
*For correspondence:

dbkatz@brandeis.edu

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 28

Received: 10 February 2019

Accepted: 21 June 2019

Published: 24 June 2019

Reviewing editor: Arianna

Maffei, Stony Brook University,

United States

Copyright Mukherjee et al.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Impact of precisely-timed inhibition of
gustatory cortex on taste behavior
depends on single-trial ensemble
dynamics
Narendra Mukherjee1,2,3, Joseph Wachutka1,2,3, Donald B Katz1,2,3*

1Program in Neuroscience, Brandeis University, Waltham, United States; 2Volen
National Center for Complex Systems, Brandeis University, Waltham, United States;
3Department of Psychology, Brandeis University, Waltham, United States

Abstract Sensation and action are necessarily coupled during stimulus perception – while

tasting, for instance, perception happens while an animal decides to expel or swallow the

substance in the mouth (the former via a behavior known as ‘gaping’). Taste responses in the

rodent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate epochs

that culminate in the emergence of action-related firing. Population analyses reveal this emergence

to be a sudden, coherent and variably-timed ensemble transition that reliably precedes gaping

onset by 0.2–0.3s. Here, we tested whether this transition drives gaping, by delivering 0.5s GC

perturbations in tasting trials. Perturbations significantly delayed gaping, but only when they

preceded the action-related transition - thus, the same perturbation impacted behavior or not,

depending on the transition latency in that particular trial. Our results suggest a distributed

attractor network model of taste processing, and a dynamical role for cortex in driving motor

behavior.

DOI: https://doi.org/10.7554/eLife.45968.001

Introduction
One of the primary purposes of sensory processing is to drive action, such that the source of sensory

information is either acquired or avoided (in the process generating new sensory input; Prinz, 1997;

Wolpert and Kawato, 1998; Wolpert and Ghahramani, 2000). To the extent that this is true, sen-

sory and motor processing should be tightly coupled (Wolpert et al., 1995; Huston and Jayara-

man, 2011). The gustatory system is an ideal model to study this proposed coupling, because

animals necessarily respond to tastes with discriminative behaviors - specifically, they must decide to

either swallow or expel the sensory stimulus in the mouth (Grill and Norgren, 1978a; Katz and

Sadacca, 2011; Li et al., 2016).

Sensory-motor coupling is visible in the temporal response patterns of rodent gustatory cortical

(GC) neurons to taste stimulus administration. GC neurons respond to taste presentation with a

sequence of firing-rate ‘epochs’, two of which are taste-specific: neural firing first carries information

regarding the physio-chemical identity of the taste stimulus, and then correlates with palatability, a

variable intimately linked with the animal’s decision to ingest or expel the taste (Katz et al., 2001;

Fontanini and Katz, 2006; Grossman et al., 2008; Piette et al., 2012; Sadacca et al., 2012;

Maffei et al., 2012; Jezzini et al., 2013; see also Crouzet et al., 2015). Ensemble analyses further

reveal that the transition between these two epochs happens suddenly and coherently within neural

ensembles (Jones et al., 2007; Sadacca et al., 2016). This ensemble transition to palatability cod-

ing, though highly variable in latency (between 0.5 and 1.5s post stimulus, depending on the trial), is
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a strong predictor of the onset of the animal’s consumption-related orofacial behavior

(Sadacca et al., 2016), even when the timing of this behavior is manipulated by learning

(Moran and Katz, 2014) or cueing (Li et al., 2016). That is, GC neural ensembles appear to ‘hop’

from one attractor state to another during taste processing (Miller and Katz, 2010; Miller, 2016),

with the hop representing the reaching of a consumption decision - and (potentially) the emission of

a motor signal to brainstem circuits that generate orofacial behavior.

A direct prediction of this temporally dynamic model of gustatory sensorimotor processing, and

most specifically of the suggestion that the transition into the later firing-rate epoch represents the

emission of a motor command, is that well-timed perturbations of GC activity should affect the time

course of a rat’s taste-reactive ingestion-egestion behavior. This prediction recently received indirect

support when it was shown that optogenetic perturbation of the entire GC taste response (Li et al.,

2016) significantly (if modestly) changes the probability of rejection behaviors in response to aver-

sive tastes (‘gapes’; Grill and Norgren, 1978a; Li et al., 2016).

However, such gross perturbations of gustatory processing are an inadequate test of this very

specific prediction: for one thing, multi-second perturbations likely have secondary effects that con-

found interpretation, particularly regarding an outcome variable (ability to gape) that is known to

depend on an interconnected network of brain regions (including GC; see Smith and St John, 1999;

Riley and King, 2013; Samuelsen and Fontanini, 2017); in addition, it is impossible to disambigu-

ate any epoch- or moment-specific effects on consumption behavior using whole-response perturba-

tions. A much more definitive test would involve using optogenetics to perturb GC taste responses

for short periods of time as awake rats process and respond to a range of tastes.

Here we report the results of precisely this experiment, performed in awake, tasting rats. We

recorded the activity of GC ensembles while simultaneously perturbing the firing of these neurons

using an optogenetic silencer (specifically, the proton-pump ArchT) for brief (0.5s) periods before,

during or after the ‘hop’ to the palatability- (i.e., decision-) related state. Our results provide strong

support for the hypothesized importance of the transition time itself, and in addition suggest that

important pre-transition taste processing is performed within GC (these results reveal limitations on

the validity of time-free interpretations of inactivation data). Furthermore, our data provide a

glimpse into the robustness of the system underlying the neural processing of taste, demonstrating

that GC is one participatory node in a larger network with attractor dynamics: the fact that GC per-

turbations can only delay the system settling into the decision-related ‘stable’ state suggests that

this stable state is a function of activity spread across multiple regions; in addition, the fact that

post-decision perturbations have no impact suggests that behavioral control shifts to brainstem cir-

cuits once this stable state has been reached.

Results

Experimental paradigm and data overview
Figure 1A depicts the preparation used for our experients - IOCs for taste delivery, bilateral GC

opto-trodes for recording of neural ensemble activity and delivery of laser light, and EMG electrodes

in the anterior digastric (jaw) muscle for assaying of consumption-related mouth movements. Four

weeks prior to the surgery in which we installed these assemblies, we injected AAV carrying the

optogenetic silencer ArchT (along with green fluorescent protein - GFP) into GC. The GFP allowed

us to confirm (post-mortem) infection of GC neurons by immunohistochemical verification of the

GFP tag (Figure 1B).

The rats received intra-oral deliveries of 30mM sucrose (Dil Suc), 300mM sucrose (Conc Suc),

0.1mM Quinine-HCl (Dil Qui) and 1mM Quinine-HCl (Conc Qui). Most sessions involved ‘0.5s pertur-

bation’ trials: on 75% of the trials in these sessions, we perturbed GC firing for 0.5s, beginning either

at 0s, 0.7s or 1.4s post taste delivery (‘early’, ‘middle’ or ‘late’ 0.5s perturbations, Figure 1C). These

three perturbation windows tile the period containing the temporal epochs that characterize GC

taste responses (Katz et al., 2001; Sadacca et al., 2012; Sadacca et al., 2016). More specifically,

the early and late 0.5s perturbations for the most part (see below) affect GC neurons before and

after the range of likely transition times into the behaviorally-relevant state containing palatability-

related firing, which typically occur just before, during, or just after the middle 0.5s perturbations

(Figure 1C, also see Figure 1D for a basic schematic of coding across the first 2.0s of GC taste
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responses). A small set of additional experimental sessions (performed using a subset of the same

rats) was run using 2.5s perturbations of GC (Figure 1C), purely as an additional comparison to the

0.5s perturbations.

We recorded the activity of 244 GC single neurons across 10 sessions (24.4 ± 13 units/session) of

0.5s perturbations, and of an additional 73 GC single neurons in five sessions (14.6 ± 4.7 units/ses-

sion) of 2.5s perturbations. The two types of experimental sessions were counterbalanced, such that

3 rats received 2.5s perturbation sessions first, and 2 received 0.5s perturbation sessions first. No dif-

ferences with order were noted.

The AAV-ArchT construct used in this study has been shown to infect neurons of multiple types

(e.g., pyramidal neurons and interneurons) in an unbiased manner (Aschauer et al., 2013). Our opto-

genetic protocol, therefore, is best thought of as a general perturbation of the dynamics of GC neu-

rons in response to tastes. Any such perturbation (including those using genetics to putatively inhibit

individual neuron types) will be expected to (perhaps paradoxically) enhance the firing of some
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Figure 1. Experimental paradigm. (A) 4–6 weeks after receiving surgeries for virus injections, rats were implanted with opto-trodes and EMG

electrodes. Post recovery, they were given intra-oral infusions of Dil Suc (30mM Sucrose), Conc Suc (300mM Sucrose), Dil Qui (0.1mM Quinine-HCl) and

Conc Qui (1mM Quinine-HCl), and ArchT-expressing GC neurons were briefly inhibited by green (532 nm) laser light. (B) Coronal slice from a subject,

showing ArchT expression (visualized by the GFP tag) localized in gustatory cortex (GC). A small lesion, left by the tip of the opto-trode is visible in the

middle of the GFP expressing region, and had no general impact on behavior (see below). (C) Inhibition protocol used in the study: two types of

optogenetic perturbations, short (0.5s) or long (2.5s), were delivered in separate experimental sessions. Short perturbations were delivered at one of

three possible time points on any individual trial, and are referenced as follows in the text: (1) 0–0.5s - early 0.5s perturbations, (2) 0.7–1.2s - middle 0.5s

perturbations, and (3) 1.4–1.9s - late 0.5s perturbations. Not shown, but delivered in all sessions, were control trials with no perturbations. Grey dashed

lines mark the approximate range of the ensemble transitions to palatability/decision-related firing. (D) A schematic of the temporal structure of single-

neuron coding across the first 2.0s of taste responses in GC. Immediately following taste presentation, responses are nonspecific, indicating only the

presence of fluid on the tongue (‘detection’ epoch, in teal). The next two temporal epochs of GC firing are taste specific: the first codes the physio-

chemical identity of the stimulus (‘identity’ epoch, in orange); following a transition (that can happen anywhere between 0.5–1.5s post stimulus on

individual trials, see grey dashed lines, and on average happens midway through this period) firing rates change to reflect palatability and the

upcoming consumption decision (‘palatability’ epoch, in pink).

DOI: https://doi.org/10.7554/eLife.45968.002
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neurons through network-level effects (like disinhibition, via suppression of the firing of inhibitory

neurons, Allen et al., 2015). This expectation was borne out in the data: the firing of most of our

GC neural sample (146/244, 60%, example shown in Figure 2A1–A4) was significantly suppressed

during 0.5s perturbations, but the firing of an additional 20% (49/244) was significantly enhanced.

The same pattern of results was observed with 2.5s perturbations: the firing of 82% of GC neurons

(60/73, example unit in Figure 2B1–B2) was inhibited, and the activity of 15% (11/73) was enhanced.

The fact that 2.5s perturbations appeared to inhibit a slightly larger percentage of neurons is

likely an artifact caused by analysis limitations: suppression of the low firing rates (3–10Hz) that dom-

inate GC taste responses (Katz et al., 2001; Jones et al., 2007; Samuelsen et al., 2012; Kusu-

moto-Yoshida et al., 2015; Mazzucato et al., 2015) can be difficult to detect, particularly in short

time windows; consistent with this, we observed that the highest likelihood of detecting suppression

during 0.5s perturbations occurred when that perturbation was delivered in the middle of taste proc-

essing (0.7–1.2s, Figure 2C) - at the time of peak firing rate modulations. Across 2.5s perturbations,

we naturally had more statistical power to detect the suppression of firing (Figure 2D).

Although such perturbation protocols cannot be used to answer cell-type/microcircuit-specific

questions, their network-wide effects are ideal for testing the macroscopic dynamical properties of

taste processing in GC (the purpose of the current work): GC taste responses evolve through a

sequence of temporal epochs (Katz et al., 2001; Maffei et al., 2012; Jezzini et al., 2013) which

have the hallmarks of emergent, quasi-stable states of a system that can be speculatively described,

at a high level, as an attractor network (Jones et al., 2007; Miller and Katz, 2010;

Mazzucato et al., 2015; Sadacca et al., 2016); our protocol brings about strong perturbations of

the network activity characterizing these stable states, and by mapping the state dependence of the

effects of these perturbations, we are able to directly test the proposed function of these states (and

of the transitions between them). Viewed in this manner, the fact that infection may have nuisance

effects beyond inducing ArchT expression (and the related fact that laser illumination of GC might

itself have some impact on neural firing) is of no consequence for the basic hypothesis tested below

– that subtle differences in the timing of 0.5s perturbations, delivered in the same rat (and indeed, in

the same session), will determine the impact of those perturbations on behavior. Thus, again, there

is no need for ‘empty virus’ control rats.

