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Abstract

Background

New indices, calculated on data from the widely used Dot Probe Task, were recently pro-

posed to capture variability in biased attention allocation. We observed that it remains

unclear which data pattern is meant to be indicative of dynamic bias and thus to be captured

by these indices. Moreover, we hypothesized that the new indices are sensitive to SD differ-

ences at the response time (RT) level in the absence of bias.

Method

Randomly generated datasets were analyzed to assess properties of the Attention Bias Var-

iability (ABV) and Trial Level Bias Score (TL-BS) indices. Sensitivity to creating differences

in 1) RT standard deviation, 2) mean RT, and 3) bias magnitude were assessed. In addition,

two possible definitions of dynamic attention bias were explored by creating differences in 4)

frequency of bias switching, and 5) bias magnitude in the presence of constant switching.

Results

ABV and TL-BS indices were found highly sensitive to increasing SD at the response time

level, insensitive to increasing bias, linearly sensitive to increasing bias magnitude in the

presence of bias switches, and non-linearly sensitive to increasing the frequency of bias

switches. The ABV index was also found responsive to increasing mean response times in

the absence of bias.

Conclusion

Recently proposed DPT derived variability indices cannot uncouple measurement error

from bias variability. Significant group differences may be observed even if there is no bias

present in any individual dataset. This renders the new indices in their current form unfit for

empirical purposes. Our discussion focuses on fostering debate and ideas for new research

to validate the potentially very important notion of biased attention being dynamic.
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Introduction

Recently, two research groups independently proposed and tested new methods to index indi-

viduals’ tendencies to switch their focus of attention towards and/or away from visual emo-

tional information [1,2]. Adding new analysis options for Dot Probe Task (DPT) derived data,

these new indices are meant to capture differential dynamics of attention allocation over time.

The dot probe task (DPT) was introduced in 1986 [3] as an alternative to the Stroop task for

indexing biased attention allocation. During a single DPT trial, a participant is presented with

two visual stimuli simultaneously, typically consisting of an emotional stimulus (e.g. a threat-

ening word or picture) and a neutral stimulus. Upon offset of the stimulus display, a small tar-

get appears in the spatial location previously occupied by either the emotional stimulus (in a

congruent trial) or the neutral stimulus (in an incongruent trial). The participant is instructed

to respond to this target as quickly as possible. The basic premise of the DPT is that if an indi-

vidual has a tendency to orient visual attention towards emotional rather than neutral infor-

mation, this tendency (bias) will enable faster responding on congruent trials (when the target

appears in the spatial location previously occupied by the emotional stimulus) relative to the

incongruent trials. Thus, the difference in response time (RT) for congruent and incongruent

trials constitutes the traditional DPT derived bias index (BI). BI is usually assessed over at least

86 trials. Using the DPT, and variations thereof, attention allocation biases have been observed

in various patient- and at-risk samples, supporting cognitive theories of psychopathology,

which state that (content-specific) attention allocation biases play a role in the aetiology and

maintenance of various types of psychopathology [4–7].

Interest in the DPT has surged in recent years, which we putatively associate with the devel-

opment of DPT variations intended to modify, rather than assess, attention allocation bias.

This application of DPT (and similar modifications of other bias assessment tasks such as emo-

tional visual search and single cueing tasks [8,9]) is termed Attention Bias Modification

(ABM). Initially proposed as an experimental tool for studying the putative causal role of

attention allocation bias in the aetiology of psychopathology [10], its potential as a new treat-

ment modality was soon identified [11]. Especially in the past 6 years an exponential increase

in both numbers and scope of DPT based papers can be observed (see S1 Fig). An extensive lit-

erature search in the Scopus database yielded 751 empirical papers reporting on dot probe

type data since 1986. Of these, 43 were published between 1986 and 2001, 9 in 2002, 44 in

2009, and 117 in 2015. Not only the numbers of papers have increased, DPT based methods

are applied to an increasing number of phenomena throughout the spectrum of psychology

subfields, ranging from primate research, imaging and physiological studies, through biases

associated with clinical disorders and medical outcomes, functional biases in professional con-

texts (police, safety related bias), to biases related to political views, customer satisfaction, and

experiencing nature. A proportion of these papers appear to aim to measure whether attention

allocation bias exists in association with phenomena of interest, to assess whether it would be

worth pursuing modification of bias.

