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Background: There is no standard effective treatment for schizophrenia-

associated cognitive impairment. Efforts to use non-invasive brain stimulation

for this purpose have been focused mostly on the frontal cortex, with little

attention being given to the occipital lobe.

Materials and methods: We compared the effects of nine intervention

strategies on cognitive performance in psychometric measures and brain

connectivity measured obtained from functional magnetic resonance imaging

analyses. The strategies consisted of transcranial direct current stimulation (t-

DCS) or repetitive transcranial magnetic stimulation (r-TMS) of the frontal lobe

or of the occipital alone or with adjunct lithium, or lithium monotherapy. We

measured global functional connectivity density (gFCD) voxel-wise.

Results: Although all nine patient groups showed significant improvements in

global disability scores (GDSs) following the intervention period (vs. before),

the greatest improvement in GDS was observed for the group that received

occipital lobe-targeted t-DCS with adjunct lithium therapy. tDCS of the

occipital lobe improved gFCD throughout the brain, including in the frontal

lobes, whereas stimulation of the frontal lobes had less far-reaching benefits

on gFCD in the brain. Adverse secondary effects (ASEs) such as heading,

dizziness, and nausea, were commonly experienced by patients treated
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with t-DCS and r-TMS, with or without lithium, whereas ASEs were rare

with lithium alone.

Conclusion: The most effective treatment strategy for impacting cognitive

impairment and brain communication was t-DCS stimulation of the occipital

lobe with adjunct lithium therapy, though patients often experienced

headache with dizziness and nausea after treatment sessions.

KEYWORDS

schizophrenia, cognitive impairment, occipital lobe, t-DCS, r-TMS, lithium

Introduction

Although antipsychotic agents can alleviate positive and
negative symptoms of schizophrenia, there is not yet a
standard supported intervention for addressing the additional
common core symptom of cognitive impairment, which is
present in some 80% of patients with schizophrenia and
highly impactful on prognosis (1). There has been evidence
of some positive, albeit mostly delayed, effects of non-invasive
treatments, such as transcranial direct current stimulation (t-
DCS), repeated transcranial magnetic stimulation (r-TMS),
vagus nerve stimulation, and deep brain stimulation on
cognitive performance in psychiatric patients (2–4). Among
them, t-DCS appears to be particularly promising for improving
attention/vigilance, while both t-DCS and r-TMS may produce
small improvements in working memory (5). There remains an
ongoing need to explore and identify methods that may improve
cognitive impairments in schizophrenic patients, including
potential pharmacotherapeutic approaches, such as TAK-071,
brain-derived neurotrophic factor, and N-acetylaspartic acid,
which are currently being tested in animal studies (1, 6–10).

For three decades, the occipital lobe has been suggested to
be potentially important in schizophrenia-associated cognitive
impairments, though this possibility has received little research
attention (11–14). Functionally, the occipital lobe is known to
play a pivotal role in cognition-related information processing
(15–18). Posterior brain regions, including the superior parietal-
occipital cortex, have been shown to become activated together
with the dorsal premotor cortex in tasks requiring reaching and
complex visually guided grasping movements (19). Roelfsema
and de Lange (20) posited that the primary visual cortex
might serve as a multi-scale cognitive blackboard (21), while
others have published evidence consistent with the possibility

Abbreviations: t-DCS, direct current stimulation; r-TMS, Repeated
transcranial magnetic stimulation; ASEs, Adverse secondary effects; Li,
Lithium; MRI, Magnetic resonance imaging; DSM-IV, The Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition; MCCB,
The MATRICS Consensus Cognitive Battery; GDS, Global Deficit
Score; PANSS, Positive and Negative Syndrome Scale; fMRI, Functional
magnetic resonance imaging; gFCD, Global functional connectivity
density; GMV, Grave matter volume.

that the visual cortex, especially the portion contained in the
occipital lobe, may play a pivotal role in cognitive adaption
(22–25).