Early 0.5s perturbations delay single-neuron palatability-related
responses while late 0.5s perturbations do not
We first assessed the impact of 0.5s (and 2.5s perturbations) on the palatability-related content of

GC taste responses that had been smoothed (using 250ms-wide windows moved in 25ms steps) and

standardized to be on a uniform scale (see Materials and methods for details). The set of neural

responses (one per taste) were regressed against the palatability ranks of the taste stimuli (Conc

Suc:4, Dil Suc:3, Dil Qui:2, Conc Qui:1) to obtain a palatability index, bPalatability. Being a Bayesian

analysis (consult Materials and methods for details on model setup and inference), this regression

gives access to the entire posterior distribution of bPalatability at every time point. Knowing the spread

of the posterior distribution of bPalatability at every time point allows us to more simply perform signifi-

cance tests: we can conclude that bPalatability is different from 0 at the 1% level of significance if the

99% extent of its posterior distribution (generally known in Bayesian analyses as the 99% ‘credible

interval’) does not overlap 0 (such time points are marked by dots in Figure 3A1–A3, B). We used

logistic sigmoid functions to better characterize the time evolution of the posterior mean of the pal-

atability index, bPalatability (shown with dashed lines in Figure 3A1–A3, B), and defined the size and

latency (time to attain 95% of maximum size) of the upper asymptote of the logistic fit as the height

(L) and latency (tpeak) of the peak of bPalatability respectively.

Although the impact of 0.5s perturbations on the palatability content of single-neuron GC taste

responses appears modest in Figure 3A1–A3, this is unsurprising given the brevity of the perturba-

tions (these perturbations also violate the assumption of data stationarity upon which curve-fitting

depends, see Materials and methods for details). However, with regard to the height and timing of

the peak of bPalatability (the most robustly interpretable aspect of such an analysis), 0.5s perturbations

produced dramatic and significant changes, depending on when they were delivered (Figure 3C).

In control (no-laser) trials during the 0.5 perturbation sessions, bPalatability peaked ~0.8s after taste

delivery. The late 0.5s perturbations (which by design started after palatability-related firing had
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B1
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Middle 0.5s 

Late 0.5s 

Figure 2. Impact of ArchT-mediated optogenetic perturbation on GC neurons. (A1-A4) Rasters of spiking in an example single GC neuron in a 0.5s

perturbation session; each hash mark is an action potential. Activity is robustly suppressed during laser stimulation. (B1-B2) Analogous data from an

example single GC neuron in a 2.5s perturbation session, also showing clear inhibition during laser stimulation. (C) Histogram of changes in firing rates

(plotted as a fraction of the firing rate on control trials, x-axis) produced by 0.5s perturbations across the entire sample (y-axis = number of neurons).

Figure 2 continued on next page
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emerged on most trials) sharply reduced the palatability index only after the lasers were switched on

at 1.4s (Figure 3A3); these perturbations did not impact the timing of peak palatability firing,

although the non-stationarity of these firing data coupled with the susceptibility of standard Gauss-

ian-noise based curve fitting techniques to outliers (see Materials and methods) resulted in a slight,

artifactual shift in the function’s tpeak (happening slightly earlier than in control trials, blue bars in

Figure 3C) which could be entirely attributed to the drop in bPalatability after 1.4s.

Figure 2 continued

The majority of neurons show robust firing suppression when perturbed (fraction > 0), but a small group of neurons actually increased their firing rates

in response to perturbation, presumably due to network-level effects (fraction < 0). (D) Analogous histogram of changes in firing rate produced by 2.5s

perturbation. Almost all neurons were affected by the perturbation: the large majority are suppressed, but a small minority show elevated firing rates in

response to perturbation.

DOI: https://doi.org/10.7554/eLife.45968.003

A1 A2 A3

B C D

Units = 244

Sessions = 10

Units = 244

Sessions = 10

Units = 244

Sessions = 10

Units = 73

Sessions = 5

Units = 73

Sessions = 5

***

Units = 244

Sessions = 10

***

***

**

*** *

**

Control Early

0.5s

Middle

0.5s

Late

0.5s

Control 2.5s

Figure 3. Impact of optogenetic perturbations on palatability relatedness of the firing of GC neurons. (A, B) Coefficients (palatability-relatedness,

y-axis) obtained from the regression of trial-averaged firing rates on palatability ranks of the taste stimuli across time (x-axis). The solid lines depict the

mean regression coefficient across time for the entire data sample; coefficients significantly different from 0 at the 1% level are marked by dots. The

dashed lines are logistic sigmoid fits for each condition. A1-A3 display the impact of 0.5s perturbations beginning at 0 (early), 0.7 (middle) or 1.4s (late)

on palatability-related firing in GC; B shows the analogous graph for 2.5s perturbations of GC neurons - disruption of GC firing for 2.5s wipes out the

entirety of the palatability response. (C, D) The post-stimulus latency (blue bars and y-axis) and height (red bars and y-axis) of the peak (95% of the

asymptote) of the sigmoid fits in A, B. Error bars denote 95% Bayesian credible intervals; each optogenetic condition was compared with control (laser-

off) trials from the same sessions (first pair of bars in both figures) and statistically significant differences are marked with asterisks (*: p<0.05, **: p<0.01,

***: p<0.001). (C) On control (no-laser) trials, GC neurons asymptote to peak palatability firing ~0.8s post stimulus. Early and middle 0.5s perturbations

delay the peak of palatability firing by ~0.5s; the magnitude of this peak, however, is the smallest for the middle perturbation. Late 0.5s perturbations,

beginning after palatability-related firing has mostly subsided, produce a small change in the magnitude and timing of its peak compared to control

trials - though significant, this minor shift in peak palatability firing can be entirely attributed to the decrement in the palatability index only after the

laser is switched on at 1.4s (A3). (D) During 2.5s perturbation sessions, GC neurons asymptote to peak palatability firing ~0.8s post stimulus on control

trials where the lasers are off, just like the 0.5s control. The 2.5s perturbation, by disrupting the palatability response completely, is fit by a flat sigmoid

whose peak magnitude overlaps 0, although the latency to peak is similar to that of control (no-laser) trials.

DOI: https://doi.org/10.7554/eLife.45968.004
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In contrast, early 0.5s perturbations caused the palatability content of GC taste responses to be

delayed in reaching its peak; the function did not asymptote until ~1.3s, a lag of almost 0.5s com-

pared to control (no laser) trials (Figure 3A1, and blue bars in Figure 3C). Note that the failure of

GC firing to ‘bounce back’ immediately after laser-off (which occurred 300–400ms before the time of

peak palatability content in control trials) implicates GC in the processing of palatability itself (see

Discussion). Note as well that despite delaying the peak of bPalatability, the magnitude of this eventual

peak was actually higher than control trials (red bars in Figure 3C). The early 0.5s perturbations thus

appear to cause a transient shift out of the attractor dynamics responsible for GC taste responses

followed by gradual relaxation back into the stable state after the end of the perturbation; variability

in this process (which can overshoot the stable point, depending on the speed of relaxation) could

explain the apparent increase in the magnitude of the peak palatability index in this condition.

Middle 0.5s perturbations (Figure 3A2) also had a powerful impact on GC palatability-related fir-

ing: compared to no-laser trials from the same sessions, the peak of bPalatability emerged later (blue

bars in Figure 3C) while its magnitude was largely reduced (red bars in Figure 3C). The potency of

both these effects makes sense, as this particular perturbation overlaps the heart of palatability-

related activity in GC neurons (Katz et al., 2001; Jezzini et al., 2013; Sadacca et al., 2016).

Finally, as expected, 2.5s perturbation had a devastating impact on palatability-related responses

of neurons in the affected GC network (Figure 3B). In control (no-laser) trials, as in previous studies

(Sadacca et al., 2016) and no-laser trials during the 0.5s perturbation sessions, bPalatability climbed to

an asymptote ~0.8s after taste delivery. Meanwhile, 2.5s perturbation effectively inhibited any signifi-

cant rise in bPalatability (red bars in Figure 3D), which is unsurprising given the drastic impact of these

perturbations on neural firing in GC (Figure 2).

GC perturbation delays the onset of aversive orofacial behavior
We monitored our rats’ mouth movements via electromyography (EMG). Specifically, we implanted

EMG electrodes in the anterior digastric muscle; as a jaw moving muscle, the anterior digastric plays

a major role in the production of ‘gapes’, the rhythmic orofacial behavior that serves to move aver-

sive tastants to the front of the mouth in preparation for expelling. Far less accessible tongue

muscles underlie mouth movements that support behaviors (such as ‘lateral tongue protrusions’)

that help the rat prepare to ingest appetitive tastants (Grill and Norgren, 1978a; Travers and

Norgren, 1986; Li et al., 2016). For that reason, we focus solely on gapes in this study (but see

Discussion).

Individual mouth movements can be recognized as bursts of anterior digastric EMG activity

(Figure 4A1–A2). However, the variability in the amplitudes and durations of these EMG bursts

reduces our ability to separate gapes from other large mouth movements. We therefore made use

of a more robustly distinctive feature of gaping – the fact that gapes occur in 4–6Hz bouts

(Travers and Norgren, 1986; Li et al., 2016). We analyzed the spectral content of the envelope of

the EMG signal using Bayesian spectrum analysis (BSA; see Materials and methods for a detailed dis-

cussion) and measured the probability of gaping as the total posterior probability of 4–6Hz

movements.

While easier to calculate and less subject to error, this estimate of the probability of gaping has

strong correspondence with gaping bouts identified by a classifier trained on individual bursts of

EMG activity (Li et al., 2016), note in Figure 4B1–B2 how the calculated probability of being in a

gaping bout corresponds to the classifier-estimated timing of individual gapes, shown as vertical

hash marks); the trial-averaged probability of gaping calculated by BSA is similar to the peri-stimulus

‘rate of gaping’ obtained from the gapes identified by the classifier, for both trial types in which

gaping occurred (Dil and Conc Qui trials, Figure 4C1–C2). Finally, the fact that the probability of

gaping jumps precipitously just before the first gape as identified on video (Figure 4D) confirms this

algorithm’s reliability in identifying periods of gaping in the EMG signal (see Materials and methods

for more details).

With this information in hand, we were able to investigate the effects that perturbations of GC

activity have on the animals’ rejection of aversive Qui. On average, gaping begins ~0.9s after Qui

delivery in control trials during the 0.5s perturbation sessions – that is, when analysis is restricted to

trials in which GC neurons were not perturbed (Figure 5A, inset). This latency is consonant with that

reported in video analysis (Grill and Norgren, 1978a) and classic burst-oriented analysis of EMG
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(Travers and Norgren, 1986). Furthermore, this estimate matches up with observations in control

rats (published in Sadacca et al., 2016 and Li et al., 2016) that received neither laser nor ArchT

expression. Thus we can conclude that, at least with regard to the driving of gaping, our preparation

leaves the system capable of normal function – neither infection nor implantation themselves affect

the ability to gape to Qui.

