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Background: After very preterm birth, male infants show higher mortality than females,

with higher incidence of lung immaturity, neurological deficits, infections, and growth

failure. In modern pig production, piglets dying in the perinatal period (up to 20%) often

show signs of immature organs, but sex-specific effects are not clear. Using preterm pigs

as model for immature infants and piglets, we hypothesized that neonatal survival and

initial growth and immune development depend on sex.

Methods: Using data from a series of previous intervention trials with similar delivery and

rearing procedures, we established three cohorts of preterm pigs (90% gestation), reared

for 5, 9, or 19 days before sample collection (total n= 1,938 piglets from 109 litters). Partly

overlapping endpoints among experiments allowed for multiple comparisons between

males and females for data on mortality, body and organ growth, gut, immunity, and

brain function.

Results: Within the first 2 days, males showed higher mortality than females (18 vs.

8%, P < 0.001), but less severe immune response to gram-positive infection. No effect

of sex was observed for thermoregulation or plasma cortisol. Later, infection resistance

did not differ between sexes, but growth rate was reduced for body (up to −40%) and

kidneys (−6%) in males, with higher leucocyte counts (+15%) and lower CD4T cell

fraction (−5%) on day 9 and lower monocyte counts (−18%, day 19, all P < 0.05). Gut

structure, function and necrotizing enterocolitis (NEC) incidence were similar between

groups, but intestinal weight (−3%) and brush-border enzyme activities were reduced

at day 5 (lactase, DPP IV, −8%) in males. Remaining values for blood biochemistry,

hematology, bone density, regional brain weights, and visual memory (tested in a T maze)

were similar.

Conclusion: Following preterm birth, male pigs show higher mortality and slower

growth than females, despite limited differences in organ growth, gut, immune, and
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brain functions. Neonatal intensive care procedures may be particularly important for

compromised newborns of the male sex. Preterm pigs can serve as good models

to study the interactions of sex- and maturation-specific survival and physiological

adaptation in mammals.

Keywords: sex, gender, preterm, immune, animal model, cohort

INTRODUCTION

Across the lifespan, overall morbidity and mortality is higher
in males than in females, caused by a multifaceted interaction
among biological factors, societal conditions, and environmental
determinants (1). The physiological mechanisms of the
interacting sex- and age-related morbidities remain unknown
and studies indicate that the male deficits are greatest at short
gestational age at birth (2). Males are overrepresented among
preterm infants and show an increased post-natal mortality
compared with their female counterparts (3). Male sex is more
prevalent with decreasing gestational age at birth, suggesting that
male sex itself may be a risk factor for preterm birth (4). After
preterm birth, deficient respiratory and immune functions may
increase mortality (4, 5), potentially linked to later reduced body
growth (6, 7) and more frequent neurological sequelae (4). While
such complications may be specific for preterm birth, indications
of increased mortality of term male infants, across the entire
lifespan, imply that differences in survival capacity may exist
between sexes, even after term birth (1, 8).

It is unknown if neonatal survival and adaptation is
sex-specific across mammalian species. For pigs, perinatal
mortality is high (15–25%) in both modern and traditional
farming systems (9–15). A higher male piglet mortality is
reported for outdoor, extensive systems with moderate litter size
(16, 17) and impaired locomotion, hypothermia and lacking
energy and passive immunity via sow’s colostrum have been
suggested as causative factors for increased male mortality
(16). Intensive breeding programs for prolonged lean tissue
growth (physiological immaturity) and large litter size in high-
intensity facilities may increase the number of weak piglets (18–
20). Considering the above knowledge of sex-specific effects
for preterm infants, this may increase sex-specific neonatal
morbidities for modern piglets. Pig growth rates and litter size are
top in the world in Denmark (mean 18, range 15–30 piglets/sow)
and perinatal mortality remains high, despite genetic selection
for survival (9, 21). Previous studies in preterm pigs suggest that
the combination of immaturity and growth restriction at birth
negatively affects systemic and gut immunity (22–25).

Among the immune-related morbidities in preterm infants,
necrotizing enterocolitis (NEC), a serious gut inflammatory
disorder (26), does not appear to differ between males and
females, although few studies report higher NEC incidence
in males (27). Conversely, sex-specific differences in systemic
immunity complications are reported, and full-term male
infants show weaker innate and adaptive immunity, reduced
vaccine response and poorer pathogen clearance (8, 28).
These results indicate fundamental sex-specific differences in

systemic immune functions, possibly driven by sex hormones,
because differences accelerated after puberty in the above
studies. Other hormones, such as glucocorticoids, critical for
neonatal maturation and survival across many species, could
also play a role for sex-specific survival after term birth
(29, 30). Less is known for immature infants, but because
sex-specific differences may manifest themselves already in
utero (31), it is plausible that immaturity at birth pre-dispose
to sex-specific effects on morbidity and mortality. Further,
maternal inflammation and infection are known to affect
infant immunity both in the neonatal period and beyond
(32, 33). Male term and preterm infants also have higher
risk of positive blood cultures and sepsis, indicating a higher
post-natal sensitivity to infection (4, 34), and cord blood
from male infants show greater pro-inflammatory response
to lipopolysaccharide (LPS) (35). However, in other studies
cord blood mononuclear cells from term and preterm infants
did not show sex-specific differences in response to Toll-
like receptor agonists (36). While these data confirm sex-
specific responses and morbidities in some, but not all, human
studies, they do not provide insight into mechanisms and
whether sex effects exist across mammals with/without preterm
birth. Observational studies in preterm infants provide limited
insight into organ-specific mechanisms and results are often
confounded by variable fetal conditions, gestational ages and
post-natal treatments.