Yet, the ABM field seems affected by the so-called decline effect: large effects sizes reported

in early ABM papers (2009 to 2012) focussing on mood disorders, have not always been repli-

cated and an increasing number of null results become published, often in the context of larger

scale RCTs in patient samples (meta-analyses: [12–15]).

The DPT plays two central roles in ABM studies. The most widely tested ABM procedure is

in itself a modified DPT [10,16]: and since the DPT is also the ‘gold standard’ for assessing

attention allocation bias, it is the logical first choice for assessing near transfer effects of ABM

(i.e. effects on bias, rather than effects on symptoms, which we consider far transfer effects). If

DPT based ABM procedures do not modify bias as assessed with a procedure nearly identical
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to the training procedure, this hampers the credibility of ABM’s proposed mechanism of

action. Unfortunately, such near transfer is regularly not observed in ABM studies [17]. With

the promise of ABM as a treatment and given the current state of affairs, interest in under-

standing and improving DPT and related methods has grown stronger than ever before, as evi-

denced by an increasing number of papers focussing on the psychometric properties of the

DPT [18–25].

These papers paint a grim picture however, with reliability indices for bias scores typically

found to be unacceptably low [18–25]. It is important to realize that there are distributions at

two different levels at play. DPT data consists of RTs observed for congruent and incongruent

trials, which have a distribution (e.g. a mean and SD), yet the outcome of interest is the differ-

ence in RT between incongruent and congruent trials, which theoretically reflects bias and has

its own distribution (mean and SD). In two of the recent psychometric papers, reliability coef-

ficients are given for RTs as well as for bias scores [18,22]. Both these papers report acceptable

to good reliability at the RT level, paired with virtually zero reliability for the bias indices (e.g.

Spearman Brown corrected split half reliabilities of 0.91 & 0.93 for RT incongruent and con-

gruent, paired with an overall bias index reliability of -0.12 as reported by Waechter and col-

leagues [22]).

An exciting development therefore, has been the introduction of new ways of thinking

about, and interpreting the data that is derived from, the DPT. This includes the presentation

of new indices to calculate from DPT data in order to capture the dynamic and highly variable

nature of attention allocation, rather than assessing bias as a static phenomenon. These would

allow the notion that an anxious individual may regularly switch their attention between nega-

tive and otherwise valenced information, which may occur even if a putative dominant ten-

dency to attend towards negative information is present.

The two recently proposed algorithms for analysing DPT derived data are termed Attention

Bias Variability (ABV—by Iacoviello and colleauges [2]), and Trial Level Bias Scores (TL-BS–

by Zvielli and colleagues [1]). Both seminal papers note that the traditional BI represents a rel-

atively static measure, providing one summary index to represent attention orientation over

an entire assessment session of 60 up to several hundred trials. The authors of the new indices

propose that “AB (attentional bias) may be expressed in fluctuating, phasic bursts, toward or
away from target stimuli” ([1], p3), and “Therefore, attention-bias variability, or within-subject

variability of attention biases toward and away from threat during attention-bias assessment,

might explain the seemingly conflicting findings of studies reporting biases toward, and others

reporting biases away from, threat-cues in PTSD” ([2], p233). Thus, both TL-BS and ABV

indices are designed to reflect the temporal dynamics of attention allocation. To this end, both

methods construct a series of bias indices computed over consecutive subsets (ABV) or pairs

(TL-BS) of DPT trials. The concept of attention variability seems best explained using a graphi-

cal representation similar to Fig 1: a time series of bias indices computed over pairs of incon-

gruent and congruent trials, which will typically exhibit a cyclic pattern. This is proposed to

reflect attention variability, with positive values indicating attention oriented towards the emo-

tional stimulus (relative to the neutral stimulus) and negative values reflecting attention ori-

ented away from the emotional stimulus. Thus, the cycling pattern is interpreted to reflect an

individual’s attention moving back and forth over time, towards and away from the emotional

stimulus. Moreover, differential patterns were observed between patient (spider phobia,

PTSD) and control groups, and between smokers and non-smoking controls, such that the

patient and smoker groups showed cyclic patterns with larger amplitudes. The authors pro-

posed that these reflect higher variability in attention allocation in these groups, relative to a

more stable pattern of attention orienting in control groups [1,2]
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Importantly, bias time series, similar in appearance to Fig 1, are not the main outcome of

the new variability methods. The bias time series are used to derive summary indices. In the