Previous work has shown that while the appearance of palatability-related firing in GC (which

arises suddenly and coherently across neurons in single trials) robustly predicts the onset of gaping

bouts (see below and Sadacca et al., 2016), it is unrelated to the mechanics of individual gapes

E FD

A1 B1 C1

A2 B2 C2

Trials = 84

Trials = 84

Trials = 168 Trials = 168

Gape onset detected
on video (47 trials)

Gape onset detected
by classi er (222 trials)

Figure 4. Bayesian spectrum analysis (BSA) of anterior digastric EMG recordings - probability of gaping calculated in terms of the total posterior

probability of 4–6Hz movements. (A1-A2) Two representative Conc Qui trials. The animal’s mouth movements can be seen as bursts of higher-

amplitude (y-axis) EMG activity (blue) following taste delivery - the onset of gaping, as detected on video, is marked. The time series of the envelope of

the EMG signal (black line) are the data subjected to BSA. (B1-B2) Result of BSA brought to bear on a pair of individual Conc Qui trials. The calculated

probability of gaping (y-axis, black lines) matches up with individual gapes (grey vertical hash marks) picked by a previously published quadratic

classifier that achieved 75% accuracy. (C1-C2) The trial-averaged probability of gaping (across a set of no-laser control trials) calculated with BSA (solid

line) matches up with the peri-stimulus ‘gaping rate’ produced from the gapes identified by the quadratic classifier (dotted line, same set of control

trials) in response to both Dil Qui (C1) and Conc Qui (C2). While correlating well with the quadratic classifier, BSA avoids multiple pitfalls of that

technique (and is easier to apply, see Materials and methods). (D) The probability of gaping calculated with BSA rises reliably just before the first gape,

detected either on video (black) or by the quadratic classifier (grey). The black dashed line (0 on the x axis) indicates the time of the first gape. (E) KL

divergence between the probability of gaping to Conc and Dil Qui (higher values indicate larger differences in their gaping distributions, same trials as

in (C1, C2). As expected, the distributions of gaping probability on Conc and Dil Qui trials are initially similar (while non-specific investigative licks

happen) and diverge out at ~1s post stimulus once gaping begins. (F) The cumulative sum of the KL divergence in E across time. The jump in KL

divergence around the mean onset time of gaping is seen as a change in slope of its cumulative sum. We fit two straight lines to the cumulative sum

and pick their intersection as the mean onset of gaping across this set of trials.

DOI: https://doi.org/10.7554/eLife.45968.005
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within gaping bouts (Grill and Norgren, 1978b; Li et al., 2016). We therefore predicted that late

A

B1 B2

B3 B4

**
*

**
*

**
*

*

Trials=150

Trials=168

Trials=168

Trials=168

Figure 5. The impact of 0.5s perturbations of GC neurons on gaping (4–6Hz aversive orofacial behaviors) depends

on when they were delivered. (A) Onset times of gaping under different perturbation conditions, reported as delay

in onset times compared to control (no-laser) trials from the same sessions. The x-axis presents the mean delay in

gape onset times compared to control trials; the extent of their 95% Bayesian credible intervals are shown by the

error bars. We indicate statistically significant delays with asterisks (*: p<0.05, **: p<0.01, ***: p<0.001). Early and

middle 0.5s perturbations of the taste response delay the onset of gaping (to the same degree as 2.5s

perturbation). Late 0.5s perturbations of GC neurons produce a minor (but marginally significant) delay in the

onset of gaping. (A, Inset) Latency of gaping in control (no-laser) trials in 0.5s and 2.5s perturbation sessions. The

2.5s controls show a delayed onset, likely due to lasting effects of the (relatively) long optogenetic perturbation.

(B1-B4) Four representative Conc Qui trials with late 0.5s perturbations (1.4–1.9s post taste delivery). On each of

these trials, the probability of 4–6Hz aversive orofacial responses is unaffected by the onset of the laser, confirming

that GC perturbation fails to disrupt ongoing bouts of gaping.

DOI: https://doi.org/10.7554/eLife.45968.006
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0.5s perturbations – perturbations delivered once gaping was (in most trials, see below) already

underway – would have minimal impact on gaping behavior.

Our data are in accord with this prediction. Rats gaped with near normal latency, compared to

control (no laser) trials, in late 0.5s perturbation trials (Figure 5A, but also see below for discussion

of the marginally significant delay in gape onset in this condition). Furthermore, these late 0.5s per-

turbations failed to prematurely end gaping bouts that had already begun. Figure 5B1–B4 show

example trials in which the probability of gaping rhythm in the EMG signal went high following Conc

Qui delivery, and stayed high throughout late 0.5s perturbations. In fact, the percentage of trials in

which gaping was maintained into this period was unchanged by late 0.5s perturbation - 57% (36/

63) of control trials vs 55% (26/47) of perturbed trials. We can thus conclude that GC is of no conse-

quence for the maintenance of ongoing gaping.

In contrast, GC activity plays a clear role in the initiation of gaping: early 0.5s perturbations – that

is, those delivered well before transitions into the palatability-related state of GC activity – delayed

gaping onset by approximately 0.25s on average (Figure 5A). This delay cannot be explained in

terms of inhibition of the earliest gapes - gaping latencies as early as 0.5s after taste delivery were

rare, and an analysis of control (no-laser) trials from the same sessions showed that removing laten-

cies of less than 0.5s had essentially no impact on the mean onset time of gaping. The much more

likely explanation is that early 0.5s perturbation of GC perturbs the ongoing process that leads to

the release of a ‘decision to gape’ signal visible in GC (Sadacca et al., 2016).

Similarly, middle 0.5s perturbations of GC delayed the onset of gaping until just before 1.2s after

taste administration - approximately 0.25s after gaping on no-laser trials. That is, 0.5s perturbations

of GC activity occurring either before or during the ‘heart’ of quinine processing had a strong impact

on the latency of aversive orofacial behavior. Not only is the impact of this brief optogenetic pertur-

bation significant, it was every bit as large as that observed with whole-trial (i.e., 2.5s) perturbations,

which delayed the appearance of gaping by ~0.2s (Figure 5A). These long perturbations are not dis-

cussed further, because: 1) they are of little relevance to our primary hypotheses; and 2) they had

the additional unintended consequence of impacting gaping behavior on control trials (see

Figure 5A inset and Discussion).

GC perturbation impacts orofacial behavior only if delivered before the
coherent ensemble transition to palatability-related activity
Previous demonstrations that the temporal dynamics of GC taste responses are well described in

terms of sudden transitions between stimulus-specific ensemble firing rate ‘states’ (Jones et al.,

2007; Sadacca et al., 2016) also reveal large trial-to-trial variability of both the behavioral and neu-

ral transition latencies. These studies show that the neural transition can potentially happen at any of

a range of latencies spanning the approximate interval between 0.5 to 1.5s, and that orofacial

behavior follows close behind, such that trial averaging smears the changes in firing rates into a

more gradual-seeming ramp. Our middle 0.5s perturbations are delivered in the midst of the period

in which transitions into this palatability-related ensemble activity state are most likely, but variability

in the timing of the ensemble state ensures that there will inevitably be a subset of middle 0.5 per-

turbation trials in which the ensemble state transition occurs before the perturbation.

This fact affords us an opportunity to make and test a strong prediction: we predicted that identi-

cal middle 0.5s perturbations would impact gaping latency differently depending on whether, in that

specific trial, the neural transition into the palatability-related ensemble activity state had already

occurred – that a middle 0.5s perturbation will have no impact on a trial in which the transition has

already occurred, and will have a strong impact on a trial in which it has not. This prediction implies

that the results in Figure 5A, averaged across all trials receiving the middle 0.5s perturbation, mask

the true diversity of that perturbation’s possible effects.

We have previously used Hidden Markov Models (HMMs) to detect ensemble firing rate transi-

tions in GC responses to tastes (Jones et al., 2007; Moran and Katz, 2014; Sadacca et al., 2016),

but this analysis is not amenable to the data in this current study: a dataset made up of all four trial

types (early, middle, and late 0.5s perturbations, plus no-laser control trials) would be complex

enough (each trial type would likely involve distinct sets of firing rates, see below) that the HMM

would be unlikely to reach stable solutions; divided into individual trial types, meanwhile, the data-

sets would be too small to allow convergence to even simple stable fits. Instead, we took advantage

of the insights gained from our previous publications (Katz et al., 2001; Fontanini and Katz, 2006;
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Jones et al., 2007; Grossman et al., 2008) and built a constrained change-point model of GC pop-

ulation activity; specifically, the model consisted of 2 activity change points, the latter of which intro-

duced palatability-related firing. This model constrained the general HMM framework in a way that

allowed us to estimate transitions in individual trial types (see Materials and methods for details).

Figure 6 schematizes the change-point analysis as brought to bear on GC ensemble taste

responses. The top row of the Figure shows control (no-laser) trials, in which (as described earlier)

GC taste responses progress through a sequence of firing-rate states, the latter two of which are

taste-specific – the former of these two reflecting taste identity and the latter reflecting taste palat-

ability (and thereby predicting behavior); the fact that the change points (CI and CP) between these

states can happen at a range of latencies in different trials is reflected in the fact that the color rep-

resenting one state gradually changes to the color representing the next. The next two rows repre-

sent early and late 0.5s perturbation trials, respectively: early 0.5s perturbation trials are

schematized as pushing the change points back in time, although it is beyond the scope of this man-

uscript to delve into the complex and difficult issue of precisely how 0.5s perturbation changes the

fine structure of post-perturbation activity; meanwhile, both CI and CP typically precede late 0.5s

perturbations (but see below).

Finally, the last two rows represent the two possible situations involving middle 0.5s per-turba-

tions – one in which CP occurs prior to the perturbation, and one in which it does not. Our prediction

is that, despite the fact that the middle 0.5s perturbation is identical in the two trials, the impact of

that perturbation will be sharply specific to trial-type – gaping will be delayed in the latter, but not

in the former.

We used the change-point model to identify the putative transition times into the palatability-

related ensemble state for control (no-laser, grey) Qui trials, and for middle 0.5s perturbations trials

(green, Figure 7A). Note that we could not, of course, identify change-points when the lasers (which

by design altered firing) were on, and that the concatenation of pre- and post-laser responses for

purposes of the analysis led inevitably (as expected, also see Materials and methods), to a higher-

than-chance ‘pile-up’ of change points being artifactually identified at the ‘seam’ joining the edges

of the excised time period; for this reason, with exceptions noted below, we ignore the uninterpret-

able change points identified in the two bins (50ms) preceding laser onset for subsequent analyses.

Transitions into palatability-related activity (CP) occurred prior to perturbation in 55% of the ana-

lyzed trials (92/168). Regression analysis revealed that, on average, significant palatability-related

information appeared in single neuron firing during trials in which the ensemble state transition

occurred prior to the perturbation; this information was notably lacking in trials in which the transi-

tion had not occurred by perturbation onset (Figure 7B).

Next, we applied the outcome of this analysis to the behavioral data (Figure 7C): overall, middle

0.5s perturbations delayed gaping by ~0.25s (data reprinted from Figure 5A); on trials in which that

perturbation arrived before the ensemble transition, however, the delay in gaping was far larger

(more than ~0.5s) - on these trials, gaping onset was delayed until more than 0.2s after the end of

the perturbations. A comparison with control trials (as always, no-laser trials from the same sessions)

confirmed that this effect was not caused by a simple truncation of the distribution of gaping laten-

cies: even when we restricted ourselves to analyzing only the proportion (31%, 52/168) of control tri-

als which lacked any gaping-related EMG activity until 1.2s (which was, in middle 0.5s perturbation

trials, the laser off time), the average gaping latency was still significantly less then that observed in

the (larger) subset (45%) of middle 0.5s perturbation trials in which the ensemble transition failed to

precede perturbation onset. Clearly, 0.5s perturbations delay gaping to Qui if that perturbation

begins prior to the ensemble neural transition into palatability coding.

When we restricted our analysis to middle 0.5 perturbation trials in which CP happened at 0.65s

or earlier (that is, prior to perturbation onset, see above), meanwhile, the onset of gaping was not

delayed. In fact, gaping on these trials occurred more than 300ms earlier than in control trials – the

predictable result for trials in which the neural process of reaching a decision to gape completed

early. These data demonstrate that, once this decision (which clearly involves this GC activity, see

above and Sadacca et al., 2016) has been made, 0.5s perturbations have no impact on the execu-

tion of the decision. As predicted, middle 0.5s perturbations could have either a strong effect or no

effect, depending on whether the GC ensemble transition into palatability-related firing had already

occurred.
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Figure 6. Switchpoint model of GC ensemble responses to tastes, which were assumed (on the basis of our

previous work) to consist of 3 states of population firing as follows: (1) Detection: a brief, initial state of nonspecific

responses with identical population distributions of activity for each tastant in our battery; (2) Identity: responses

related to the chemical identity of the taste stimulus with two population firing rate distributions, one each for Suc

and Qui; (3) Palatability: population firing rich in palatability and consumption-decision related information with

four population distributions of activity, one for each of the four tastants in our stimulus battery. CI , the first

change point in the model denotes the shift from detection to identity firing, while CP marks the transition

between the identity and palatability-related ensemble states. The fact that both CI and CP have massive trial-to-

trial variability is denoted by the colors for each of the three states gradually blending across time. The model

assumed that CI and CP could not occur during the optogenetic perturbation of GC (denoted by periods of green

diagonally hatched regions): each row shows how the search for change points is hypothesized to be impacted by

GC perturbation; note the two distinct possibilities with regard to middle 0.5s perturbation (lasers on from 0.7s to

1.2s post stimulus) trials.