During 20 years, we have conducted numerous experiments
with preterm pigs as models for preterm infants and
immune-compromised newborn production pigs, using
similar procedures for delivery (elective cesarean section at
90% gestation) and neonatal care (e.g., incubator rearing
with supplemental oxygen, heating, and parenteral/enteral
nutrition) (37, 38). This animal model has been used to
assess effects of immaturity itself (reduced gestational age at
birth) (39–45) and dietary, microbial and pharmacological
interventions on nutritional (46), gastrointestinal (47, 48),
immune (49, 50), and neurological endpoints (51–54). Across
these separate experiments, no consistent sex-specific effects
were reported. Larger cohorts of preterm pigs, across variable
clinical complications and interventions, may be required
to demonstrate sex-specific effects. We hypothesized that
cohorts of preterm pigs, like preterm infants, show increased
mortality of male offspring, potentially related to sex-specific
development of organ growth and gut, immune and brain
functions. This knowledge may help to define the need for
sex-specific care procedures in pig production (e.g., intensive
care procedures, artificial rearing, cross-fostering) as well as in
human neonatatology.
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TABLE 1 | Overview of cohorts of preterm pigs.

Duration

(days)

Preterm pigs

total n

Litters

n

Separate

studies n

Females

n

Males

N

5 1,398 79 27 698 700

9 319 18 5 163 156

19 221 12 5 104 117

METHODS

Animals and Their Treatment
All animal experiments were conducted under a license from
the Danish National Committee on Animal Experimentation
(2014-15-0201-00418). We compiled a database from previous
experiments performed with preterm pigs 2009-2020, all using
the same delivery procedures and rearing facilities (37). For
all measured outcomes in total 1,938 preterm pigs from 109
litters across 37 experiments (Table 1), we collected sex-specific
results when the same outcome parameter was measured across
several experiments (aiming to have n > 100 for each sex).
Across the different experiments, preterm pigs were reared for
4–5, 8–9, or 19 days and the three cohort groups were denoted
5, 9, and 19 day cohorts. An overview of the number of
pigs, litters and experiments with specific interventions related
to diet (e.g., feeding of formula, porcine, bovine or human
milk, or colostrum), microbes (e.g., administration of pre-, pro-
and antibiotics) or drugs (e.g., cortisol, IGF-1) is shown in
Supplementary Table 1. While some biological endpoints were
shared among experiments, other parameters were assessed
only in some experiments, resulting in different n numbers for
different parameters for each cohort. For immune endpoints, we
first assessed the sex-specific responses to systemic infection for
subgroups of pigs younger than 5 days, not included in the 5, 9,
or 19 day cohorts (described in detail later).

All pigs (Duroc × Yorkshire × Danish Landrace) were
delivered by elective cesarean section at 105–106 days gestation
(term= 117± 1 days), and while anesthetized, piglets were fitted
with oro-gastric feeding tubes and umbilical arterial lines. The
pigs were reared in incubators with supplemental oxygen for
the first 12 h (1–2 L/min), extra heating to prevent hypothermia
and standardized parenteral and enteral feeding, as described
previously (37). In the day 5 cohort, pigs had their rectal
temperature taken at 2 h intervals for the first 12 h of life
(data available for n = 719, 49% male). Furthermore, all pigs
were infused with maternal plasma (16–20 mL/kg) within the
first 24 h to ensure a standardized level of systemic passive
immunity to support immunological protection (e.g., maternal
IgG), independent of their sow’s colostrum, thus excluding by
this artificial rearing system any variability induced by differential
piglet-sow interactions. Figure 1 presents an overview of rearing
conditions and possible clinical complications in 90% gestation
preterm pigs when reared for 5, 9, or 19 days.

Several different enteral diets and interventions were used
in the studies (see Supplementary Table 1) while the same
formulation of parenteral nutrition (modified composition of

Kabiven, Fresenius Kabi, Sweden) was used across experiments
(41, 48, 51, 55). Across all experiments, pigs were randomly
allocated to treatment groups stratified by sex and birth weight,
thereby ensuring an even sex distribution in each intervention.
During the studies, pigs were euthanized ahead of time if
serious complications developed, defined as humane endpoints
in accordance with criteria and the license from the Danish
National Committee on Animal Experimentation. As described
previously (37), the majority of mortalities for preterm pigs
reared under such conditions occur within the first 48 h of life.
Therefore, only pigs dying within this early neonatal period
were included into mortality data for the present study. Pigs
dying from iatrogenic causes (e.g., catheter-related complications
with blood loss) were excluded from the analyses. At the end
of the pre-defined study periods, all pigs were sacrificed by
intracardial injection of phenobarbital after which organ weights
were recorded and tissues sampled according to the different
study protocols.