ABV method [2], the time series is constructed by calculating BI for each of eight consecutive

‘bins’ of 20 trials. To arrive at the ABV index, the standard deviation of these eight BI is divided

by the overall mean RT. In the TL.BS method [1] every single congruent and incongruent trial

is paired with the opposing (incongruent/congruent) trial that occurred closest in time, con-

strained at a maximum distance of five trials back-, and forward. For each trial pair, a BI is cal-

culated (RT incongruent minus RT congruent). The resulting series of TL-BSs (Trial Level

Bias Scores) is then used to derive five indices. Peak and average values are analysed separately

for positive and negative TL-BSs. The fifth index, TL-BS variability, is calculated as the mean

absolute distance over the entire series of TL-BSs. Thus, both methods take the mechanics of

the DPT into account, assuming that RT differences between the two trial types (incongruent–

congruent) reflect preferential attention allocation yet add the notion that these RT differences

may vary rapidly and meaningfully over time.

Although very similar to graphical representations of observed bias dynamics over the

course of a DPT assessment (compare Fig 1 reported by Zvielli and colleauges [1]), Fig 1 does

not represent DPT data. The right hand panel shows the first 30 data points from two datasets

of random, normally distributed, data, with parameters M = 0, and SD = 150 and 350 respec-

tively. Density plots for the entire datasets (n = 10 000 each) are shown in the left hand panel.

The currently presented study is based on a central tenet of classical test theory, namely that

Fig 1. Normally distributed data show an oscillating pattern when plotted over time. Green (light): mean = 0, SD = 150. Blue (dark):

mean = 0, SD = 350. Density plots (left hand panel) based on 10 000 randomly generated data points with a standard normal distribution (using

Rnorm()). The lines (right hand panel) show the first 30 data points of each dataset.

doi:10.1371/journal.pone.0166600.g001
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any observed value is a combination of a true score plus measurement error. Measurement

error usually results in both under- and overestimation of the true score, and thus a collection

of observed values typically shows a two-tailed distribution. For any such two-tailed distribu-

tion, mapping each data point’s value (y) as a function of time (x) results in a graph with a

cycling pattern: on consecutive draws, data points ‘fall’ randomly above or below the mean

value, with most data points falling close to the mean, and a smaller number of data points fall-

ing farther away from it. The amplitude of the resulting cyclic pattern corresponds to the stan-

dard deviation of the distribution. In most regular statistics, the standard deviation is used as

an estimation of the measurement error. Importantly however, in the context of repeated mea-

surements a high standard deviation in data obtained from a single individual may reflect that

either the construct being measured is unstable (high variability), that the measurement

method itself is unreliable (high measurement error), or a combination of both.

The new DPT indices, therefore, likely provide an index of attention bias variability and

measurement error combined. This paper presents the results of a series of simulations devised

to assess the relative sensitivity of these measures to changes in measurement reliability in the

absence of attention bias, and changes in attention bias variability in the absence of measure-

ment reliability changes. We propose that in Dot Probe data (variability in) attention bias can

only be reflected in (variability in) RT differences between incongruent and congruent trials. If

however, the RT for congruent and incongruent trials are sampled from the same distribution

(i.e. same mean and SD), there can be no bias according to the inherent logic of the DPT.

Therefore, variability at the RT level observed in a dataset in which the RT for congruent and

incongruent trials are interchangeable in terms of their underlying distributions, may be

regarded as reflecting mostly measurement error. Therefore, the new measures should ideally

respond more strongly to variability in bias (a difference between IT and CT distributions)

than to variability (SD) in RT for both congruent and incongruent trials in the absence of

attention bias.

To address the question of relative sensitivity to bias variability versus measurement error,

series of randomly generated datasets with DPT characteristics were processed according to

either the ABV or TL-BS, and the traditional BI methods. For both new methods, three initial

simulation series were run, each systematically manipulating a single parameter of the stan-

dard normal distributions of randomly drawn ‘raw RT’ data. These simulations provide insight

into the extent to which traditional BI and the new variability measures are sensitive to 1)

increasing standard deviation at the RT level (in the absence of attention bias), 2) increasing

mean RT (in the absence of attention bias), and 3) increasing attention bias (i.e. increasing the

mean RT difference between congruent and incongruent trials).