Notwithstanding, research focused on addressing cognitive
impairments tends to be heavily focused on the frontal
lobe, especially the prefrontal cortex. Briefly, in the last
two decades, there has been a convergence of studies
demonstrating involvement of the visual cortex in cognitive
processing. Simultaneously, t-DCS of the occipital lobe
has been shown to influence cognitive processing and
to have benefits from some neuropsychiatric conditions.
Based on these observations, we examined the effects
of t-DCS of the occipital lobe on functional activity
and, subsequently, on cognitive impairment in patients
with schizophrenia.

Given that the skull in the posterior cranium is thinner
than that in the frontal cranium, stimulating the occipital
lobe would be expected to be easier than stimulating
the frontal lobe, though this accessibility may also be
accompanied by an increased risk of adverse secondary
effects (ASEs). Based on suggestions in the above-mentioned
literature, we designed a study to examine whether stimulation
of the posterior brain may be effective for alleviating
schizophrenia-related cognitive impairments while maintaining
an acceptable level of risk. Here, we report a pilot study
in which we tested the relative efficacies of nine strategies
for improving cognitive function in first-episode patients
with schizophrenia. The strategies involve use of a non-
invasive stimulation treatment modality (t-DCS or r-TMS),
use of lithium (a neuroprotective agent shown to improve
mild cognitive impairment) (26), or use of a combination
of each mode of stimulation with lithium. Stimulation was
applied to the occipital lobe or to the frontal lobe. Hence,
the nine strategy treatment groups were as follows: occipital
lobe t-DCS with adjunct lithium (O-tDCS + Li); occipital
lobe r-TMS with adjunct lithium (O-rTMS + Li); lithium
monotherapy (Li); occipital lobe t-DCS monotherapy (O-
tDCS); occipital lobe r-TMS monotherapy (O-rTMS), frontal
lobe t-DCS with adjunct lithium (F-tDCS + Li); frontal
lobe r-TMS with adjunct lithium (F-rTMS + Li); t-DCS
monotherapy (F-tDCS); and frontal lobe r-TMS monotherapy
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(F-rTMS). Intervention efficacy was determined based on
psychometric evaluations and analyses of global functional
connectivity density (gFCD) values obtained by magnetic
resonance imaging (MRI).

Materials and methods

Subjects

We recruited patients who were being treated for their
first episode of schizophrenia in the department of Psychiatry
at Tianjin Fourth Center Hospital or Zhengzhou University
hospital. The inclusion criteria were: (1) schizophrenia diagnosis
in accordance with the criteria of the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition (DSM-
IV) (27); (2) first episode, illness duration ≤6 months; (3)
stable at the time of study participation; (3) no additional
mental disorder beyond schizophrenia in one’s life history
based on application of the Structured Clinical Interview for
the DSM-IV non-patient edition (28) by two experienced
clinical psychiatrists who came to a consensus for each case;
(4) no severe physical illness or neurological comorbidities
that can influence the study; (5) no contraindication to
MRI; and (6) presenting with evidence of a cognitive
impairment evidenced by a MATRICS Consensus Cognitive
Battery (MCCB) (29) score lower than the average for
China and an MCCB-based Global Deficit Score (GDS)
(30) ≥3. The drug exposure of each patient in the week
preceding each MRI scan was converted to chlorpromazine
equivalent dosage.

The Medical Research Ethics Committee of Tianjin Fourth
Center Hospital approved this study. Written informed consent
was obtained after each prospective participant with a complete
description of the study.

Psychometric assessments

Schizophrenia symptom severity was evaluated with the
Positive and Negative Syndrome Scale (PANSS) (31). Cognitive
impairment was determined with the MCCB and (MCCB-
based) GDS.

Transcranial direct current stimulation

For occipital lobe t-DCS, a 2-mA current was
delivered with the anode and cathode placed over the
right and left occipital lobe, respectively. For frontal
lobe t-DCS, a 2-mA current was delivered with the
anode and cathode placed over the right and left
dorsal lateral prefrontal lobe dorsal lateral prefrontal

lobe, respectively. In both interventions, current was
delivered for a total of 20 min in each session. The
full intervention was 72 sessions (completed within 24
weeks).