Neonatal Mortality and Blood Immunity,
Hematology and Biochemistry
Across all experiments, we identified the litters where mortality
within the first 48 h was accurately reported and noted as
spontaneous death or euthanasia. Respiratory distress was
commonly observed for such preterm pigs, but a detailed
clinical and post-mortem organ investigation of the piglets
was not performed. Hematology parameters were evaluated at
birth (from the cord, during cesarean delivery), day 9 and
day 19 (Advia 2120 Hematology System, Siemens Healthcare
Diagnostics, Tarrytown, NY, USA) and plasma biochemistry was
recorded at day 19 (Advia 1800 Chemistry System, Siemens,
Erlangen, Germany).

Before analyzing organ data for the 5, 9, and 19 day
cohorts, we explored the sex-specific differences in neonatal
immune response by re-examining data from two previously
conducted experiments modeling neonatal sepsis in infants
(23, 56). These animals were not included among the 5,
9, or 19 day cohorts because the study length was shorter
than 5 days. In short, preterm pigs were infused with live
Staphylococcus epidermidis (1 × 108-5 × 109 CFU/kg body
weight) bacteria through the umbilical caterer, either few
hours after birth (n = 38, 53% male) or after 48 h (n =

39, 56% male), without prior provision of maternal plasma.
The animals were followed for 24–48 h and hematological
and arterial blood gas parameters evaluated. Animals
inoculated with bacteria at birth were kept exclusively on
parenteral nutrition whereas those inoculated after 48 h were
supplemented with enteral milk diets. A detailed description of
the experimental setup and bacterial inoculation procedure is
available (23).

In the 9 day cohort, and in a subgroup of the 5 day cohort
(n = 75, 40% male), spontaneous bacterial infection of the bone
marrow was determined. After euthanasia, the femur head was
dissected in a sterile manner and a sample of bone marrow
collected. This sample was homogenized, serially diluted, plated
out on agar and cultured for 24 h. Afterwards, bacterial density
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FIGURE 1 | Illustration of clinical care procedures (green text) and possible morbidities (red text) for cesarean-delivered 90% gestation preterm pigs, reared as models

for preterm infants. Preterm pigs show clinical and physiological characteristics reflecting very preterm infants (<32 weeks gestation) but comparisons to infants are

both age- and organ-specific (37). Based on the reports of gender-specific morbidities in preterm infants, we investigate if sex-specific effects are present in preterm

pigs at different stages after preterm birth.

was calculated as culture-forming units (CFUs) per milliliter of
bone marrow homogenate.

In 9 day pigs, and in a subgroup of day 19 pigs (n =

148, 51% male), flow cytometry (FACS) was used to determine
T cell subsets, as described elsewhere (24). Using fluorescent-
labeled antibodies against CD3, CD4, CD8, and FOXP3, the
fraction of T cells, CD4+ T cells, CD8+ T cells and regulatory
T cells (CD3+CD4+FOXP3+) were established. For the same
pigs, the FACS equipment was used to determine neutrophil
phagocytic function (57). In short, whole blood samples were
incubated with fluorescent-labeled Escherichia coli (pH rhodo,
Thermofischer, USA) and the phagocytic rate was defined
as the fraction of neutrophils with internalized bacteria and
the phagocytic capacity as the median fluorescent intensity of
those neutrophils.

In the 9 day cohort, leucocyte gene expression at birth was
evaluated using cord blood. Using primers against a panel of
immune related genes, the relative expression of genes in whole
blood, before and after stimulation with LPS, was calculated.
Gene expression levels were presented as fold change, relative
to a housekeeping gene. The same analysis was repeated at
day 9 for a subgroup of animals (n = 38, 53% male). A
full description of the genes investigated and methodologies
are published elsewhere (22). Cortisol levels in plasma were
measured by enzyme linked immune assay (R&D systems, USA)
in cord blood (n = 112, 49% male) and at euthanasia in the
day 5 (n = 164, 44% male) and day 19 cohorts (n = 60,
53% male).

Growth, Organ Weights and Gut Endpoints
Body weights at birth and euthanasia were used to calculate
growth rate as relative daily weight gains across the study
period (g/kg/day). At euthanasia, all major internal organs were
evaluated and weight relative to body weight recorded. In a
subgroup of the 19 day cohort (n = 86, 53% male) a full
body dual-energy X-ray absorptiometry (DEXA, Lunar Prodigy
scanner, GE Healthcare, Little Chalfont, UK) was performed
at euthanasia to determine body composition, as described
previously (41).