To assess sensitivity to variability in biased attention over time, we then proceed with two

additional series of simulations aimed at either one of two characteristics of variability. Given

the cyclic patterns, variability can be defined by two characteristics. Either attention bias may

switch less or more often (i.e. the frequency of bias switches may vary), or bias may be more or

less pronounced (i.e. the magnitude of attention bias in the presence of bias switches may vary).

If individuals indeed differ in the variability of attention bias, these differences will most likely

be best described as a combination of both frequency and magnitude differences. However, for

the current purpose of assessing which data characteristics are reflected by the new variability

indices, these characteristics are independently manipulated in separate simulations series.

These use datasets in which an attention bias is implied and is made to switch from a positive

to a negative value and vice-versa. In the first type of these dynamic simulations a frequency

difference is created while bias magnitude is kept constant. In the second type of dynamic sim-

ulation a bias magnitude difference is created while sign-switching frequency is kept constant.

Capturing Dynamics of Biased Attention

PLOS ONE | DOI:10.1371/journal.pone.0166600 November 22, 2016 5 / 22



We hypothesize that ABV and TL-BS indices will respond to increases in SD at the RT level.

In addition, ABV is expected to respond to increases in overall mean RT (due to this being the

denominator of the ABV formula). Traditional BI is expected to selectively respond to

increased difference between the mean RT for congruent and incongruent trials. The two

dynamic simulations are more exploratory in nature, we do not formulate specific hypotheses

for the responses by the new indices for these simulations. Traditional BI is expected to

respond to the presence of one or more BI switches, representing the average bias implied

within each of the individual simulated datasets.

Methods

General Methodology

All simulations and analyses were performed in R version 3.1.2 (“pumpkin helmet”). All simu-

lation scripts and aggregated data files are available from https://figshare.com/articles/

Capturing_Dynamics_of_Biased_Attention/1515002 (DOI: 10.6084/m9.figshare.1515002)

Random data were generated using the rnorm() function, which allows specification of the

number of data points to be generated as well as the mean and SD of the distribution from

which these data are drawn. Data were generated separately for each type of trial (congruent

(CT), incongruent (IT), and neutral-neutral (NT) trials) for each ‘participant’ i. Three data

subsets (CT/IT/NT) were then randomized into one ‘i’ dataset to represent the random order

of trial types in a single DPT assessment. The start values in the simulations assessing effects of

increasing mean, SD, or traditional BI were set at M = 600, SD = 30. In the increasing mean

and SD simulations, the same M and SD were used to generate IT and CT trials within each

dataset. Thus, no bias (IT-CT difference) exists in these datasets. Within each simulation

increases in SD, means, bias, or bias dynamics were created by manipulating the settings for

datasets ‘i’ assigned to the change groups (‘A’), while the settings for datasets for the control

groups (‘B’) retained their start values.

Increasing mean simulations. For each subsequent run (‘r’) of 1000 studies, mean values

for both CT and IT trials in the change groups were increased with 20 units (‘milliseconds’),

from M = 600 in run 1, to M = 620 in run 2, up to M = 780 in run 10.

Increasing SD simulations. For each subsequent run (‘r’) of 1000 studies, the SD value for

both CT and IT trials in the change groups was increased with 2 units, from SD = 30 in run 1,

SD = 32 in run 2, up to SD = 48 in run 10.

Increasing bias simulations. For each subsequent run (‘r’) of 1000 studies, the mean RT

value for CT trials was decreased with 1.5 units, and the mean RT value for IT trials increased

with 1.5 units. Thus a ‘RT difference’ (bias) was created and increased with 3 units on each

consecutive run: bias = 0 in run 1, bias = 3 in run 2, up to bias = 27 in run 10.

Increasing dynamic frequency simulations. For the simulations assessing effect of

increasing the frequency of BI switches, bias magnitude (IT-CT difference) was kept constant

at +20 in datasets in the control groups. In the change groups an increasing number of

switches were created over consecutive runs ‘r’, such that bias changed sign from +20 to -20

and vice versa. On each run ‘r’, bias switches were implemented to occur following every ‘1/

r’th trial. Thus no switch was present in run 1 (a constant bias of +20 was implied), one switch

was created after 1/2 the trials in run 2, up to switches occurring every 1/10th of the trials in

run 10. Data were generated (i.e. rnorm() called) for all trials that share the same characteristics

at once, after which the generated random values were relocated to a randomized order of CT/

IT/NT trials. I.e. in run 4 there were 3 switches and therefore 4 ‘data sub sets’ (with bias +20,

-20, +20, and -20 respectively). All IT trials with M = 610 were generated in one call of the

rnorm() function, and all IT trials with M = 590 in another, after which these values were
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allocated to trial numbers randomly assigned to represent IT trials in their respective subsets.

