged
computational cost, and obtained the track-valued estimates in one MC trial. In addition, we validated
the performance of each filter in the case of different clutter densities.

Figures 3 and 4 show the Monte Carlo average of the OSPA distance with detection probabilities
of 0.9 and 0.7, respectively. Compared with the other two filters, the ACo-GMPHD almost always
had the lowest OSPA distance, reflecting the effectiveness of the proposed adaptive multi-PHD
collaboration and measurement partition.

As shown in Figures 3 and 4, there are five OSPA peaks in the ACo-GMPHD at times 20, 50, 60,
70, and 80 s, corresponding to the target appearances and disappearances, respectively. Some peaks
are even higher than that of the standard GMPHD, and are always smaller than that of the GMPHD-I.
The explanation for this is that:

• the ACo-GMPHD does not utilize a priori information of the birth target. At the moment that a
target appears, the clutter and birth target measurements are hardly distinguishable without the
support of the subsequent measurements. Thus, the birth target measurements may be treated as
the clutter, and hence possibly leads to a delay in the cardinality estimation, as shown in Figure 5
when a target is newly born, which causes the peak of the OSPA distance. This is the cost of the
measurement partition.

• the GMPHD-I also does not utilize a priori information of the birth target. However, due to the
absence of adaptation and collaboration compared with the ACo-GMPHD, the GMPHD-I is the
worst regarding the OSPA measure.

Furthermore, we present the time-averaged OSPA versus the clutter density in Figure 6. With the
increase of clutter density, the OSPA distance of the ACo-GMPHD filter gradually increases, but it is
still lower than that of other two comparison algorithms.

For each time step, the averaged computation time (ACT) is shown in Figure 7. Obviously,
the ACo-GMPHD filter significantly decreased the computational burden, compared with the standard
PHD or GMPHD-I filters. The ACT of the ACo-GMPHD filter is about 0.65 s, much smaller than the
measurement sampling period of 1 s.
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Figure 8 plots the curves of the ACT versus the clutter density. As the clutter density increases,
the ACTs of all the filters increase; however, the ACo-GMPHD filter has the lowest rate of increase,
implying that it is more suitable for the dense clutter case.Sensors 2016, 16, 1666  12 of 16 
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Figure 3. Monte Carlo average of the OSPA distance with a detection probability of 0.9.
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Figure 4. Monte Carlo average of the OSPA distance with a detection probability of 0.7.
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5. Conclusions

In this paper, we proposed the ACo-GMPHD filter with automatic track extraction, which was
shown to be satisfactory for multi-target tracking. It costs less computational time and has better OSPA,
except for some undesirable peaks at the moment of birth targets appear. Hence, one possible avenue
for future research is to introduce priori information about birth targets, which would be helpful in
order to better discern the target and the clutter, and hence more effectively reduce the corresponding
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OSPA peaks. Additionally, the threshold at the step of PHDs management was considered as constant
in the proposed filter, and a possible future research study is to adaptively choose the threshold under
some optimal performance index.
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