Repetitive transcranial magnetic
stimulation

In this study, 10-Hz r-TMS was presented at
110% of the motor threshold. Each stimulation
lasted for 4 s with 26-s intervals; a total of 1,600
pulses were delivered within each 20-min daily
session. According to group, r-TMS was delivered
to the left occipital lobe or prefrontal cortex, with
the stimulation site 5.5 cm anterior to the optimal
site in each case on a para-sagittal plane. The full
intervention was 72 sessions (completed within 24
weeks).

Lithium

Lithium exposure was maintained in the range of
0.4–0.8 mmol/L. Blood concentration of lithium was
monitored biweekly.

Magnetic resonance imaging data
acquisition

Participants were subjected to structural MRI and functional
MRI (fMRI) pre- and postintervention. Imaging data were
obtained with a 3.0-T Discovery MR750 system (General
Electric, Milwaukee, WI). The participants wore closely
fitted foam padding to minimize their head movements,
and they wore earplugs to reduce exposure to scanner-
generated noise. We used a brain volume sequence with
the following parameters to obtain three-dimensional
sagittal T1-weighted images: repetition time (TR)/echo
time (TE)/inversion time (TI) = 8.2 ms/3.2 ms/450 ms; flip
angle, 12◦; field of view/matrix = 256 × 256 mm/256 × 256;
and 1-mm slice thickness without gaps yielding 188 sagittal
slices. We used a gradient-echo single-short echo planar
imaging sequence with the following parameters to obtain
resting state fMRI data: TR/TE = 2000/45 ms; field of
view/matrix = 220 × 220 mm/64 × 64; flip angle, 90◦;
and 4-mm slice thickness with 0.5-mm gaps yielding 32
interleaved transverse slices and 180 volumes. While being
prepared for scanning, each participant was asked to relax
with their eyes closed, to think of nothing in particular,
and to move as little as they can but not fall asleep during
scanning.
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Functional magnetic resonance
imaging data preparation

The fMRI data were preprocessed in SPM8 software,
available at www.fil.ion.ucl.ac.uk/spm. The first 10 volumes
of each scan were discarded under the presumption that
participants may have been still adapting and the system
may have still been reaching equilibrium. The volumes
obtained thereafter were then corrected for inter-slice
acquisition time delays and then realigned to correct
for motion between slices. Ultimately, all of the fMRI
data collected were confirmed to be within predefined
translational/rotational motion thresholds (< 2 mm/ < 2◦).
Frame-wise displacement did not differ significantly (t = 0.38,
P = 0.26) between postintervention (0.145 ± 0.014)
and preintervention baseline (0.120 ± 0.010) scans. We
regressed nuisance covariates (i.e., six motion parameters,
their first-time derivations, and average ventricular space
and white matter blood-oxygen-level-dependent signals)
out of the data. Because signal spiking caused by head
motion can contaminate fMRI results despite regressing
out of linear motion parameters (32), we also regressed
out spike volumes of specific volumes with a frame-
wise displacement > 0.5. The datasets were band-pass
filtered (0.01–0.08 Hz). For normalization, each structural
MR image was co-registered linearly relative to the
mean functional image and co-registered to Montreal
Neurological Institute (MNI) space. Employing co-
registration parameters, we spatially normalized each filtered
functional volume to MNI space and resampled it into a
3-mm cubic voxel.

Global functional connectivity density

We assessed gFCD as an index of functional connectivity
alterations throughout the brain. We used Tomasi and
Volkow’s (33) method in a Linux platform to calculate
the gFCD of each voxel (Totally 57777 voxels in the
brain was defined in the present study). Inter-voxel
functional connectivity was determined with Pearson’s
linear correlation analyses, applying a significance
criterion of R > 0.6 [previously shown to be the optimal
threshold by Tomasi and Volkow (33)]. We determined
gFCDs within the cerebral gray matter mask. The total
number of functional connections that a given voxel
had with all other voxels was taken as the gFCD of
that voxel. This calculation was repeated for each voxel
in the fMRI scan dataset. To maximize distribution
normality, a grand mean gFCD was obtained by dividing
by the mean gFCD value of all of the imaged brain
voxels within each patient’s scan dataset. The gFCD
maps obtained were subjected to spatial smoothing

with a 6 × 6 × 6-mm full-width at half maximum
Gaussian kernel. To check for effects of correlation
threshold selection on the gFCD analysis, we calculated
gFCD maps on two additional thresholds, namely
R > 0.2 and R > 0.4.