In some runs, the total number of trials cannot be divided by ‘r’. In their datasets ‘i’, leftover

trials were added to the last subset. For instance, when 160 trials were divided by 3 (in run 3

for the ABV method in which 2 switches were implemented), switches were created following

every 53 trials, i.e. following trial # 53, 106, and 159. This results in three subsets of 53 trials,

plus one leftover trial, which was added to (i.e. assigned the same characteristics as) the third

subset. Notice that this does not necessarily render the last subset different from the other sub-

sets, as these will also vary slightly in their number of CT, IT, and NT trials due to the trial

order being randomized independent from the number of switches as well as due to outlier tri-

als being removed (see below). Also notice that for the TL-BS methodology, the number of CT

and IT trials was 20 each (see explanation below). Therefore, in both runs 7 and 8, switches

were created following every 5th trial, and in runs 9 and 10 following every 4th trial, rendering

these two sets of runs functionally similar.

Increasing dynamic magnitude simulations. For the simulations assessing effects of

increasing bias amplitude in the presence of dynamic bias, datasets for both control and

change groups were constructed to always have three bias switches (e.g. four subsets with bias

is +20, -20, +20, -20). Bias magnitude (IT-CT difference) was set to increase by 3 points on

each consecutive run ‘r’ (e.g. +23, -23, +23, -23 in run 2, up to +47, -47, +47, -47 in run 10) in

the change groups. Bias magnitude was kept constant at +/- 20 in datasets in the control

groups.

Once generated, each dataset ‘i’ was processed according to either the ABV or TL-BS

methods.

ABV methods

In line with study 1 reported by Iacoviello et al (2014), each dataset ‘i’ consists of 64 incongru-

ent trials, 64 congruent trials, and 32 neutral-neutral trials in random order. Although there

were no trials on which ‘participants’ made an error to discard, RT values < 150 and> 2000,

and all values deviating more than 2 SD from the individual mean (computed separately for

CT, IT, and NT trials) were discarded, in line with the rules applied by Iacoviello and col-

leagues [2]. The remaining data were divided into bins of 20 original trials (i.e. trial number

1–20, 21–40, etc., regardless of the number of discarded trials within each bin). Bias index (BI)

was computed for each of the eight bins as ‘ mean RT(IT)−mean RTCT) ‘, after which the SD
for the eight bin BIs was obtained. ABV was computed as ‘SD(BI across bins) / mean RT(CT+IT)’.

On rare occasions the random order of IT/CT/NT trials resulted in no CT or IT trials being

assigned to at least one of the eight bins. This occurred between 163 and 186 times per run of

520 000 datasets (i.e. in .031 - .036% of datasets). We decided to not alter the ABV formula for

these datasets (for instance by using 7 bins rather than 8), but to retain the value NA returned

for these data sets’ ABV computation.

TL-BS methods

Following the methods of study 1 reported by Zvielli and colleagues [1] each dataset ‘i’ consists

of 20 congruent, 20 incongruent, and 20 neutral-neutral trials. For these analyses outliers were

defined according to the rules used by Zvielli et al. such that RT values < 200 and> 1500, as

well as data points deviating more than 3 SD from the individual RT mean were discarded.