Sensitivity to NEC in preterm pigs is highest during the
first 1–2 weeks after birth (58), and for the 5 and 9 day
cohorts, the stomach, small intestine, and colon was visually
inspected post-mortem for signs of inflammation and occurrence
of NEC lesions, according to the same validated scoring
system, with score 1–2 representing healthy tissue, 3–4 some
evidence of NEC lesions, and 5–6 reflecting severe lesions
(59). Brush border enzyme activities, including sucrase, maltase,
lactase, aminopeptidase N (ApN), aminopeptidase A (ApA), and
dipeptidyl peptidase IV (DPPIV), were evaluated across the small
intestine for the 5 and 19-day cohorts (48). Using formalin-
fixed small intestinal tissue, villus height and crypt depths were
determined (48).

Neurodevelopment and Behavior
Brain weights were recorded and specifically for the 19 day
cohort, the brains were further dissected to assess the relative
size of each brain region [as percentage of the whole brain (60)].
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Furthermore, in the 19 day studies, we performed a T maze-test,
as a measure of spatial memory (Figure 1), explained in detail
elsewhere (51, 52, 54). Briefly, from 10 days of age preterm pigs
were placed in a T-shaped maze with a milk reward in one arm.
Using visual clues on the walls, pigs could learn to find the reward
following their daily tests in the maze. The number of days until
pigs chose the right path in at least 80% of trials, was considered
as the time taken to learn the task. The pigs were also subject to an
open field test investigating explorative free movement behavior
[Figure 1, (54)].

Statistical Analyses
All statistical analyses were performed using Stata 14.2
(StataCorp, Texas, USA). Categorical data was compared
by Fischer’s exact-test and an unadjusted odds ratio, with
corresponding confidence interval (CI) calculated. Continuous
data were compared using a linear mixed effect model with litter
and diet type as fixed factors. Variables that could not conform
to normal distribution were logarithmically transformed. If
normal distribution could not be obtained, data was compared
by Kruskal Wallis’-test. Data collected at several time points
were mostly from independent samples and therefore compared
separately for each time point. When analyzing immune related
endpoints any animals treated with an antibiotic intervention
were censored from analysis. Results were presented as means
with corresponding standard error of the mean (SE).

RESULTS

Neonatal Mortality and Blood Immunity,
Hematology and Biochemistry
Across the 109 litters of pigs, there were a mean of 17.8 live-
born piglets per sow (Table 1). Mortality within the first 48 h
was recorded for 833 live-born preterm pigs (48% male) from
18 experiments and 44 of these litters. From these litters, 107
(13%) died within 48 h of birth. The mortality was higher in male
than female piglets (18 vs. 8%, P < 0.001). The unadjusted odds
ratio for male piglets dying within 48 h compared to female was
2.4 (CI: 1.6–3.8, P < 0.001). Rectal temperatures decreased in
the first 3–4 h after birth, despite being reared in incubators (to
34–35◦C), but recovered thereafter to normal temperatures, as
shown previously for preterm vs. term pigs (61). The temperature
curve during the first 24 h after birth did not differ between male
and female pigs (data not shown).

Hematological parameters at birth did not differ between
female and male preterm pigs. By day 9, male piglets had higher
total leucocyte counts (Table 2, P < 0.05) with a tendency to
lower hemoglobin and haematocrit values (Table 2, both P =

0.09). At day 19, the male piglets showed lower hemoglobin
concentration and haematocrit values (Table 2, both P < 0.01)
with lower monocyte counts (Table 2, P < 0.05). Cortisol levels
did not differ between the females and males, neither in cord
blood (58.0± 2.1 vs. 63.4± 3.4 ng/mL, P > 0.1), at day 5 (87.5±
9.7 vs. 83.6 ± 7.5 ng/mL, P > 0.1) or by day 19 (60.0 ± 15.5 vs.
60.2 ± 18.2 ng/mL, P > 0.1). Furthermore, no differences in the
serum biochemical parameters were found between female and

male piglets on day 19, except higher aspartate aminotransferase
levels in male piglets (Table 3, P < 0.05).

Animals inoculated with S. epidermidis right after birth
showed marked sex-specific differences in their responses. Males
showed higher neutrophil fractions and platelet counts with
lower leucocyte fraction 6–12 h after inoculation (Figures 2A–C,
P < 0.05–0.001). This result was coupled with a higher blood
pH (Figure 2D, P < 0.05) and oxygen pressure (Figure 2E, P
< 0.01–0.001), and with lower blood lactate (Figure 2F, P <

0.001). When the same experiment was conducted 48 h after
birth, no differences in hematology or blood gas parameters
between females and males were detected (data not shown).

There was no difference in the occurrence of spontaneous
bacterial infection in bone marrow on day 5, but by day 9, male
piglets tended to have a higher infection incidence (71 vs. 56%,
Figure 3A, P= 0.06). However, the bacterial densities in the bone
marrow did not differ between females or males, neither at day 5
nor at day 9 (Figure 3B, both P > 0.1). There were no differences
in T cell subsets at birth or by day 19. However, by day 9, male
preterm pigs showed lower fraction of T cells and CD4 positive
T cells (Figures 3C,D, both P < 0.05). Neutrophil phagocytic
function did not differ between female and male preterm piglets
at birth, day 9 or day 19 (data not shown).