DOI: https://doi.org/10.7554/eLife.45968.007
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Figure 7. The impact of middle 0.5s perturbation (0.7–1.2s post taste delivery) on GC neural activity and aversive

Figure 7 continued on next page
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Further evidence supporting this conclusion came from examination of the few middle 0.5s per-

turbation trials in which the change-point analysis suggested the presence of transitions occurring

between 0.65 and 0.7s. While some of these putative change points were almost certainly artifactual

(see above), we found that ‘early’ gaping occurred in only a subset (15) of these trials - almost pre-

cisely the same number (14) as there were control trials in which the transition occurred in the 0.65–

0.7s interval; this result suggests that the true transitions that occurred during this interval resulted

in gaping that was unaffected by the laser perturbation.

Finally, we performed one last convergent test of our central hypothesis that 0.5s perturbations

delay gaping only if delivered prior to the neural transition into palatability-related firing – a test that

involved examination of late 0.5s perturbations. As can be seen in Figure 5A, this perturbation

delayed gaping only very slightly – but significantly – compared to control (no-laser) trials from the

same session. We hypothesized that this extremely modest effect might reflect the fact that, in a

small subset of these trials, the late 0.5s perturbation may have preceded CP, the GC ensemble tran-

sition into palatability-related firing. Change-point analysis revealed this to be the case: in a few (20/

168, 12%) of the late 0.5s perturbation trials, the perturbation arrived before CP. When these trials

were removed from the analysis, 95% of the difference between the gaping latency in late 0.5s per-

turbation trials and control trials vanished.

As a whole, our results demonstrate that the impact of brief optogenetic perturbation of GC

activity depends both on when that perturbation occurs and on precisely what state the brain has

achieved prior to that perturbation. This result provides support for our overarching hypothesis that

the onset of palatability-related population activity in GC marks a discrete shift in taste processing -

the ensemble transition in taste-related firing that predicts behavior is in fact the emission of the

decision to gape.

Discussion
Sensation and action are inextricably linked in cortical taste responses. Neurons in gustatory cortex

(GC), the primary sensory cortical area for taste, exhibit responses that, across 1.5s of post-stimulus

time, shift from first reflecting stimulus identity to predicting a rat’s consumption decision

(Katz et al., 2001; Fontanini and Katz, 2006; Sadacca et al., 2012; Maier and Katz, 2013). With

ensemble analysis, these otherwise gradual-seeming changes in firing rates are revealed to be swift,

coherent transitions between population activity ‘states’ (Jones et al., 2007) - transitions that vary

widely in latency from trial to trial, and that are therefore effectively blurred out in stimulus-aligned

averages. Despite (in fact, because of) their highly variable latencies, these ensemble firing states

reliably precede the onset of ingestion-egestion mouth movements by ~0.2–0.3s (Sadacca et al.,

Figure 7 continued

orofacial behavior varies from trial to trial, depending on the progress of taste dynamics. (A) Distribution of

change-points into the palatability-related ensemble state (CP) identified in Qui trials (in green). We could not

examine the time period of perturbation, from 0.7s to 1.2s, because firing during this period was deeply

confounded by laser-induced inhibition: as we concatenated the pre- and post-perturbation periods, an

abnormally large number of change points (mostly artifacts, see text for details) are localized to the time of

splicing (compare to change points identified in control trials, in grey). Due to these artifacts, we ignored trials

with change points within 50ms of laser onset (i.e, between 0.65s and 0.7s). (B) Correlation (quantified in terms of

coefficient of regression) of trial-averaged firing rates of GC neurons with palatability of the taste stimuli in two

subsets of trials - those in which the ensemble transition into palatability-related firing (CP) was identified to have

occurred prior to perturbation (blue line), and those in which it did not (green line). Coefficients significantly

different from 0 at the 5% level are marked by dots; these coefficients differ from 0 only within the trials in which

the palatability-related ensemble state appeared before the onset of perturbation. (C) The impact of middle 0.5s

perturbation on the onset of aversive orofacial behavior, quantified in terms of the delay of behavior onset

compared to control trials within the same session (x-axis) (*: p<0.05, **: p<0.01, ***: p<0.001). The top bar, which

is all middle 0.5s perturbations aggregated, is repeated from Figure 5A. The middle 0.5s perturbation delays the

onset of gaping, but only if it begins before the palatability-related ensemble transition (measured by the

palatability change point, CP) - in fact, on trials where palatability information appears before the laser has been

switched on (i.e, before 0.65s), gaping begins earlier than on control trials (as expected, see text).

DOI: https://doi.org/10.7554/eLife.45968.008

Mukherjee et al. eLife 2019;8:e45968. DOI: https://doi.org/10.7554/eLife.45968 14 of 32

Research article Neuroscience

https://doi.org/10.7554/eLife.45968.008
https://doi.org/10.7554/eLife.45968


2016; Li et al., 2016), predicting not only the nature but the latency of these movements in single

trials.

Here we show that GC neural ensemble dynamics described above are not merely ‘efferent copy’

reflections of processes occurring elsewhere, but are instead an indication of processing that is (to

at least some extent, see below) intrinsic to GC. Brief (0.5s) optogenetic perturbations of GC neu-

rons impact the timing of the animal’s decision to expel a bitter taste in the mouth, but only if those

perturbations begin before the neural ensemble has shifted to palatability-related firing. Thus, a

unique moment in time (the shift of population activity to reflect stimulus palatability), despite being

enormously variable in latency from trial-to-trial, reflects a tipping point in taste processing; cortical

disruptions have no impact beyond this tipping point, as the control of the ongoing movements

themselves shifts elsewhere (presumably to brainstem pattern generators that control the ingestion-

egestion mouth movements themselves in real time, see Travers et al., 1997; Travers et al., 2000).

A massively interconnected network of forebrain regions underlies or reflects taste processing - in

addition to GC, this network includes the central and basolateral nuclei of the amygdala (CeA and

BLA, Nishijo et al., 1998; Grossman et al., 2008; Fontanini et al., 2009; Sadacca et al., 2012), hip-

pocampus (Ho et al., 2011), lateral hypothalamus (LH, Yamamoto et al., 1989; Li et al., 2013), the

bed nucleus of the stria terminalis (BNST, Norgren, 1976; Li and Cho, 2006), the parabrachial nuclei

of the pons (Baez-Santiago et al., 2016), and the nucleus of the solitary tract (NTS, Di Lorenzo and

Lemon, 2000). Several of these brain regions have been shown to integrate sensory and motor

aspects of taste stimuli in their responses (Sadacca et al., 2016; Baez-Santiago et al., 2016;

Denman et al., 2019). Furthermore, multiple forebrain regions send direct descending feedback to

the primary brainstem taste regions, influencing both their activity (Di Lorenzo, 2000; Cho et al.,

2003; Li et al., 2005) and generation of orofacial movements (Zhang and Sasamoto, 1990;

Berridge and Valenstein, 1991; Shammah-Lagnado et al., 1992; Travers et al., 1997). Given this

widely distributed network of processing nodes, it is to be expected that perturbation (or disruption

over long periods of time) of one (or a few) of the participatory nodes will initiate homeostatic mech-

anisms that minimize the resultant degradation of behavior; thus, it is unsurprising that rodents

remain able to produce gapes following ablation (King et al., 2015) or extended disruption of GC

(Li et al., 2016) - in fact, the basic gaping response to quinine is produced even in decerebrate rats

(Grill and Norgren, 1978b). Nonetheless, we find that brief perturbations of GC do significantly

alter these behaviors (as do lesions of other areas, such as gustatory thalamus; Grill and Norgren,

1978b), proving that far more than the minimal circuit is involved in triggering them in situ.

Lengthy disruptions of GC activity appear to have lasting effects that can confound the interpre-

tation of their behavioral impact - our 2.5s long optogenetic perturbations delayed the onset of gap-

ing even in control (no-laser) trials. Such spillover effects may reflect cellular or network-level

processes, but they cannot be attributed to cell death caused by the perturbation: in our case, simi-

lar optogenetic protocols have been shown to have no observable impact on cell integrity in GC,

even for perturbations much longer than 2.5s (Maier et al., 2015; Flores et al., 2018); furthermore,

the same rats in later sessions produced normally-timed orofacial responses on the control trials. We

suggest that, to at least some degree, such effects on behavior reflect the widespread nature of

taste processing, and the status of GC as one participatory node.

Despite being just one node of this large network of brain regions, our brief perturbations reveal

a temporally-specific role of GC in the driving of orofacial behavior - a role that could not be dis-

cerned through wholesale disruption of activity. This conclusion is bolstered by findings showing

that: (1) even early - that is pre-transition - GC perturbations delay gaping; and (2) palatability-

related firing does not immediately return to normal levels following cessation of perturbation (as

would be expected if GC was simply an output path reflecting processing performed elsewhere).

Our 0.5s perturbations reveal that GC contributes to the instigation of a gaping bout but plays no

role in the maintenance of gaping once it begins. These data suggest a dynamic flow of processing

control within the larger taste network: modulatory signals propagate out of GC (signals that likely

develop under the guidance of basolateral amygdala; Piette et al., 2012) to influence the choice of

a motor program in brainstem circuits, which is then implemented and controlled locally.

At its heart, the proposed role of cortex in this model of taste processing has deep similarities to

the role of neuromodulatory systems in the circuits underlying Aplysia feeding (Dacks and Weiss,

2013), leech swimming (Crisp and Mesce, 2004), control of gastric rhythms in the lobster and crab

(Marder and Bucher, 2007), and rat whisking (Hattox et al., 2003). In each of these sensorimotor
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systems, rhythmic motor programs are produced autonomously by multi-functional pattern generat-

ing circuits – that is, the patterns can be observed even when the pattern generators are isolated

from most of the rest of the nervous system. In situ, however, the specific rhythms produced by the

pattern generators are influenced by descending ‘modulatory’ signals of a neural or hormonal

nature. We argue that the post-transition output of GC, while a neural code in its own right, is just

such a modulatory influence on the brainstem central pattern generator for orofacial behaviors (see

also below).

The discreteness, coherence and inter-trial variability of the ensemble dynamics suggests that GC

functions as an attractor network in playing this role (Hopfield, 1982; Amit, 1992): (1) attractor net-

works with multiple quasi-stable states can reproduce the sudden switches of activity seen in GC

ensembles (Miller and Katz, 2010); (2) the transition durations and state lifetime statistics of GC

population dynamics are more in line with a dynamically switching attractor model than linear mod-

els of firing rate evolution (Jones et al., 2007; Sadacca et al., 2016); and (3) nonlinear attractor-

based circuits that exploit the noise inherent in neural processing more optimally perform the deci-

sion to ingest or expel a taste, which rats need no training to perform, than do linear integrating cir-

cuits (Miller and Katz, 2013). Our optogenetic protocol, with its mix of inhibitory and excitatory

effects, presumably introduces a transient disruption in such attractor dynamics; such a perturbation

is strong enough to transiently ‘knock’ the network out of stability, but only if it hasn’t already set-

tled into the eventual, decision-related stable state.

Our data demonstrate that perturbations beginning 50ms after ensemble neural transitions to

palatability-related firing have no impact on gaping. Given that gaping lags 0.2–0.3s behind this

transition (Sadacca et al., 2016), it appears that GC becomes irrelevant to gaping even before

actual gaping has begun. Inherent limitations of change-point modeling in 0.5s perturbation trials

made it impossible to directly test smaller intervals than 50ms, but our analyses suggest that it is

likely that gaping was unperturbed by middle 0.5s perturbations even in trials in which transitions

occurred between 0.65 and 0.7s. While one could hypothesize reasons that perturbation beginning

very soon after an ensemble transition should be effective in delaying gaping – the fact that transi-

tions between quasi-stable states of GC processing, however sudden, cannot be instantaneous (time

constants of neural firing ensure that there is some finite, albeit small amount of time across which

the ensemble makes the ‘jump’ from one state of activity to another), for instance, and the fact that

our change-point analysis technique provides only a noisy estimate of state transition times – our

data and analyses suggest that GC perturbation becomes ineffective at delaying gaping almost

immediately following the transition. GC appears to emit a ‘gape signal’, after which it is no longer

involved in the implementation of that signal.