The resulting data for CT and IT trials were then paired for computing TL-BS. Each CT and

IT trial was paired to its temporally most contiguous opposite trial, with a maximum of five tri-

als distance in either direction. For each trial pair, a TL-BS was calculated as ‘RT(IT-trial)

−RT(CT-trial)’. Peak and average values of positively and negatively valued TL-BSs were logged,
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as well as the TL-BS variability parameter computed as the sum of absolute differences between

each consecutive TL-BS divided by the total number of TL-BSs (Zvielli, et al, 2014). Upon

learning that TL-BS variability is meant to be calculated as the total length of the TL-BS lines

using the Euclidian distance formula (Zvielli, Bernstein, Koster, personal communication), we

adjusted our scripts. All TL-BS variability indices reported were calculated as ‘ mean (sqrt ((tri-

als distance between 2 consecutive TL-BS)^2 + (value difference between 2 consecutive

TL-BS)^2)) ) ‘. We noticed that increasing bias also increases the probability of no negative

TL-BS parameters being generated. I.e.: as the mean RT for IT trials increases relative to the

mean RT for CT trials, the probability of ‘ RT(IT-trial)−RTCT-trial)’ for any trial pair resulting

in a negative value decreases. This situation occurs almost exclusively in simulations wherein a

bias difference is implied, i.e. 82 occurrences among 520 000 datasets ‘i’ (.016%) in the increas-

ing bias simulation and 92 in the increasing dynamic bias frequency simulations (.018%), ver-

sus 0 occurrences in the SD and mean increasing simulations. The bias increased simulation

also had a single occurrence of an individual dataset in which no positive TL-BSs were gener-

ated. When no negative or positive TL-BS were generated for a single dataset ‘i’, the values for

average and peak negative/positive TL-BS were set at ‘0’, which we argue is a meaningful value

in this context.

Outcome Measure

In order to provide a demonstration of how the measures would perform in studies assessing

group differences using these indices, group differences within each ‘study’ dataset j (consist-

ing of two groups of 26 ‘participant’s i) were assessed using Welch t-tests. Welch’s t-test is the

default t-test in R, yet in the context of, especially, the SD increasing simulations it would be

the t-test of choice as it is more robust against unequal variances. For every run of 1000 studies,

the percentage of significant p-values (p< .05) was obtained. Given an alpha of .05, among

1000 t-tests, circa fifty (5 percent) false-positive t-tests are expected to occur in the absence of a

‘real’ difference. Increasing percentages of significant t-tests over runs within in a simulation

series, indicate the measure’s sensitivity to the change being implemented. Sample size (n = 26

per group) was chosen such that t-tests have 80% power to detect at least large effect sizes (d =

.80). Therefore, each individual ‘study’ j is underpowered for detecting small or moderately

sized effects, rendering our outcome of percentage significant t-tests relatively conservative.

Ideally (yet contrary to our hypotheses), the percentage of significant t-tests for the new DPT

derived bias measures will increase selectively in either one or both of the bias variability simu-

lations, while remaining stable at 5% in simulations wherein no bias is created (i.e. the SD and

mean RT increasing simulations in which congruent and incongruent trials have identical

characteristics within each dataset i).

Procedure

All reported data were generated in a single consecutive run of eight simulations s, each gener-

ating data for 10 runs r. Each run contains 1000 studies j, and each study j contains 52 datasets

i assigned to either change or control groups. For each study j, Welch’s t-test was performed to

test for differences between change and control groups (each containing 26 datasets i) for the

ABV or TL-BS parameters, and traditional BI (computed as ‘ mean RT(IT)−mean RT(CT) ‘ for

all included trials). For every thousand studies (a single run r), the percentage of significant p-

values (p< .05) was obtained. One simulation s consists of ten runs r in which either SD RT,

mean RT, bias magnitude, dynamic frequency, or dynamic magnitude of bias increase in the

change groups over consecutive runs according to the rules explained above.
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Results

Fig 2 provides a graphical representation of the outcomes for each type of simulation for the

traditional BI, ABV, TL-BS variability, and the average TL-BS positive measures. For space rea-

sons, only one of the four TL-BS positive/negative measures is shown here. The results for

peak TL-BS indices are more pronounced than for average TL-BS indices, whereas the TL-BS

negative indices show a pattern opposite to their positive counterparts. Fig 2 shows the BI out-

comes as provided by the ABV simulations. These simulations show slightly more pronounced

BI effects compared to the TL-BS simulations, due to being based on more trials (i.e. higher

power). The complete set of outcomes is provided in tabular form in S1 Table (ABV) and S2

Table (TL-BS).

Fig 2. Observed average values of BI, ABV, TL-BS variability, and Average TL-BS positive for each study and each run of the first three

simulation series (SD, mean, and bias increasing). Each data point represents the group average for a single study, lines represents the average

observed for each run of 1000 studies. The shades of the data points (but not the lines) indicate the percentage significant group differences observed per

run (1000 studies).

doi:10.1371/journal.pone.0166600.g002
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In the following paragraphs the results of the ABV and TL-BS simulations will be explored

and compared for each type of simulation.