Leucocyte gene expression at birth was performed for 81
preterm pigs (51% male) and was repeated at day 9 for a smaller
subgroup (n = 38, 53% male). At birth, male piglets showed
higher expression of IL2, both before and after stimulation with
LPS (Figure 3E, both P < 0.05), male pigs also had higher
expression of IFNG after stimulation with LPS (Figure 3F, P <

0.05). Furthermore, male piglets had lower expression of TLR2
and with higher expression ofMPO than females (Figures 3G,H,
both P < 0.05). By day 9, there was a tendency to higher
expression of IL2 in male pigs after LPS stimulation (Figure 3E, P
= 0.09). No further differences between female and male preterm
pigs were found at day 9.

Growth, Organ Weights and Gut Endpoints
Mean birth weight did not differ between female and male
preterm piglets in any of the pig cohorts and ranged 912–998 g.
However, relative daily weight gain was lower in male piglets,
both at day 5, 9, and 19 (Figure 4A, all P < 0.05). For organ
growth, 5 daymale piglets showed lower relative kidney and small
intestinal weight (Table 4, P < 0.001 and P < 0.05, respectively),
with a tendency toward higher relative brain weight (Table 4, P
= 0.065). In the cohort of pigs reared for 19 days, the relative
kidney weight was still lower in male piglets (P < 0.001) whereas
other organ weights did not differ, apart from a tendency to lower
colon weight in male piglets both at day 9 and 19 (Table 4, P <

0.10). No sex-specific differences in body composition at day 19,
as evaluated by DEXA scanning, were found (data not shown).

On day 5, 48% of pigs assessed for NEC (n = 1,152) showed
mild-severe signs of NEC upon necropsy (score≥3 in at least one
region), while 36% showedmore severe signs (score≥4 in at least
one region), but for both categories, no differences betweenmales
and females were observed (Figure 4B). Likewise, there was no
difference in the average NEC severity score between males and
females, even when stratifying across different regions of the gut
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TABLE 2 | Hematological parameters of female and male preterm pigs on day 1, 9, and 19.

Day 1 Day 9 Day 19

Female (n = 109) Male (n = 116) Female (n = 100) Male (n = 102) Female (n = 92) Male (n = 95)

Total leucocytes (109 cells/L) 2.7 (0.0) 2.8 (0.0) 5.6 (0.3) 6.4 (0.3)* 9.9 (0.6) 9.5 (0.4)

Neutrophils (109 cells/L) 0.6 (0.0) 0.6 (0.0) 3.6 (0.3) 4.1 (0.3) 7.1 (0.8) 6.2 (0.4)

Lymphocytes (109 cells/L) 1.9 (0.0) 2.0 (0.1) 1.8 (0.1) 2.0 (0.1) 2.8 (0.1) 2.8 (0.1)

Monocytes (109 cells/L) 0.06 (0.01) 0.05 (0.00) 0.13 (0.01) 0.15 (0.01) 0.38 (0.03) 0.31 (0.03)*

Eosinophils (109 cells/L) 0.09 (0.01) 0.09 (0.01) 0.09 (0.05) 0.06 (0.01) 0.07 (0.01) 0.08 (0.01)

Basophils (109 cells/L) 0.01 (0.00) 0.01 (0.00) 0.02 (0.01) 0.01 (0.00) 0.02 (0.00) 0.02 (0.00)

Platelets (109 cells/L) 214 (8) 209 (9) 363 (20) 390 (22) 479 (20) 479 (22)

Red blood cells (1012 cells/L) 3.7 (0.0) 3.8 (0.0) 3.4 (0.1) 3.5 (0.1) 4.0 (0.1) 4.0 (0.1)

Hemoglobin (g/L) 5.2 (0.1) 5.2 (0.0) 4.4 (0.1) 4.2 (0.1)(*) 4.4 (0.1) 4.3 (0.1)**

Haematocrit (%) 28.1 (0.3) 28.1 (0.3) 23.8 (0.4) 23.2 (0.4)(*) 23.5 (0.5) 22.9 (0.5)**

Data presented as means with corresponding SE. (*)Tendency to effect, P < 0.1, *P < 0.05, **P < 0.01.

TABLE 3 | Serum biochemistry in female and male piglets at day 19.