In this study, we focused exclusively on gapes, the orofacial responses that rats make to expel

aversive tastes from the oral cavity (pilot attempts to implant EMG electrodes in deeper muscles

that control the distinctive consumption behaviors that occur in response to palatable tastes resulted

in unacceptable levels of distress for the animals). This means that it remains possible that gapes

and ‘palatable taste acceptance behaviors’ are produced by separate cortical mechanisms

(Peng et al., 2015), and that therefore our results are informative only about aversion. We consider

this possibility highly unlikely, however, for several reasons: (1) GC ensemble firing reflects the palat-

ability of both appetitive and aversive tastes (Figure 3, Katz et al., 2001; also see Fonseca et al.,

2018), even if palatability is modified by learning (Moran and Katz, 2014); (2) the latency and inter-

trial variability of the onset of palatability-related ensemble activity is similar for palatable and aver-

sive tastes (Sadacca et al., 2016); (3) there is considerable overlap in the brainstem circuits that

underlie the distinct palatability-related orofacial behaviors (Travers et al., 2000; Chen and Travers,

2003; Venugopal et al., 2007; Moore et al., 2014), resulting in similar latencies in the onset of

these behaviors after taste delivery (Travers and Norgren, 1986); and (4) independent analysis has

suggested that orofacial behaviors reflecting aversiveness and palatableness lie on a single paramet-

ric continuum (Breslin et al., 1992). These lines of evidence are consistent with the suggestion that

cortex plays similar roles in the initiation of acceptance and rejection behaviors, which leads us to

speculate that the transition of GC population activity to reflect stimulus palatability marks a shift in

processing control, irrespective of the palatability of the tastant.

In summary, the balance of our results demonstrate a dynamic role for cortex in the processing of

tastes; because this role involves ensemble activity states with variable trial-to-trial latencies, it can-

not be discerned using standard analyses that average across trials – trial-specific analyses, such as
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those underlying the results in Figure 7, supersede across-trial analyses such as those described in

Figure 3. They reveal the importance of a unique moment in time that, despite being massively vari-

able in latency from trial to trial, denotes a reliable shift of processing control - a modulatory signal

emerging (at least partly) from cortical circuits that is passed (presumably) to a brainstem central pat-

tern generator. These results suggest an attractor-like network of activity (although they could also

be consistent with networks with thresholds), potentially spread across interconnected brain regions,

underlying the animal’s decision to ingest or expel the tastant in the mouth - perturbations to this

network can disrupt its functioning transiently, but only if it has not yet settled into the final, behav-

iorally-relevant stable state.

Materials and methods

Experimental design
Subjects
Adult, female Long-Evans rats (n = 5; 275–300g at time of virus injection; 300–350g at time of elec-

trode implantation) served as subjects in our study (in our hands, female Long-Evans rats have

proven more docile than males, but we have observed no sex differences in the basic cortical

dynamics of taste responding). The rats were housed in individual cages in a temperature and

humidity controlled environment under a 12:12 hr light:dark cycle. All rats were given ad libitum

access to food and water before experiments started. Rats were weighed daily and observed to

never drop below 80% of their pre-surgery weight. All experimental methods were in compliance

with National Institutes of Health guidelines and were approved in advance by the Brandeis Univer-

sity Institutional Animal Care and Use Committee.

We also performed a set of control analyses on data taken from 10 adult, female Long-Evans rats,

previously published in Sadacca et al. (2016) and Li et al., 2016.

Virus injections
We injected adeno-associated virus (AAV9) coding for ArchT and green fluorescent protein (AAV9-

CAG-ArchT-GFP, 2.5 � 1011 particles per mL) into GC. This AAV serotype has been shown to effec-

tively spread to and infect all cell types (Aschauer et al., 2013) in regions including GC

(Maier et al., 2015; Li et al., 2016). As our critical tests involved within-session comparisons of dif-

ferent inactivation timings, there was no need for a separate group of control rats injected with virus

coding for GFP alone (see below).

Rats were first anesthetized using a ketamine/xylazine mixture (1mL ketamine, 0.05mL xylazine/kg

body weight) delivered via an intra-peritoneal injection. Supplemental anesthetic injections were

given as needed. The head was shaved, cleaned with an iodine solution and 70% ethanol, and posi-

tioned into the stereotax. We then excised the scalp and cleaned and leveled the top of the skull.

Small craniotomies were drilled bilaterally over the location of GC (anteroposterior +1.4mm from

bregma, mediolateral ±5mm from bregma; Paxinos and Watson, 2007), the meningeal tissues were

gently excised, and virus was infused.

We lowered a glass micro-pipette (tip diameter: 10–20mm) filled with the infusate (virus particles

suspended in a solution of phosphate-buffered saline (PBS) and Oregon Green 488 (Invitrogen) into

the centers of the craniotomies, and performed a sequence of 3 injections bilaterally into GC: at 4.9,

4.7 and 4.5mm ventral to dura, virus was injected in discrete pulses (44 pulses/location, with 25nL

per pulse, 7s between consecutive pulses = 1.1mL total volume injected per depth) controlled by a

Nanoject III microinjector (Drummond Scientific). Following each unilateral set of injections, the

micropipette remained in place for 5 min, after which it was smoothly removed over the course of 1

min so that fluid would not spread back up the micro-pipette track. Craniotomies were then sealed

with silicone (Kwik-Sil, WPI), the scalp was sutured, and the rat was given analgesic (meloxicam

0.04mg/kg), saline and antibiotic (Pro-Pen-G 150,000 U/kg) injections. Similar antibiotic and analge-

sic injections were delivered 24 and 48 hr later.

Rats were allowed to recover for 4–6 weeks from this procedure, in order to ensure adequate

infection and subsequent expression of optical channels (ArchT) and GFP.
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Opto-trode, intra-oral cannula and EMG electrode implantation
After recovery from virus infusion surgery, rats were again anesthetized, and implanted with bilateral

GC opto-trode bundles. Each bundle consisted of either 30 or 32 recording microwires (0.0015inch

formvar-coated nichrome wire; AM Systems) and one optical fiber (0.22 numerical aperture, 200mm

core, inserted through a 2.5mm multimode stainless-steel ferrule; Thorlabs). The microwire bundle

was glued to a custom-made electrode-interface board (San Francisco Circuits) and connected to a

32 channel Omnetics connector. In the case of the 30 microwire bundles, the final two pins were

connected to two electromyography (EMG) electrodes (PFA-coated stainless steel wire; AM Sys-

tems) implanted into the digastric muscle under the jaw. Finally, the microwires and optical fiber

were connected to a custom-built 3D printed microdrive that allowed the entire assembly to be

moved ventrally after implantation. The microwire tips were located 0.5mm ventral to the tip of the

optical fiber - this maximized the likelihood that the electrodes recorded the activity of neurons that

were illuminated by the laser. For more information on the implanted apparati and associated elec-

tronics, see Katz et al. (2001), Sadacca et al. (2016) and Li et al. (2016), as well as

the Katz Lab webpage.

Rats were anesthetized, after which we shaved and cleaned the scalp and situated the head in

the stereotax. After excising the scalp and leveling the skull, we drilled five self-tapping screws into

the skull for supporting and grounding the opto-trode bundles. The silicone seal was removed from

the craniotomies, as were any tissues that had grown in since the prior surgery. We then slowly (over

5–10 min) lowered the opto-trode bundles to a depth of 4.3mm from the dura mater (0.2mm above

the most dorsal location of virus injection). The ground wires were wound tightly around the skull

screws and the bundles were cemented in place with dental acrylic. The optical fiber was looped so

that the ferrule could be cemented away from the microdrive - this configuration reduced the stress

on the microdrive when the animal was later plugged in to the experimental apparatus.

Once the opto-trode assembly was cemented in place, the rat was removed from the stereotax

and implanted with a single (right-side) intra-oral cannula (IOC) for controlled delivery of tastants on

the tongue. IOCs were made with thin polyethylene tubing and inserted in the space between the

first maxillary molar and the lip, through the masseter muscle and inside the zygomatic arch, and out

through the opening in the scalp (Phillips and Norgren, 1970; Katz et al., 2001) The IOC was

topped with a plastic connector that could be attached to the taste delivery apparatus, and

cemented in place with dental acrylic.

The EMG electrodes were channeled down the left side of the face (opposite from the IOC); after

the overlying skin had been teased away from the belly of the digastric muscle, one end of each

EMG electrode was tied to a suture needle, which was then inserted into the muscle, such that the

electrode could be pulled into the desired position (for more details, see Loeb and Gans, 1986;

Travers and Norgren, 1986; Dinardo and Travers, 1994; Li et al., 2016). The electrode wires were

trimmed and held in place with vetbond tissue adhesive (3M) and the skin covering the anterior

digastric was sutured back into place. Finally, a modified falcon tube was glued to the front of the

headcap as a protective cap, and bacitracin ointment was applied all around the base of the head-

cap and over the wound under the jaw.

Rats were postoperatively injected with analgesic (Buprenophine 0.05mg/kg), saline, and antibi-

otic (Pro-Pen-G 150,000 U/kg). Similar antibiotic, saline and analgesic injections were delivered 24,

48 and 72 hr later, and bacitracin ointment was reapplied. The rats were handled every day and

allowed to recover to 90% of their pre-surgery weight (at least 7 days after surgery) before being

introduced to the experimental apparatus.

Habituation
Following recovery from the opto-trode implantation surgery, we habituated rats to passive water

deliveries for 3 days before beginning data collection. In these daily habituation sessions, we

attached the rats to the electrophysiology acquisition system, laser patch cables and taste delivery

apparatus, and infused 100 pulses of distilled water (~40mL per pulse; 15s inter-pulse interval) into

the animal’s oral cavity through the IOC. Starting with the second habituation day, we also placed

rats on a mild water restriction schedule - 20mL of water (not including the 4mL delivered during

habituation sessions themselves) per day. This water restriction schedule was maintained for the

duration of the study (~7 days per animal).
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Opto-trode bundles were driven deeper after each habituation session using the microdrive built

into the assembly; by the end of the habituation period, the distance traveled was 0.2mm, such that

the tips of the electrodes lay within the region of GC infected with the virus.

Passive taste administration and laser stimulus delivery
We used 2 concentrations of palatable sucrose (30mM: Dilute Sucrose (Dil Suc), 300mM: Concen-

trated Sucrose (Conc Suc) and of aversive quinine-HCl (0.1mM: Dilute Quinine-HCl (Dil Qui), 1mM:

Concentrated Quinine-HCl (Conc Qui) dissolved in distilled water as the stimuli in our experiments.

Concentrated sucrose and quinine evoke strongly valenced orofacial responses; the dilute stimuli are

of similar but far less extreme palatability – a fact that aided in the analysis of palatability-related

neural firing (Li et al., 2016; see also below). The taste delivery apparatus consisted of gently pres-

surized tubes containing taste solutions; the tubes converged upon a manifold of finer polyamide

tubes that could be inserted into (to 0.5mm past the end of) the IOC, thus eliminating any chance of

mixing. The manifold could be locked securely into the dental acrylic cap. The tastes were then deliv-

ered under slight nitrogen pressure - this taste delivery protocol has been consistently shown to

ensure reliable tongue coverage at short latencies (Katz et al., 2001; Sadacca et al., 2016; Li et al.,

2016).