Grave matter volume

We used voxel-based morphometry to calculate GMVs
voxel-wise in VBM8 software.1 Employing the standard
segmentation model, we segmented structural MRIs into gray
matter, white matter, and cerebrospinal fluid components. We
completed an initial affine registration of the gray matter
concentration map into MNI space. Then, using diffeomorphic
anatomical registration through the exponentiated Lie algebra
technique, we warped the gray matter concentration images
non-linearly; the results obtained were resampled to a voxel
size of 3 × 3 × 3 mm. Then, to obtain the relative
GMV of each voxel, the gray matter concentration maps
were multiplied by non-linear determinants derived from
the aforementioned spatial normalization. The GMV images
were smoothed with a Gaussian kernel of 6 × 6 × 6-
mm full-width at half maximum prior to being subjected to
statistical analyses.

Statistical analysis

Means are reported with standard errors of the mean. Using
a general linear model with age and sex as nuisance variables
and a permutation-based inference tool for non-parametric
statistics in the FMRIB diffusion toolbox (FSL 4.0, available
at www.fmrib.ox.ac.uk/fsl), gFCD values were compared voxel-
wise with 5000 permutations. Differences with a p value less
than 0.05, after family wise error correction by threshold-free
cluster enhancement, were considered statistically significant.
Group comparisons of gFCD were run with GMV as an
additional covariate of no interest at the voxel-wise level. These
analyses were conducted for data obtained applying thresholds
of R > 2, R > 3 (main analysis), and R > 4. For each cluster
that met the significance threshold, we extracted the mean
gFCD value of that cluster for each subject. Partial correlation
coefficients were calculated to detect associations between gFCD
and clinical variables (i.e., chlorpromazine equivalent dosage,
illness duration, and psychometric scores). Age and gender
effects were controlled. Multiple comparisons were corrected
for with Bonferroni’s method (threshold p < 0.05). Correlation
analyses between gFCD and clinical variables were performed
for the whole brain voxel-wise. Correlational analyses were
conducted with a linear regression model with age and gender as

1 http://dbm.neuro.uni-jena.de/vbm8
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covariates of no interest. Multiple comparisons were corrected
for according to the family wise error method (p < 0.05).

Results

Sample

A total of 450 right-handed participants were enrolled and
placed into the nine intervention groups. Among them, 383
patients completed the study (85.11% completion rate).

Comparison of the effects of nine
treatment strategies on cognitive
assessment scores

Cognitive assessment scores before and after the 24-week
intervention period are compared among the intervention
groups in Table 1. Before the interventions, the groups had
similar GDSs. All nine interventions had significant positive
effects on GDS and there was a significant effect of group on
GDS. The largest improvements in GDS were observed for the
O-tDCS + Li group (mean increase, 1.81 ± 0.12, p < 0.05),
O-rTMS + Li group (mean increase 1.24 ± 0.22, p < 0.05), and
Li group (mean increase, 1.04 ± 0.03, p < 0.05). Thereafter,
in order of next best to least impactful treatment strategies (all
p < 0.05), the remaining groups performed as follows: O-tDCS;
O-rTMS; F-tDCS + Li; F-rTMS + Li; F-tDCS; and F-rTMS.

Comparison of the effects of nine
treatment strategies on global
functional connectivity density

Average changes in gFCD before versus after each
intervention are shown in Figures 1–3. Most remarkably,
we found that whole-brain gFCD increased 72-fold in the
O-tDCS + Li group. Thereafter, in order of next most marked
change to least change, the remaining groups performed as
follows: O-rTMS + Li; Li; O-tDCS; O-rTMS; F-tDCS + Li;
F-rTMS + Li; F-tDCS; and F-rTMS. This rank order is consistent
with the order of impact we observed above for GDS.