Female (n = 95) Male (n = 105)

Albumin (g/L) 16.7 (0.3) 16.9 (0.3)

Total protein (g/L) 29.1 (0.5) 29.6 (0.6)

Alkaline phosphatase (U/L) 1,385 (81) 1,271 (69)

Alanine aminotransferase (U/L) 31.3 (0.8) 30.7 (0.8)

Total bilirubin (µmol/L) 2.0 (0.1) 2.3 (0.1)

Cholesterol (mmol/L) 2.7 (0.1) 2.7 (0.1)

Creatinine (µmol/L) 50.8 (1.1) 55.5 (2.1)

Creatine kinase (U/L) 241 (21.2) 245 (29.5)

Iron (µmol/L) 7.2 (0.6) 8.2 (0.5)

Phosphate (mmol/L) 2.1 (0.1) 2.1 (0.1)

Aspartate aminotransferase (U/L) 33.3 (1.4) 39.9 (2.7)*

Blood urea nitrogen (mmol/L) 3.7 (0.3) 4.5 (0.4)

Gamma-glutamyl transferase (U/L) 22.4 (0.9) 21.9 (0.9)

Calcium (mmol/L) 2.6 (0.0) 2.6 (0.0)

Magnesium (mmol/L) 0.9 (0.0) 0.9 (0.0)

Sodium (mmol/L) 142 (1.3) 143 (1.3)

Potassium (mmol/L) 4.4 (0.1) 4.4 (0.1)

Data presented as means with corresponding SE. *P < 0.05.

(data not shown). The corresponding values for day 9 piglets with
NEC scores (n= 319) were 64 and 54%, again with no differences
between males and females.

After 5 days, male piglets showed lower activity of lactase and
DPPIV (Figure 4C, P < 0.05 and P < 0.01, respectively) with a
tendency to higher activity of ApN (P = 0.06). In pigs reared
for 19 days, there were no differences in brush border enzyme
activities (data not shown). Likewise, there were no difference
between villus height or crypt depth across gut regions in pigs
reared for either 5 or 19 days (data not shown).

Neurodevelopment and Behavior
On day 19, male pigs had higher absolute weight of cerebellum
(2.87 vs. 2.76 g, P < 0.05), and higher relative weights

cerebellum (% of total brain weight, Table 5, P < 0.001),
relative to female pigs. Other brain weight measures did
not differ. Measured outcomes of motor function, explorative
behavior, cognition, and visual memory (open field and T-maze-
tests), did not show any significant differences between male
and female piglets at any time points during the test (data
not shown).

DISCUSSION

To optimize the care and treatment of immature neonates,
it is important to know to which extent males and females
have different risk factors and respond differently to treatments.
Using our preterm pig model of immature birth, we studied
preterm male and female pigs during the neonatal transition
(5 days), post-natal adaptation (9 days) and initial growth
phases of development (19 days, Figure 1). Following elective
cesarean section in late gestation, this animal model mimics
many of the complications of weak, compromised piglets at term,
and of very preterm infants (e.g., immature lung, metabolic,
thermoregulatory, gut, immune, and brain functions (37, 38, 62),
yet it avoids the possible confounding effects of fetal factors
leading to preterm birth in humans (e.g., maternal inflammation,
hypertension, placental dysfunction). Further, our standardized
rearing and feeding protocols ensure that we can isolate
intrinsic biological differences between the sexes, independent
of interactions with their mother for thermoregulation, nutrient
uptake or passive immunity. Using this model we now show that
neonatal mortality in immature preterm pigs is much higher in
male vs. female pigs, despite a seemingly improved resistance
to bacterial infection within the first days. There was a clear
reduction in body growth in surviving male pigs, but apart from
this the observed sex-specific gut, immunity and brain differences
were marginal, at least compared with effects of most nutritional,
microbial, or pharmacological interventions in preterm pigs (37).
How sex-specific differences shortly after preterm birth may
develop toward puberty and adulthood remains to be shown, and
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FIGURE 2 | Hematological and blood gas parameters in female and male preterm pigs (open and filled circles, respectively) inoculated with live S. epidermidis

bacteria shortly after birth. Neutrophil fractions (A, n = 38). Platelet counts (B, n = 38). Lymphocyte fractions (C, n = 38). Blood acidity (D, n = 38). Blood oxygen

pressure (E, n = 38). Blood lactate levels (F, n = 38). All shown as means with corresponding SE. *P < 0.05, **P < 0.01, ***P < 0.001.

in-depth studies on immunity, growth and organ functions are
required in both pigs and infants.

Despite the clear difference in neonatal mortality, we are
limited by the fact that our preterm pig studies did not include
a detailed diagnosis of the cause of death. Yet, studies in
infants suggest that poor respiratory function in preterm males
is a key contributor to increased mortality (5) and cohort
studies have shown that males, both late pre-terms and terms,
have higher risk of respiratory distress syndrome (RDS) (63),
possibly related to less surfactant production in late gestation
(64, 65). Following cesarean section at 90% gestation, a large
proportion of preterm pigs show RDS-like symptoms and
lung immaturity, as assessed by reduced blood oxygen levels
and macroscopic lung appearance at autopsy (atelectasis) (39,
41, 57, 61). However, we have not systematically registered
the degree of post-natal respiratory distress in our studies.
Interestingly, we did not detect any differences in cord blood
levels of cortisol, a hormone well-known to stimulate lung
development and respiratory function in preterm infants (66)
although differences in cortisol production between the sexes

may be masked by the cesarean section that may not stress
the piglets as much as preterm labor. We have previously
shown that blocking cortisol production in newborn pigs lead
to increased neonatal mortality (29). Likewise, low cortisol levels
at birth are associated with neonatal mortality in production
pigs (30), highlighting the importance of this hormone after
birth. Lower body temperature has also been observed in male
production pigs and poor thermoregulation was suggested to
contribute to increased mortality (16). However, we did not
observe any differences in our study in the first 24 h of life but sex-
specific differences in rectal temperature and thermoregulation
could have been hidden by our tight control of temperatures
in incubators.