Data were collected during sessions in which GC was briefly perturbed during tasting trials. In the

majority of these trials (‘0.5s perturbation’ trials), the laser was turned on for 0.5s at either 0.0, 0.7,

or 1.4s post taste delivery (‘early’, ‘middle’ and ‘late’ 0.5s perturbation trials; 25% of the trials each);

the remaining 25% of the trials were no-laser controls. Note that all critical tests were comparisons

of the impacts of different trial types within single sessions (whenever ‘control trials’ are mentioned,

we will be referring to no-laser trials from the same session), a fact that obviated the need for ‘empty

virus’ control rats: we are not interested in a simple laser vs no-laser difference, but rather are asking

whether two identical (but differently timed) perturbations have different impacts. All effects were

differences observed between trial types in the same rat, which means that they necessarily were

not the result of general, confounding impacts of particular treatments – they were by definition dif-

ferences between different timings of neural perturbation, evinced under identical conditions. None-

theless, we did (for completeness sake) give a subset of rats a second session in which 50% of the

trials involved full-trial (2.5s) perturbations (and the other 50% were no-laser control trials). One

experimental session was run per day; when rats were run for two or more sessions, we counterbal-

anced session type – that is, 1

2
of these rats experienced 2.5s perturbations in the first session and

0.5s perturbations the following day, and 1

2
vice versa (see below).

Sessions with 2.5s perturbations consisted of 8 sets of trials (two sets per taste - one with the

lasers on and one with no laser). Each set included 15 trials, for a total of 120 trials per session. Simi-

larly, sessions with 0.5s perturbations included 16 sets of trials (four sets per taste - early, middle,

and late 0.5 perturbations, and no-laser control trials). To keep the total number of trials per session

from ballooning (a basic concern in taste research is the awake animal’s finite appetite), each set

included only eight trials (total, 128 trials per session). Again, we moved the opto-trode bundle

0.075mm ventrally (deeper into GC) prior to each session, to ensure that we obtained fresh units in

every session. Trials were delivered in pseudo-random order and each involved delivery of ~40mL of

fluid through the IOC, for a total volume of 5mL per session.

We used a 532 nm, DPSS laser (Laserglow Technologies), connected to the implanted ferrules

using standard FC/PC patch cables (Thorlabs), for all optogenetic perturbations. Taste and laser

delivery were controlled through a Raspberry Pi computer. The strength of the laser input was cali-

brated, prior to opto-trode implantation, to yield an illumination power of 40mW at the tip of the

optical fiber. This output power perturbs all ArchT infected neurons in a 1mm3 sphere below the tip

of the fiber in vivo (Han et al., 2011; Yizhar et al., 2011) - a sphere that encompasses about 33% of

GC in the caudal-rostral axis (Kosar et al., 1986; Maier et al., 2015; Li et al., 2016). These parame-

ters have previously been shown to reduce the activity of ArchT+ cortical neurons with minimal

latency and damage (Maier et al., 2015; Li et al., 2016; Flores et al., 2018).

Acquisition of electrophysiological data
We collected 30,000 voltage samples per second from each implanted neural and EMG electrode,

using a 32-channel analog-to-digital converter chip (RHD2132) from Intan Technologies. These chips
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are capable of recording voltage signals over a wide range of frequencies (0.1Hz-20kHz) and ampli-

tudes (microvolts to millivolts), thereby enabling us to record neural and EMG signals through the

same hardware system. The experimental chamber was ensconced in a Faraday cage that shielded

recordings from external electrostatic and electromagnetic influences.

Histology and evaluation of GFP expression
In preparation for histology, rats were deeply anesthetized with an overdose of the ketamine/xyla-

zine mixture, after which DC current (7mA for 7s) was passed through selected microwires, marking

the area below the electrode tips. We perfused the rats through the heart with 0.9% saline followed

by 10% formalin and harvested the brain. The brain tissue was incubated in a fixing mixture of 30%

sucrose and 10% formalin for 7 days before GC was sectioned into 50mm coronal slices.

We rinsed the slices 3 times with 1X-PBS over 15 min and permeabilized them in a 0.3% Triton

X-100 + 1% normal Donkey serum + 1X-PBS blocking solution for 2 hr at room temperature. We

replaced the blocking solution with primary antibody solution (1:500 anti-GFP-rabbit IgG; Life Tech-

nologies) for 12 hr at 4˚C. After incubation with the primary antibody, the slices were rinsed with 1X-

PBS 3 times over 15 min followed by incubation with the secondary antibody incubation of (1:200

Alexa Flour 488 donkey anti-rabbit IgG (H + L); Life Technologies) for 12 hr at 4˚C. After a final set of

rinses with 1X-PBS (3 times over 15 min), we mounted the slices on charged glass slides and cover-

slipped them with Fluoromount Aqueous Mounting Medium. Slices were imaged with a Keyence

fluorescence microscope to confirm successful virus infection and opto-trode location for each

animal.

The spread of AAV in GC was evaluated via the expression of GFP, as has been done previously

(Maier et al., 2015; Li et al., 2016; Flores et al., 2018).

Data analysis
Most statistical analyses in this paper were performed using Bayesian methods implemented in the

PyMC3 probabilistic programming package (Salvatier et al., 2016). Although the far more common

practice in the literature is to implement analyses similar to ours in a frequentist/maximum likelihood

estimation (MLE) paradigm, the Bayesian approach offers several advantages. For one, Bayesian sta-

tistics provides a natural way to infer the entire joint posterior distribution of the model parameters

in the light of the data at hand. This allows the Bayesian methodology to make robust inferences

without being constrained by the sampling-related assumptions of parametric frequentist statistics

or the lack of statistical power of non-parametric frequentist techniques. Relatedly, the flexibility of

the Bayesian framework allows the construction of statistical models appropriate for the data-gener-

ating process that can include non-standard (such as multi-modal) parameter distributions. Such

models (of which we use several in this study) often cannot be accommodated by frequentist

approaches at all, even if they are ‘true’ descriptions of the underlying generative process. Finally,

despite working with highly flexible models, Bayesian approaches provide the added advantage of

using model priors to regularize parameter estimates - we use ‘weakly informative’ priors in our anal-

yses that are known to reduce the susceptibility of the inference process to noise by penalizing

model flexibility (unless supported by the observed data). (For a detailed comparison of frequentist

and Bayesian estimation in statistics and a discussion of weakly informative priors, please refer to

Gelman et al., 2013 and McElreath, 2015). We will describe the properties of each statistical model

used in our analyses, and our specific prediction(s) for each such model, in the sub-sections below.

Recent advances in statistical computing have made it possible to circumvent the analytical chal-

lenges that have historically plagued the application of Bayesian techniques to many practical prob-

lems. In particular, new Markov Chain Monte Carlo (MCMC) techniques have been developed to

facilitate arriving at an approximation to the posterior distribution of the model parameters by draw-

ing samples from it. We performed inference in our Bayesian probabilistic models using the No-U-

Turn-Sampler (NUTS; Hoffman and Gelman, 2014), a state-of-the-art, self-tuning Hamiltonian

MCMC algorithm that efficiently draws samples from the posterior distribution described by the

data at hand. The performance of the sampler can be evaluated by running several independent

sampling chains - a properly tuned sampler that explores the parameter space in an unbiased man-

ner and draws samples from the correct posterior distribution will result in all the chains ‘converging’

to the same distribution. Statistically, this is evaluated by computing the Gelman-Rubin R̂ statistic
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(Gelman and Shirley, 2011) across all the sampling chains. R̂ close to 1 indicates that the sampling

runs have converged and produced samples from the same posterior distribution (we allow values

from 0.99 to 1.01). Each analysis finally reports the uncertainty for the inferred parameters as 95%

credible intervals - essentially the interval that covers 95% of the probability mass under the poste-

rior distribution of the parameters. Credible intervals inherently serve as significance tests in this set-

ting - for instance, if the 95% credible interval for an estimated parameter does not overlap 0, we

can conclude that this parameter is different from 0 at the 5% level of significance.

Single unit isolation
We followed a semi-supervised spike sorting strategy: intra-cranial voltage data was filtered

between 300–3000Hz, and a Gaussian Mixture Model (GMM) identified potential clusters which

were refined manually. For more details on our spike sorting methods and its efficacy in isolating sin-

gle units, please consult Mukherjee et al. (2017). Our spike sorting code is freely available at

https://github.com/narendramukherjee/blech_clust (Mukherjee, 2019; copy archived at https://

github.com/elifesciences-publications/blech_clust).

Impact of optogenetics on neural firing
We built a hierarchical Poisson generalized linear model (GLM) for the spiking of a single neuron to

evaluate the impact of optogenetic perturbations on firing. Hierarchical GLMs provide precise esti-

mates of condition-specific model parameters, especially when they are expected to vary around

condition-agnostic means. In our case, the model parameters are the mean firing rates for every

taste and optogenetic perturbation condition, that are in turn composed of taste- and perturbation-

specific effects (‘random effects’) and means across tastes and perturbation conditions (‘fixed

effects’). Coupled with the Poisson distribution’s suitability for count (here spikes) data, this model

can accurately estimate the change in neural firing induced by perturbations.

For each neuron n in our dataset, we aggregated the spikes produced on trial i of taste T in opto-

genetic perturbation condition O. There were four levels for T corresponding to the tastes in our

dataset: Dil Suc, Conc Suc, Dil Qui and Conc Qui. The number of levels for O depended on the type

of optogenetic perturbation being delivered in the session: in the 2.5s perturbation sessions, O had

two levels, corresponding to the laser off (control) and on trials respectively; the 0.5s perturbation

sessions had 3 types of perturbation trials - starting at 0s (early 0.5s), 0.7s (middle 0.5s) or 1.4s (late

0.5s) after taste delivery - and therefore had six levels for O (a ‘laser off-laser on’ pair for each of the

3 types of perturbations). Our model posits that the aggregate number of spikes Sn;i;T;O is Poisson-

distributed with a mean (firingn;T;O) that depends on the taste (�T ), optogenetic perturbation (�O)

and an interaction between the taste and optogenetic perturbation (�T ;O). As described above,

owing to the hierarchical structure of the model, each of these effects is further composed of a fixed

effect and a random effect. Using weakly informative Gaussian and Half-Cauchy priors for the mean

and variance parameters respectively, our model formally says:

Fixed effects : F1;F2;F3 ~Nð0;10Þ

Variances : s1;s2;s3 ~Half Cauchyð1Þ

Taste� specific means : �T ~NðF1;s1Þ

Optogenetics� specific means : �O ~NðF2;s2Þ

Taste� and� optogenetics� specific means : �T;O ~NðF3;s3Þ

Mean firing rateðwith log linkÞ : logðfiringn;T;OÞ ¼ �T þ�Oþ�T;O

Observed number of spikes : Sn;i;T ;O ~Poissonðfiringn;T ;OÞ

(1)

As explained in the introduction to the data analysis section, we used MCMC (specifically the

NUTS sampler) to sample the posterior distribution of firingn;T;O for every taste and optogenetic per-

turbation. We performed this analysis for every neuron in our dataset and finally calculated the

impact of perturbation on firing as the difference in firingn;T;O between no-laser (within-session con-

trol) and their corresponding perturbation trials. If the 95% Bayesian credible interval for these differ-

ences in firingn;T;O for a neuron did not overlap 0, we concluded that the perturbation significantly

impacted the firing of this neuron (see the introduction to the data analysis section for a discussion

of how Bayesian credible intervals inherently serve as significance tests).
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Regression of single neuron firing with palatability ranks
We analyzed, as we have done previously (Sadacca et al., 2016), the time course of palatability-

related information in the activity of single neurons by regressing their firing rates on the palatability

ranks of the tastes (Dil Suc: 3, Conc Suc:4, Dil Qui: 2, Conc Qui: 1; higher is more palatable). In order

to estimate the firing rates of neurons, we aggregated the spikes of each neuron, on a trial-by-trial

basis, in 250ms bins moved by 25ms steps. We divided the aggregate number of spikes by the width

of the bins (250ms) to obtain the near-instantaneous firing rate of each neuron across time on indi-

vidual trials.

These firing rates, of course, vary widely between neurons. Furthermore, correlations between fir-

ing rate and palatability ranks may be significantly positive (stronger firing to more palatable tastes)

or significantly negative (stronger firing to more aversive tastes). We therefore needed to perform a

2-stage transform on neural firing before we could analyze all neurons as a group in our regression

analysis. The first step was standardization - we transformed the firing rate of each neuron in each

time bin by subtracting the trial-averaged firing rate of the neuron in that time bin and scaling by its

standard deviation across trials (to get z-scores), ensuring that the firing rates of all neurons were on

a comparable scale. Next, we multiplied the standardized firing rate of each neuron by the sign of

the time-averaged Spearman rank correlation coefficient between its firing and the palatability ranks.