Adverse secondary effects

Substantial portions of the patients in all of the t-DCS
and r-TMS treatment groups, with or without adjunct lithium,
experienced ASEs. In the Li group, there was only a
single patient who reported experiencing an ASE, namely
fatty diarrhea (0.2%, 1/50). The most common ASEs for

each other group, besides the Li group, were as follows:
O-tDCS + Li, headache with dizziness and nausea (75.0%,
24/32); O-rTMS + Li, dizziness and nausea (73.80%, 31/42);
O-tDCS, headache (79.49%, 31/39); O-rTMS, dizziness (alone)
(78.57%, 33/42); F-tDCS + Li, moderate headache with dizziness
(77.5%, 31/40); O-rTMS + Li, mild headache and nausea (57.5%,
23/40); F-tDCS, moderate headache (52.08%, 25/48); F-tDCS,
mild headache (48.00%, 24/50).

Discussion

To the best of our knowledge, this study was the
first to compare the effects of multiple new cognitive
treatment strategies for schizophrenia-associated cognitive
impairment, inclusive of targeting the occipital lobe,
with two traditional strategies (i.e., dorsal lateral
prefrontal lobe stimulation monotherapies). Our data
demonstrated that stimulation of the occipital lobe with
t-DCS combined with adjunct lithium treatment was
beneficial for mitigating the progression of worsening in
schizophrenic patients’ cognitive performance. However,
this treatment strategy was commonly associated with
dizziness and nausea.

Our analysis of gFCD, an index of whole brain connectivity,
demonstrated that cognitive impairments were alleviated by
r-TMS stimulation with adjunct lithium as well as by lithium
monotherapy. Because lithium monotherapy did not produce
ASEs frequently, while the other treatment strategies produced
ASEs did, lithium monotherapy may be better accepted by
patients, especially in the long term.

The present data support the notion that the posterior
brain may play an important role in the cognitive impairment
experienced by patients with schizophrenia. Furthermore, these
data also demonstrated that brain connectivity alterations
produced in response to occipital lobe stimulation can improve
the cognitive impairment. Interestingly, we observed that t-DCS
of the occipital lobe increased gFCD in the occipital lobe
as well as in the frontal lobe, suggesting that occipital lobe
targeted t-DCS can enhance whole brain connectivity, which
may underlie its efficacy for improving cognitive impairment.

The present finding of lithium treatment-induced
enhancement of whole-brain functional connectivity is
consistent with previous studies reporting that lithium can
improve the cognitive impairment in patients diagnosed with
mild cognitive impairment or dementia (34, 35). Implicated
mechanisms for these lithium benefits include inhibition of
glycogen synthase kinase-3 and reduction of beta-amyloid and
hyper-phosphorylated tau (34, 35). Our data, from a large-scale
imaging perspective, provide evidence suggesting that lithium
can improve cognitive impairments by enhancing functional
connectivity on a whole-brain level. Functional connectivity
represents the information communication capability of
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TABLE 1 Effects of 24-week treatments on cognitive impairment.

Variable O-
tDCS+Li

O-
rTMS+Li

Li O-
tDCS

O-
rTMS

F-
tDCS+Li

F-
rTMS+Li

F-tDCS F-rTMS ANOVA
P

Pre-intervention

MCCB domain scores

SP 35.30 ± 5.45 35.14 ± 4.25 34.07 ± 2.30 30.28 ± 3.60 32.87 ± 2.35 36.02 ± 1.82 34.70 ± 1.13 33.47 ± 1.05 34.55 ± 10.86 0.037

AV 31.47 ± 2.62 34.55 ± 3.12 34.33 ± 1.36 31.36 ± 1.00 33.32 ± 1.42 32.16 ± 1.28 34.15 ± 0.45 32.20 ± 1.63 35.06 ± 2.13 0.012

WM 31.50 ± 1.30 30.57 ± 1.39 34.22 ± 3.20 30.33 ± 4.75 32.11 ± 1.87 30.25 ± 1.52 30.02 ± 0.45 30.51 ± 0.69 31.29 ± 1.55 0.041