Beyond the neonatal period, surviving male preterm pigs
in our study showed reduced growth rate, kidney weight
and activity of some digestive enzymes. Gut growth was not
markedly affected although the slightly reduced intestinal weight
on day 5, and tendency to reduced colon weight at day 9–
19, may indeed reflect a slight delay in gut development in
males. The magnitude of the transient male-specific reduction in
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FIGURE 3 | Incidence of bone marrow bacterial infection (A, n = 74 and 130) with corresponding bacterial densities (B, n = 74 and 130), as well as fractions of T cells

(C, n = 52–148), CD4 positive T cells (D, n = 52–148) and expressions of IL2, IFNG, TLR2, and MPO (E–H, n = 38–81) in male and female preterm pigs. Shown as

fractions (A), means with corresponding error (B–D) and fold- changes in relation to housekeeping gene, before and after stimulation with lipopolysaccharide (LPS,

E–H). (*)Tendency to an effect, P < 0.1, *P < 0.05. §Effect of LPS, P < 0.1, §P < 0.05, §§P < 0.01, §§§P < 0.001.

FIGURE 4 | Growth rates for 5, 9, and 19 day cohorts (A, g/kg/day, n = 1,135, 319, and 221), incidence of necrotizing enterocolitis (NEC score ≥3) at day 5 and 9 (B,

n = 1,152 for day 5 and n = 319 for day 9), and brush border enzyme activities at day 5 (C, n = 1,028) for male and female preterm piglets. Shown as means with

corresponding SE (A,C) or as proportion of animals (%) in the cohort (B). (*)Tendency to effect, P < 0.1, *P < 0.05, **P < 0.01.

lactase and DPPIV activity on day 5 remained quantitatively of
lower magnitude (e.g., 5–10% reduction) than those of feeding
formula vs. intact milk diets or colostrum (47, 67) or changes
to gut bacterial colonization (relative to germ-free rearing or
antibiotics treatment) (47, 55, 68). The limited effect of sex on
gut development and NEC in preterm pigs, despite their high
NEC sensitivity in the first 1–2 weeks (37), is consistent with
observations in preterm infants, where gender does not markedly
affect NEC risk (27, 69, 70).

The slower body growth in male vs. female preterm pigs is
consistent with the finding that male preterm infants are at a
higher risk to develop extra-uterine growth restriction (6, 7).
Among internal organs, only kidney growth was consistently
reduced in male preterm pigs. In preterm infants, glomerular
filtration rate is similar in males and females (71) but males
show a higher risk of acute kidney injury (72, 73). At 19 days,
male pigs had slightly lower hemoglobin and haematocrit values
than females, potentially related to diminished erythropoiesis
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TABLE 4 | Relative organ weights (g per kg body weight) of male and female preterm pigs.

Day 5 Day 9 Day 19

Female (n = 501–568) Male (n = 457–514) Female (n = 163) Male (n = 156) Female (n = 104) Male (n = 116)

Stomach 6.8 (0.1) 7.0 (0.1) 6.8 (0.2) 7.0 (0.3) 6.6 (0.1) 6.6 (0.1)

Small intestine 31.7 (0.3) 30.9 (0.3)* 32.5 (0.6) 33.8 (1.1) 40.2 (0.7) 39.5 (0.6)

Colon 12.2 (0.2) 11.9 (0.2) 16.4 (0.5) 15.5 (0.7)(*) 21.0 (1.3) 18.5 (1.3)(*)

Heart 8.1 (0.1) 7.9 (0.1) 7.5 (0.2) 8.0 (0.3) 7.2 (0.1) 7.3 (0.1)

Lungs 24.1 (0.3) 24.4 (0.3) 24.1 (0.6) 25.3 (0.9) 20.5 (0.6) 19.7 (0.6)

Liver 28.2 (0.2) 28.8 (0.2) 31.1 (0.7) 33.1 (0.8)* 25.7 (0.5) 25.5 (0.6)

Kidneys 10.6 (0.2) 10.0 (0.2)*** 7.7 (0.2) 7.8 (0.3) 7.5 (0.1) 7.0 (0.1)***

Spleen 1.9 (0.0) 1.9 (0.0) 2.5 (0.1) 2.5 (0.1) 3.0 (0.1) 3.1 (0.1)

Brain
†

28.3 (0.4) 29.9 (0.5)(*) 27.3 (0.8) 29.6 (1.1) 22.9 (0.6) 22.8 (0.7)

Data are means with corresponding SE.
†
On day 5, brains were collected from a subgroup (n = 615, 47% male). (*)Tendency to effect, P < 0.1, *P < 0.05, ***P < 0.001.

TABLE 5 | Brain parameters in male and female preterm pigs after 19 days.