Increasing RT SD

As hypothesized both ABV and TLBS indices respond strongly to an increase in SD. Even at

SD differences as small as 2 points (30 vs 32 in run 2) t-tests indicate significant group differ-

ence for the dynamic measures in 13.5% (ABV) up to 27.8% (TL-BS variability) of the studies

j. Percentage significant t-tests for group differences maxes out at 100% from SD differences of

8 points for TL-BS variability, 14 points (peak TL-BS negative) or 16 points (for the remaining

indices) onwards (see S1 Table and S2 Table). Note that the characteristics (M and SD) of the

distributions from which the CT and IT RT values were drawn, were identical within each

individual dataset i. Thus, significant t-tests cannot indicate the presence of bias or variability

thereof. For the traditional BI measure the number of false positive t-tests is stable and corre-

sponds to an alpha of .05. Comparing Fig 3 panel B to panel A shows how SD differences will

result in significant group differences for the positive and negative peak and average TL-BS

indices. These indices represent actual TL-BS values and thus increase as the amplitude for the

TL-BS pattern increases. The TL-BS variability index, on the other hand, becomes significant

due to the longer TL-BS lines in panel B relative to panel A. To understand the results for the

ABV measure, it suffices to consider that increasing SD increases the numerator of the ABV

formula (SD(BI across bins) / mean rt(CT+IT)).

Increasing Mean RT

As hypothesized, ABV responds slightly to increasing differences in overall mean rt. ABV is

clearly affected from run 3 onwards in which a mean RT group difference of 40 ms results in

13.9% significant t-tests, In run 10 (180 ms RT difference) the ABV index indicates significant

group differences in 91.1% of the studies, despite the differences between mean RT for

Fig 3. TL-BS time series and traditional BI for increased SD, mean, and bias. Panels B, C, and D show

data for the ’change group’ in the 1000th study of the 10th run in the increasing SD, mean, and BI simulations

respectively. Similar to Fig 2 reported by Zvielli and colleauges [1], a smoothing procedure was applied to the

TL-BS data.

doi:10.1371/journal.pone.0166600.g003
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congruent and incongruent trials within each dataset being zero. This sensitivity in the absence

of bias can again be understood from the ABV formula, in which the overall mean RT is the

denominator: as mean RT increases, the ABV index decreases. TL-BS indices and traditional

BI do not respond to increasing differences in mean RT. For each of these indices the percent-

age of false positive t-tests remains at 5%, corresponding to an alpha of .05.

Increasing bias

For this simulation it is important to note that only the mean difference in RT for IT and CT

trials is manipulated, while no difference in variability thereof is implemented. Thus, this sim-

ulation does not provide a test of sensitivity to bias variability, but of sensitivity to bias magni-

tude only. Despite differences in BI up to 27 being implemented in the increasing BI

simulation, neither ABV nor TL-BS variability responds to increasing bias magnitude. As

expected BI responds strongly to implemented bias. In the TL-BS simulation, BI picks up bias

differences of 3 points in 19,0% of the datasets, while bias differences of 15 points or more are

detected in 100% of the studies. Due to being based on larger datasets i, the BI measure has

more power in the ABV simulation, were it detects bias of 3 ‘milliseconds’ in 49.7% percent of

the studies and reaches 100% significant t-tests at a bias of 9 milliseconds. The TL-BS positive/

negative indices also show sensitivity to increasing bias magnitude, although less than tradi-

tional BI. They return between 90.3% (average TL-BS negative) and 99.6% (average TL-BS pos-

itive) significant t-tests at a bias difference of 27 points in run 10. This difference ties in with

findings by Zvielli and colleagues, who reported better prediction of daily smoking rates for

the TL-BS positivity indices compared to the TL-BS negative indices. We suggest this to be due

to less negative (and more positive) TL-BSs being generated in the presence of a (positive)

bias, when for any trial pair the IT-CT difference (i.e. TL-BS) is more likely to take a positive

value. Comparing Fig 3 panel D to panel A illustrates that, similar to BI, the TL-BS data pattern

is elevated in its entirety, but does not intrinsically change as bias increases. This explains why

TL-BS variability does not respond to increasing bias magnitude, as it reflects relative distances

between the TL-BS rather than actual values.