This ensured that the sign of the relationship of neural firing with palatability was the same for all

neurons in our dataset, but left the magnitude of that relationship unaffected.

Our statistical model treats the standardized firing rate firingt;P;i of a neuron at time bin t on trial i

of a taste with palatability rank P as Gaussian-distributed with a mean �t;P that depends linearly on

P. We defined the palatability index in time bin t, bPalatability;t, as the change in �t;P induced by a unit

change in P. bPalatability;t is, therefore, the slope of the line that explains �t;P in terms of P, an estimate

of the strength of the firing-palatability relationship. Using weakly informative Gaussian and Half-

Cauchy priors for the mean and variance parameters respectively, our model formally says:

Prioronpalatability index : bPalatability;t ~Nð0;1Þ

Prioronobservation noise : s~Half Cauchyð1Þ

Mean firing rate : �t;P ¼ bPalatability;t �P

Firing rate : firingt;P;i ~Nð�t;P;sÞ

(2)

We used MCMC to infer the posterior distribution of bPalatability;t across all neurons in our dataset

(again, see above). The firing rate transformations defined previously put the activity of all neurons

on the same scale and allowed us to infer a single posterior distribution of bPalatability;t across all the

neurons in our dataset. We repeated this regression for each time bin t from 0.25s before to 1.5s

after taste delivery, obtaining posterior estimates of bPalatability;t specific to each time bin. Finally, we

normalized bPalatability;t by subtracting its average baseline value (from 0.25 to 0s before tastes). We

report the baseline-normalized bPalatability;t as the palatability index bPalatability.

Characterizing the time course of the palatability index
In a manner similar to our previous work (Sadacca et al., 2016), we modeled the time course of the

posterior mean of the single neuron palatability firing index, bPalatability, with a logistic sigmoid. The

difference between the lower and upper asymptotes of the S-shaped logistic function fits the total

rise in bPalatability across time, while its slope describes the rate of this rise. As bPalatability was already

normalized to its average pre-stimulus value, we set the lower asymptote of the logistic function to

0. With weakly informative Gaussian priors (restricted to positive values) on the upper asymptote (L),

slope (k) and inflection time (t0, ms post taste delivery) of the logistic sigmoid, our model is as

follows:
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Prioronupperasymptote : L~
Nð0;0:1Þ L>0

0 otherwise

�

Prioronslope : k~
Nð1;1:0Þ k>0

0 otherwise

�

Prioron inflectiontime : t0 ~
Nð675ms;75msÞ t0>0

0 otherwise

�

Prioronobservationnoise : s~Half Cauchyð1Þ

Meanpalatability index : bPalatabilityðtÞ~Nð L

1þe�kðt�t0Þ
;sÞ

(3)

We defined the peak of the palatability firing index, tpeak, as the time (post taste delivery) when

bPalatability reached 95% of its maximum value, L. We transformed the posterior distributions of L, k

and t0 to get tpeak (inferred using MCMC) as follows:

tpeak ¼
ln 95

5

k
þ t0 ¼

ln19

k
þ t0 (4)

We performed this analysis on aggregates of control trials, and for comparison we performed the

identical analysis separately on early, middle and late 0.5s perturbation trials. Note, however, that

these latter analyses can only be interpreted with great caution, because they violate the basic sta-

tionarity assumption of curve fitting – the analysis assumes that all of the data from which the func-

tion is to be fit were pulled from the same conditions, and thus they may reasonably be thought to

reflect a single function; the sudden onset of the laser-driven perturbation necessarily alters those

conditions, as does the sudden end of that perturbation. In addition, the standard practice of using

Gaussian-distributed observation noise in curve fitting (both in our Bayesian analysis and in least-

squares based approaches) leaves the fitted function vulnerable to outliers that are bound to

emerge if the data are non-stationary; for instance, the late 0.5s perturbations impact bPalatability well

after its peak (Figure 3A3) - but trying to fit bPalatability in this condition with a single sigmoid affects

both tpeak and L, features of the fitted sigmoid that are attained earlier in time (Figure 3C). The con-

trol (no-laser) trials as well as the 2.5s perturbation trials do not have laser onset/offset during the

1.5s window subjected to the palatability analysis and thus, do not violate this assumption.

The slopes of these fits are thus probably untrustworthy; in fact, our results and previously pub-

lished work (Sadacca et al., 2016) demonstrate that even the slope of control data is an artifact of

across-trial aggregation, and unrepresentative of single-trial data. However, despite the fitted func-

tion’s susceptibility to outliers, the height (L) and latency (tpeak) of the asymptote of the sigmoid are

features that can be reasonably interpreted for the majority of the 0.5s perturbation conditions, and

we focus upon these properties in the Results and in Figure 3.

Modeling and change-point identification in ensemble firing data
As described in the Introduction, previous analyses reveal that rat GC population activity in response

to a taste consists of a sequence of 3 coherent, abruptly-appearing ensemble states (Katz et al.,

2001; Jones et al., 2007; Sadacca et al., 2012; Sadacca et al., 2016; Li et al., 2016) in which firing

rates ‘code’, in turn, taste presence, taste identity, and taste palatability; the transition into this last

state has particular relevance for the prediction of palatability-related behavior in single trials, and is

the subject of this study. While identifying these sequences typically requires several forward and

backward passes through a dataset made up of many identical (i.e., unperturbed) trials, the work

already published on the nature of these state sequences (see also Jones et al., 2007 and

Moran and Katz, 2014) renders it possible (for the purposes of the current study) to simplify the

analysis by more concretely defining this process as involving ensemble firing change points

between states having the following properties (also see Figure 6):

1. Detection state: a single distribution of population activity for all the tastes, indicating taste
presence on the tongue.

2. Identity state: two distinct distributions of population activity, for the two taste identities in
our experiments (Suc and Qui).
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3. Palatability state: four distinct distributions of population activity, for the four taste palatabil-
ities in our experiments (Dil Suc, Conc Suc, Dil Qui and Conc Qui).

With this characterization we were able to design a relatively simple change-point model that

allowed us to detect these coherent transitions in population activity in individual trials. We first pre-

pared the data for the change-point model by aggregating the spikes of each neuron in each trial

into 10ms non-overlapping bins, indexing each neuron recorded in a session with a scalar i running

from 0 to the number of neurons in the session N. We then converted the aggregate spiking data to

a categorical format by marking each time bin by the index S of the neuron that spiked in that bin,

with S ¼ 0 corresponding to no spikes from any neuron. If more than one neuron spiked in a time

bin - a highly uncommon occurrence, given the relatively low firing rates of GC neurons and the

small (10ms) bins being used - we randomly selected one of the spiking neurons for assignment to

that bin (Jones et al., 2007; Sadacca et al., 2016).

With the (processed) categorical spiking data in hand, we now designed the change-point model

to describe the ensemble firing in each of the three states (listed above) as categorical distributions

with N þ 1 emissions, with 1, 2 and 4 such distributions corresponding to the detection, identity and

palatability states respectively. Note that the results of this analysis are unchanged if we relax the

parameters slightly to allow for 4 ‘state 2’ distributions – that is, if we allow the Identity State to dif-

fer for the different concentrations of Sucrose and Quinine; this is probably because while many neu-

rons may code different NaCl concentrations distinctly (Sadacca et al., 2012), for other tastes the

vast majority of neurons appear to code quality rather than concentration (see, for instance,

Fonseca et al., 2018).

We analyzed 1.5s of ensemble activity post taste delivery from each of the four 0.5s perturbation

conditions in the 0.5s perturbation sessions. For the control (no-laser) trials, this corresponded to

0.0–1.5s of firing after taste delivery. On the 0.5s perturbation trials, we ignored the 0.5s during

which the lasers were on - for example, we analyzed 0.5–2.0s of firing post tastes when the lasers

were on from 0 to 0.5s. In the resultant 1.5s of activity, we assumed that the change from detection

to the identity state, CI , happens anywhere in the interval [0.2s, 0.6s] (except in the early 0.5s pertur-

bation trials, where we allowed the identity state to start earlier from 0.1s, to account for the possi-

bility that some amount of taste processing happens in GC even while the neurons are being

perturbed). The second change point, CP, from identity to palatability firing, was assumed to occur

anywhere in the interval [CI + 0.2s, 1.3s] (except in the middle 0.5s perturbation trials, where the pal-

atability state can start earlier at CI + 0.1s for the same reason). Thus, we place uniform priors over

the intervals that define CI and CP, corresponding to the timing of sudden, coherent firing rate tran-

sitions in GC ensembles (Jones et al., 2007; Sadacca et al., 2016).

While we used MCMC sampling for inference in all the statistical analyses described above, we

did not do so in the change-point model. The reason for this decision is straightforward: given our

specification of 2 change-points, the posterior distribution of CI and CP turns out to have two

modes, corresponding to different (but equivalent) ‘labels’ for the change-points. One mode labels

the first change-point as CI and the second as CP, and the second switches the ordering of the

change-points - both are valid solutions. In such situations, MCMC samplers ‘jump’ between the pos-

terior modes and fail to converge on a solution - this has been referred to as the ‘label switching’

problem (Jasra et al., 2005).

We instead used the Expectation-Maximization (EM) algorithm, a commonly used approach for

approximate posterior inference in models with latent variables. When properly initialized, EM con-

verges to one of the modes of a symmetrical posterior and avoids the label switching problem. Clas-

sically, starting from a random initialization of the model parameters, the EM algorithm repeatedly

cycles between finding the expectation (average) of the latent variables of the model (‘E-step’) and

using these expected values to arrive at a better set of parameters by maximizing the model’s likeli-

hood function (‘M-step’) (Bishop, 2016). This process is guaranteed to increase the model’s likeli-

hood at every iteration; the algorithm ends once the improvement in the likelihood of the model

tapers off.

For the process of inferring the parameters (firing rates) and latent variables (change points) of

the change-point model, we slightly modified the E-step of the EM algorithm (we left the M-step

unchanged) to directly pick the mode of the posterior over the latent variables (instead of its expec-

tation). This was done to optimize computational speed and stability - using the full EM algorithm,
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with the usual E-step (run on a subset of the data), did not change the inferred parameters

significantly.

Our EM algorithm started with a randomly chosen set of initial emission probabilities aD, aI and

aP for the categorical emissions that define the detection, identity and palatability states respec-

tively. CI and CP are the latent variables of the model that control the timing of the transition of fir-

ing-rates from aD to aI and from aI to aP. The algorithm then cycled between the following two

steps:

1. ‘Hard’ E-step: Pick the combination of the latent variables, CI and CP, that has maximum pos-
terior probability given the observed categorical spikes S and the ensemble firing probabilities
aD, aI and aP. A standard E-step would make a ‘soft’ assignment at this point by averaging CI

and CP over their respective posteriors. Instead, we make a ‘hard’ assignment by directly pick-
ing the mode of the joint posterior distribution of CI and CP.

2. M-step: Set the categorical firing probabilities for each state to values that maximize the likeli-
hood of the data given the ðCI ;CPÞ pair picked in the E-step. This is proportional to the num-
ber of emissions of each neuron in that state. For example, with St as the emission observed at
time t, the likelihood-maximizing emission probabilities of neuron n can be calculated as:

Indetectionstate : aD;n ¼

P

CI

t¼1

11ðSt¼nÞ

P

N

n¼1

P

t¼CI

t¼1

11ðSt¼nÞ

In identity state : aI;n ¼

P

CP

t¼CI

11ðSt¼nÞ

P

N

n¼1

P

CP

t¼CI

11ðSt¼nÞ

Inpalatabilitystate : aP;n ¼

P

1:5s

t¼CP

11ðSt¼nÞ

P

N

n¼1

P

1:5s

t¼CP

11ðSt¼nÞ

(5)

where 11 is the unit function that is one when St ¼ n and 0 otherwise.

In order to deal with the possibility that EM can get stuck at sub-optimal local maxima of log like-

lihood, we ran the algorithm from 100 different random initializations of the a parameters. We moni-

tored the log likelihood of the data given the model parameters and ran the algorithm to a

convergence threshold of 10-8 (or a maximum of 300 iterations). Finally, we picked the run with the

maximum log likelihood at convergence and reported the change points (and their posterior proba-

bilities given S and a) found on this run.