VerbL 30.20 ± 2.77 30.62 ± 1.24 32.11 ± 1.33 30.50 ± 1.44 31.25 ± 1.08 32.44 ± 1.45 32.53 ± 1.09 31.44 ± 1.22 30.96 ± 1.59 0.053

VisL 30.22 ± 2.23 32.09 ± 1.12 31.03 ± 1.80 30.21 ± 1.45 30.88 ± 2.00 30.25 ± 1.44 30.55 ± 0.85 30.28 ± 3.78 33.25 ± 0.58 0.029

Reas 32.25 ± 2.02 31.24 ± 2.12 30.44 ± 3.09 30.00 ± 1.36 34.22 ± 1.45 30.04 ± 1.85 30.00 ± 0.77 31.25 ± 0.80 32.14 ± 1.55 0.049

SR 31.20 ± 2.36 32.15 ± 1.33 32.03 ± 1.42 31.72 ± 1.25 32.02 ± 1.28 32.11 ± 1.28 32.40 ± 1.25 32.55 ± 0.98 34.00 ± 1.41 0.047

GDS 3.54 ± 1.54 3.50 ± 1.20 3.20 ± 2.14 3.14 ± 1.45 3.65 ± 0.54 3.47 ± 1.26 3.66 ± 0.96 3.47 ± 1.02 3.02 ± 0.96 3.52 ± 1.36

Post-intervention

SP 27.33 ± 1.42 21.65 ± 1.62 25.23 ± 1.36 25.00 ± 1.25 23.44 ± 0.63 26.82 ± 1.40 25.36 ± 0.58 25.63 ± 1.42 22.33 ± 2.36 0.046

AV 25.22 ± 1.25 23.42 ± 1.02 22.43 ± 1.45 21.44 ± 1.23 23.02 ± 1.26 22.16 ± 2.20 20.03 ± 0.78 22.14 ± 0.58 23.25 ± 1.25 0.039

WM 26.14 ± 0.63 23.54 ± 1.45 21.25 ± 1.25 22.45 ± 1.10 21.20 ± 0.87 21.22 ± 1.02 21.36 ± 1.56 21.89 ± 1.25 21.29 ± 0.69 0.021

VerbL 25.23 ± 1.25 24.35 ± 1.00 21.23 ± 1.44 20.33 ± 2.30 23.02 ± 0.85 20.48 ± 0.69 21.53 ± 0.64 21.36 ± 0.89 21.66 ± 1.23 0.028

VisL 24.36 ± 1.56 23.35 ± 0.36 21.36 ± 0.87 23.69 ± 1.23 24.78 ± 1.56 23.69 ± 1.35 21.36 ± 1.23 23.36 ± 1.28 19.28 ± 1.36 0.003

Reas 26.25 ± 1.36 25.64 ± 2.02 22.15 ± 1.09 21.00 ± 1.00 18.82 ± 1.25 17.66 ± 1.83 18.50 ± 1.55 18.25 ± 1.36 18.20 ± 2.20 0.001

SR 25.33 ± 0.89 24.22 ± 1.88 22.07 ± 0.74 20.36 ± 1.28 19.12 ± 2.23 18.56 ± 0.98 19.25 ± 2.32 18.99 ± 2.10 17.69 ± 0.69 0.001

GDS 2.56 ± 0.89 2.62 ± 1.26 2.77 ± 1.26 2.65 ± 1.10 2.82 ± 1.10 2.96 ± 1.40 2.83 ± 2.12 2.99 ± 1.29 2.36 ± 0.58 0.024

Reduction in GDS,% 33.62 24.24 22.75 23.33 18.57 17.23 10.22 8.11 6.63 4.56

O-, occipital lobe targeted; t-DCS transcranial direct current stimulation; + Li, with adjunct lithium; rTMS, repetitive transcranial magnetic stimulation; Li, lithium monotherapy; F-,
frontal lobe targeted; ANOVA, analysis of variance; MCCB, MATRICS Consensus Cognitive Battery; GDS, Global Disability Score; SP, speed processing; AV, attention vigilance; WM,
working memory; VerbL, verbal learning; VisL, visual learning; Reas, reasoning; SR, social recognition.