Female (n = 102) Male (n = 115)

Water content (%) 82.7 (0.1) 82.8 (0.1)

Cerebellum (%) 10.4 (0.1) 10.8 (0.1)***

Cerebrum (%) 79.9 (0.1) 79.7 (0.1)

Brainstem (%) 9.2 (0.1) 9.3 (0.1)

Hippocampus (%) 1.8 (0.2) 1.6 (0.0)

Striatum (%) 1.0 (0.0) 1.0 (0.0)

Data are means with corresponding SE. ***P < 0.001.

by the smaller kidneys (74), but more studies are required
to verify sex effects on renal structure and function. This
organ could be particularly susceptible to perinatal stressors,
as indicated by our recent studies on fetal inflammation on
gut, lung, liver, immunity and kidney development in preterm
pigs (33, 57, 75–77). In the literature on production pigs,
males do not consistently show reduced neonatal survival and
growth (18–20, 30), hence sex-specific survival, growth and
adaptation may be most pronounced for immature newborns.
Consequently, it may become increasingly relevant with sex-
specific intensive care procedures for weak (immature) newborn
pigs from hyperproliferative sows inmodern pig production (e.g.,
resuscitation, cross-fostering, immunization, artificial rearing
procedures, microbial protection).

Important sex-related differences were observed for some
systemic immune endpoints just after birth, and these may
interact with effects in internal organs. Despite that leucocyte
or T cell subsets did not differ between preterm male and
female piglets at birth, the leucocyte gene expression analysis
showed that expression of genes encoding interleukin-2 (IL2)
and interferon gamma (IFNG) were higher in males, also
after stimulation with LPS. Both cytokines are important
in development of a Th1-directed immune response (78).
Together with a higher expression of myeloperoxidase (MPO)
this may have made males more resilient to infection with
S. epidermidis. Inoculation with the same bacteria later (48 h

after birth) showed no differences between male and female
piglets. However, the general response to infection was dampened
from 2 to 3 days after preterm birth in pigs (23), potentially
making sex-specific differences harder to detect from this age.
A tendency to a higher rate of spontaneous infection from
days 5 to 9 may indicate diminished immune function in
males beyond the neonatal period. Staphylococcus epidermidis
bacteria are considered pathogenic in preterm infants (79).
Male preterm pigs also showed transiently lower T cell and
CD4+ T cell fractions at day 9, but these disappeared
by day 19, possibly reflecting age-related data from term
0 to 5 month old infants (80). We cannot exclude that
species-specific differences in immune development between
pigs and infants, including differential transfer of passive
immunity (parentally via the placenta in infants vs. post-
natally via colostrum uptake in the gut in pigs), affect our
conclusions regarding sex effects. On the other hand, artificially-
reared preterm pigs infused with maternal plasma to provide
passive immunity (Figure 1) may very well reflect preterm
infants normally born with low plasma levels of IgG and
seldom receive mother’s own milk or colostrum as their first
enteral meals.

The only neurological parameter that differed between piglet
sexes was the size of the cerebellum. While this may indicate
better motor function, we saw no sex-related differences in
the open field test, nor in the T-maze-test for visual memory
capacity. In preterm infants, males have worse neurological
outcomes following hypoxia, higher incidence of cerebral palsy
and poorer long-term cognitive and language outcomes (81,
82), together with delayed myelination (83). The sex-differences
in neurological outcomes are worse after more extreme pre-
maturity (4). In this context, it is important to note that the brain,
neurological outcomes and motor function are relatively mature
in 90% gestation preterm pigs, relative to preterm infants, even if
they show (temporary) post-natal deficits relative to term piglets
(41, 43, 45, 60).

Across a large series of experiments with identical birth
conditions (elective cesarean section) and clinically-relevant
interventions in the same neonatal care facility, we aimed
to mimic and standardize clinical responses to immaturity
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at birth for both pigs and infants. Still, it remains unclear
how to translate results from preterm pigs to preterm infants
because species similarities and differences are both age- and
organ-dependent. Similarly, it remains speculative how well
90% preterm piglets reflect the clinical complications for the
large proportion of normal term pigs dying during delivery or
shortly after birth in modern pig production. The inclusion of
a large number of endpoints from different cohorts increases
the risk of false discoveries in statistical testing, despite large
sample size. Regardless, ourmodel provides a well-controlled and
sensitive tool to test the effects of interventions and biological
co-variants when individuals show immaturity at birth, and
without the variable maternal interactions known to influence
sex-specific survival rates in both pigs (16) and infants (1–
4). Our results document that preterm pigs mimic many of
the sex-specific differences in mortality, growth, and immune
functions in preterm infants, supporting the use of this model
to investigate sex-specific diseases of immature newborns. The
mechanisms related to differences in immune response in the
neonatal period, as well as the small effects on body and organ
growth and function later (e.g., lung, gut, immunity, brain)
warrant further investigations. At the population level, such
biological differences may affect clinical outcomes but it remains
questionable, if they justify sex-specific clinical treatment of
immature and/or mature newborn individuals, either pigs
or infants.
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