Of course, an inevitable result of performing such analyses on discontinuous data - such as trials

in which 0.5s of spiking is missing because of perturbation, and the spiking on the two sides of this

0.5s are concatenated - is a certain number of artifactual change-points identified around the start

or end of the perturbation time. That is, there is a relatively high likelihood that the analysis will iden-

tify spiking rates just before the onset of perturbation to be different from those just after. This issue

is handled in the Results and Discussion sections.

Measuring aversive orofacial behaviors (gapes)
Bitter (e.g., Quinine) tastes cause rats to produce an orofacial behavior known as ‘gaping’, the pur-

pose of which is to maneuver the offending substances to the front of the mouth for egestion. As

such, gapes index the fact that the neural processing of the bitter taste has (in a certain sense)

reached completion - the rat has ‘decided’ that it does not want to ingest the taste. The occurrence

of gapes can be measured in a number of ways, the most common of which is via human coding of

video recordings - in the best of circumstances, gapes are readily visible as large yawn-like

movements.

Of course, the best of circumstances often fail to occur in rats free to move and rear. This fact,

and the difficulty of getting precise measures of gape onset time from a visual record, renders video

coding of gapes suboptimal for our purposes. Much more objective and less noise-ridden is evalua-

tion of jaw electromyography (EMG), in which individual gapes are recognizable as particularly large-

amplitude and large-duration electrical bursts (Figure 4A1–A2). We have previously built a quadratic
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classifier to detect these bursts in ongoing anterior digastric EMG signals, achieving 75% accuracy

(Li et al., 2016).

Even this approach has somewhat troubling limitations, however, as its failure to reach close to

100% accuracy indicates. These limitations stem from the facts that: (1) not all high-amplitude jaw

movements are gapes; and (2) gapes vary widely in amplitude, and in fact some are small enough to

appear similar in size to many other mouth movements (see Figure 4A1–A2). In practice, both types

of variability leave the classifier subject to false positives that must be somehow recognized and

removed - the former most notably at the beginning of trials (when the taste hits the tongue, causing

1–2 relatively large-amplitude licks).

One solution to these problems involves making simultaneous recordings from multiple jaw

muscles, but pilot experiments left us concerned that such drastic infiltration of the jaw can compro-

mise normal movement, which would make interpreting our results difficult. Instead, we decided to

take advantage of another, more robust feature of gaping: the fact that gapes occur in 4–6Hz

‘bouts’ of anterior digastric activity (Travers and Norgren, 1986; Li et al., 2016). While identifying

gaping bouts as time periods during which this rhythmicity dominates the EMG signal is also imper-

fect - it is probabilistic and involves smoothing across time - it largely solves the problems described

above.

We instantiated just such an procedure here, applying a Bayesian spectrum analysis that esti-

mates the posterior probability that a 4–6Hz rhythm underlies a short time series of EMG activity

(see below for technical details). By this analysis, the probability of gaping to any taste is modestly

elevated at trial onset (because of the initial large-amplitude licks), but it quickly drops to effectively

zero for Sucrose, which therefore contributes nothing to the overall calculation of when gaping

begins. On Quinine trials, in contrast, the probability waxes and wanes appropriately with the occur-

rence of gape bouts (Figure 4B1–B2), rising precipitously and reliably just prior to the first gape

(detected in a subset of data with both video recordings and the quadratic classifier, Figure 4D).

In important ways, this analysis is analogous to the method of divining palatability-relatedness of

single-neuron firing described above and used in many previous studies (Fontanini and Katz, 2006;

Sadacca et al., 2012; Li et al., 2013; Sadacca et al., 2016; Li et al., 2016) - the electrophysiological

signal (in this case, the posterior probability of the range of gaping frequency in the EMG signal)

varies (i.e., correlates) with the palatability of the proffered taste, and we average these correlations

to ascertain the palatability-relatedness of the signal at each time point. Sucrose contributes no

information to this signal (because rats do not gape to these sucrose concentrations), so the overall

average gaping latency is equivalent to the difference between the time distributions of gaping

probability to Dil and Conc Qui (see Grill and Norgren, 1978a; Travers and Norgren, 1986), which

can be statistically assessed as the Kullback-Leibler (KL) divergence (again, see technical details

below). Not only does this procedure reveal the onset of orofacial behaviors reflecting aversion, it

pits the two Qui concentrations against each other to get rid of most of the nonspecific gape-like

EMG activity (mentioned above) which is of similar magnitude on both Dil and Conc Qui trials and

does not contribute to the gape onset calculation.

Unlike previously used methods, in which (usually) trials where gapes could not be reliably

detected were removed from further analysis, this algorithm combines EMG data from all the trials

available, thereby allowing us to avoid making statistical comparisons between conditions with very

different sample sizes. At the cost of being unable to precisely detect the specific timing of later

gapes in a bout, this procedure provides an estimate of the average timing of the first gape (both

robust and reliable enough for the purposes of the within-session, between-condition analyses per-

formed here).

Bayesian spectrum analysis (BSA) of EMG recordings
As detailed previously, we recorded voltage signals from two unipolar EMG electrodes implanted in

the anterior digastric muscle at 30kSamples/s. We used the difference in the voltage recorded by

the two electrodes as the EMG signal - this procedure helps to cancel out any large artifacts pro-

duced by the animal’s movements and is equivalent to using a differential amplifier (as done in

Li et al., 2016). We down-sampled the EMG signal to 1000Hz by averaging the voltage values in

sets of 30, and highpass filtered the down-sampled signal above 300Hz (Travers and Norgren,

1986; Li et al., 2016) using a 2nd order Butterworth filter. The absolute value/magnitude of the fil-

tered EMG signal was then lowpass filtered (again using a Butterworth filter of order 2) below 15Hz,
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effectively capturing the envelope of variation of the EMG signal (plotted as the black curve in

Figure 4A1–A2). This cutoff of 15Hz is sufficient for identifying orofacial behaviors, all of which occur

at frequencies smaller than 10Hz (Grill and Norgren, 1978a; Li et al., 2016).

We subjected the envelope of the EMG signal to Bayesian spectrum analysis (BSA). BSA involves

the construction of a probabilistic model of the generation of periodic signals from the superposition

of sinusoids of different frequencies. We divided the signal on each trial into bins of width 300ms,

with a step size of 1ms. We assumed that the EMG signal in each bin is produced by a sinusoid of a

single frequency (plus noise) - in a probabilistic setting, this assumption implies the same model as a

discrete-time Fourier transform. Contrary to the Fourier transform, however, BSA infers the posterior

distribution of frequencies given the data. BSA has been shown to provide posterior estimates of

frequencies that are an order of magnitude more precise than the Fourier transform

(Larry Bretthorst, 2013; Granqvist et al., 2011). We used the BaSAR R package for BSA

(Granqvist et al., 2012) and calculated the posterior probabilities of frequencies from 1Hz to 10Hz

in 20 steps for each 300ms wide bin of data.

Identifying the mean onset of aversive orofacial behavior
Rats respond to intra-oral deliveries of Qui in the concentration range used in our experiments (10-4

to 10-3 M) with an initial set of non-specific investigative licks that are followed by large, jaw-opening

mouth movements called gapes (Grill and Norgren, 1978a, Figure 4A1–A2). Gapes primarily

involve activity of the anterior digastric muscle at 4–6Hz (Grill and Norgren, 1978a; Li et al., 2016)

- we, therefore, used the probability of movements at 4–6Hz in the digastric EMG signal (from BSA,

see previous section) as the probability of gaping (PrGape). This spectral measure of PrGape has a

strong correspondence with a previously-defined and above-discussed quadratic classifier (that tags

individual mouth movements as gapes; Li et al., 2016). On individual Qui trials (Figure 4B1–B2),

PrGape from BSA is high (close to 1.0) when the quadratic classifier tags mouth movements as gapes.

In addition, the average probability of gaping (PrGape) from BSA (Figure 4C1–C2) is very similar to an

across-trial, peri-stimulus average of the gapes picked by the quadratic classifier. In contrast to the

quadratic classifier, however, the BSA measure of PrGape is based entirely on the spectral content of

the EMG signal. It, therefore, does not require the construction of a sufficiently complex classifier

function (with a large enough set of experimenter-tagged examples to train the classifier) to pick out

individual gapes. This also ensures that BSA considers bouts of movements together while calculat-

ing PrGape, making it robust against isolated large amplitude movements early in the animal’s orofa-

cial response. These initial movements were often found to be large licks on video and limited the

accuracy of the quadratic classifier in Li et al. (2016) to 75%.

The probability of the transition from the rats’ initial investigative licks to gapes depends on the

concentration of Qui delivered: 10-3 M (Conc Qui) elicits gapes on more than twice the number of

trials as 10-4 M (Dil Qui) (Grill and Norgren, 1978a; Li et al., 2016). Comparison of PrGape on Dil

and Conc Qui trials, thus, provides a natural way to calculate the mean onset of gaping across all the

Qui trials in an experimental condition (again, Suc trials add little to this analysis, as the probability

of 4–6Hz activity drops to 0 within 100-200msec of taste delivery). We expect the distribution of

PrGape on Dil Qui trials to be similar to that on Conc Qui trials in the investigative licking phase. Once

gaping starts, however, we expect a large difference in the distributions of PrGape on Dil and Conc

Qui trials. PrGape on Dil Qui trials, therefore, acts like a baseline for PrGape on Conc Qui trials: we con-

clude that gapes have started only when PrGape of Conc Qui begins to differ significantly from this

baseline.

We used Beta distributions to describe PrGape on Dil and Conc Qui trials. The Beta distribution is

commonly used to model the probability parameter (p) of a Bernoulli (1/0) process and is expressed

in terms of its two concentration parameters: a = observed number of 1s and b = observed number

of 0s. Gaping being a Bernoulli process, the Beta distribution is an appropriate choice for modeling

PrGape. We defined one such Beta distribution in each time bin for Dil and Conc Qui separately,

parametrized by the number of trials where the animal was gaping (PrGape>0:5) or not (PrGape<0:5).

The Kullback-Leibler (KL) divergence of these Beta distributions (DKLðConcQuijjDilQuiÞ) provides a

natural way to quantify the difference between PrGape on Dil and Conc Qui trials - in general, the KL

divergence between two Beta distributions with concentration parameters (a1;b1) and (a2;b2) can

be written as:
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DKL ¼ logGð
X

j¼2

j¼1

ajÞ�
X

j¼2

j¼1

logGðajÞ� logGð
X

j¼2

j¼1

bjÞþ
X

j¼2

j¼1

logGðbjÞþ
X

j¼2

j¼1

ðaj�bjÞð ðajÞ� ð
X

j¼2

j¼1

ajÞÞ (6)

where G and  are the gamma and digamma functions respectively.

DKLðConcQuijjDilQuiÞ shows a sharp jump ~1s post taste delivery (Figure 4E), consistent with the

timing of the transition from investigative licks to gapes (Grill and Norgren, 1978a; Travers and

Norgren, 1986; Li et al., 2016). Finally, we calculated the cumulative sum of DKLðConcQuijjDilQuiÞ

across time: the jump corresponding to the mean onset of gaping is expressed as a change in slope

of the cumulative sum.

We could now fit two straight lines to the cumulative sum to capture this change in slope: the

intersection of the two lines defines the mean timing of the onset of gaping (Figure 4F). We chose

to instantiate this piecewise-linear regression as a Bayesian change-point analysis, where the change

point captures the abrupt change in the slope of the cumulative sum of DKLðConcQuijjDilQuiÞ. With

a uniform prior on the timing of the change-point (from 0 to 2.0s post taste delivery), our model is

as follows:

Interceptof first line : a1 ~Nð0;3Þ

Slopeof first line : b1 ~Nð0;1Þ

Interceptof second line : a2 ~Nð0;3Þ

Slopeof second line : b2 ~Nð0;1Þ

Prioronchange point :C~Uniformð0;2000msÞ

Prioronobservationnoise : s~Half Cauchyð0:5Þ

MeancumsumofDKL : DKLðtÞ~
a1 þb1 � t; t�C

a2 þb2 � t; t>C

�

CumsumofDKL : DKLðConc QuijjDil QuiÞðtÞ~NðDklðtÞ;sÞ

(7)

The change-point, C, in this model is the mean onset of gaping. We inferred the posterior distri-

bution of C using MCMC sampling and performed significance tests using its 95% credible interval.
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