FIGURE 1

Comparison of gFCDs before versus after 24-week treatments inclusive of f-DCS. (A) O-tDCS + Li group. (B) O-tDCS group. (C) F-fDCS + Li
group. (D) F-tDCS group.

the brain (36–42). Thus, increased gFCD, especially in the
occipital lobe, basal ganglia, and frontal lobe, reflects enhanced
communication throughout the brain. Further research is
needed to explore whether lithium indeed mitigates cognitive

impairment by enabling better brain-wide communication
(43–46).

The present data showed that gFCD in occipital
regions was reduced by t-DCS with adjunct lithium but
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FIGURE 2

Comparison of gFCDs before versus after 24-week treatments inclusive of r-TMS. (A) O-rTMS + Li group. (B) O-rTMS group. (C) F-rTMS + Li
group. (D). F-rTMS group.

FIGURE 3

Comparison of gFCDs before versus after 24-week treatment
with only lithium (Li group).

not by r-TMS with adjunct lithium. It is possible, that
the t-DCS stimulus is more powerful than the r-TMS
stimulus, though we cannot make any conclusions
regarding the reason for this difference. We did observe
lesser gFCD values in the hippocampus following r-TMS
with lithium treatment than following t-DCS with
lithium treatment, which could reflect a relatively weaker
effect of the former.

Notably, we observed that lithium monotherapy resulted
in increased gFCD values in the temporal lobe and posterior
parietal lobe compared with pre-treatment values. It is well
known that the posterior parietal lobe is important for cognitive
ability. Moreover, lithium has been shown to enhance cognitive
performance in a temporal-lobe dependent visual task. Thus,
we postulate that lithium may support cognitive performance
by way of its positive effects on functional connectivity in
the temporal and posterior parietal lobes, at least in part.

Although occipital lobe-targeted t-DCS monotherapy induced
gFCD increases in the occipital lobe and prefrontal cortex
in this study, it did not increase gFCD in the basal ganglia
region. Conversely, when lithium was given alone or as an
adjunct with t-DCS, gFCD increases in the basal ganglia
region were seen.

Occipital lobe treatment with t-DCS seemed to be more
beneficial in terms of cognitive performance measures than
r-TMS. This difference might be reflected in the ability of the
former to increase the gFCD in basal ganglia regions and the
prefrontal cortex. Although frontal lobe-targeted t-DCS with
adjunct lithium resulted in increased gFCD in the frontal,
temporal, and parietal lobes, it did not increase gFCD in
posterior brain regions. Thus, it appears that targeting of
t-DCS to the occipital lobe may have more distal connectivity
benefits than targeting t-DCS to the frontal lobe. Similarly,
frontal lobe-targeted r-TMS increased gFCD alterations in the
prefrontal cortex without augmenting gFCD in the basal ganglia
region or in posterior brain regions, suggesting that t-DCS
stimulation of the frontal lobe may enhance brain activity in
only the frontal lobe.

Limitations

There are several limitations in this study. First, the patient
sample was heterogenous with respect to cognitive impairment,
illness duration, and symptom severity. We used covariance
analysis to regress out these differences in our gFCD analysis
and we compared change in GDS (rather than absolute scores)
to compare effects across the nine strategy groups. However,
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this method cannot assure all possible downstream influences
of these differences are eliminated. In a future larger study,
we will enroll sufficient numbers of patients to balance out
these differences as much as possible. Second, we focused
on comparing patients before versus after treatment, but
we did not have an untreated control group, which limited
the amount of information we could obtain. Third, it
is unclear why no correlations between gFCD alteration
and GDS alteration were found for any of the treatment
strategy groups. We hope that larger sample studies will
clarify this question.

Conclusion

Of the nine treatment strategies compared in this
study, t-DCS stimulation of the occipital lobe with
adjunct lithium therapy had the strongest beneficial
effect on cognitive impairments, although patients
in this group commonly experienced headache with
dizziness and nausea.
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