Increasing dynamic bias frequency

Fig 4 shows the results for BI, ABV, TL-BS variability, and average TL-BS positive for each of

the two dynamic simulations. In the first of the two dynamic simulations, BI was kept at +20

in datasets for control groups, whereas an increasing number of BI switches between +20 and

-20 were created within datasets in the change groups. To illustrate these simulations’ mechan-

ics, the top row of Fig 5 shows observed BI and the ABV time series for the change group in

study 1000 of runs 1, 5, and 10, in which 0, 4, and 9 switches were implemented respectively.

Traditional BI detects the presence of either one or more bias switches, but does not respond

linearly to an increasing number of switches. BI moving up and down in runs 2 to 10 of this

simulation (Fig 4) can be explained from the proportion of trials with a positive or negative

bias implied. In runs with an odd number of switches (i.e. runs 2, 4, 6, 8, and 10) a negative

bias (- 20) was implied in half of the trials while a positive bias (+20) was implied in the other

half, rendering the overall BI zero. In runs with an even number of switches, a smaller propor-

tion of trials had a positive bias difference implied (i.e. one third in run 3, two fifth in run 5,

etc.), rendering the overall BI value at one thirds between -20 and +20 in run 3, at two fifths

between -20 and +20 in run 5, etc. Given the sensitivity of the TL-BS positive/negative indices

to bias changes, as demonstrated in the bias increasing simulation, this same explanation holds

for the alternating pattern observed for these indices. To explain the alternating pattern for the

ABV index the alignment of each of the eight trial bins with the bias switches has to be taken
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into account. In aligned runs (2, 4, and 8) the observed BI within each bin is either high (+20),

or low (-20). In runs wherein bias switches occur within bins, the BI calculated for these bins

deviates less from 0, resulting in a lower SD of BIs over the eight bins and thus a lower ABV

value. Finally, TL-BS variability does respond slightly to increasing frequency of bias switches

and does so in a linear fashion as well. Yet, at 9 bias switches (which in the TL-BS datasets

means that BI switches sign after every 2 IT and 2 CT trials on average) significance is achieved

for only 19.6% of the group comparisons at study level.

Increasing dynamic bias magnitude

Finally, the results of the increasing dynamic magnitude simulation are shown at the right-

hand side of Fig 4, while the mechanics of this simulation are illustrated in the bottom panel of

Fig 4. Observed average values of BI, ABV, TL-BS variability, and Average TL-BS positive for each

study and each run of the dynamic bias simulations. Each data point represents the group average for a

single study, lines represents the average observed for each run of 1000 studies. The shades of the data points

(but not the lines) indicate the percentage significant group differences observed per run (1000 studies).

doi:10.1371/journal.pone.0166600.g004
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Fig 5. In this simulation ABV as well as the TL-BS indices respond in a linear fashion, demon-

strating their sensitivity to differences in amplitude in bias in the presence of bias switches.
Notably, the ABV index responds strongly to difference in bias magnitude in the presence of

switches (with 37.5% significant t-tests in run 2, and maxing out at 100% significant group dif-

ferences in run 5) while not responding to similar differences in bias magnitude in the absence

of bias switches. The TL-BS positive/negative indices respond to a similar extent as in the bias

increasing simulation, and less strongly than for the SD increasing simulation. For these mea-

sures 92.6–99.8% significant t-tests were observed in run 10. The TL-BS variability index,

finally, responds slightly more strongly in the dynamic magnitude increasing simulation than

in the dynamic frequency increasing simulation, but not nearly as strong as in the SD increas-

ing simulation. At run 10 (bias: +47, - 47, +47, - 47) the TL-BS variability index indicates sig-

nificant group differences in 42.7% of the studies. Traditional BI did not respond in the

dynamic magnitude increasing simulation but remained stable around value 0 (with 5 percent

false positive t-tests), which is the resulting value of equal positive and negative bias subsets

within each dataset. Note that if we had defined an even number of switches (resulting in an

odd number of subsets), the resulting value for traditional BI would have shifted, as explained

for the dynamic frequency simulation above.

Discussion

Analyzing randomly generated data, a series of simulations demonstrate that newly proposed

indices of dynamic attention allocation are all sensitive to difference in SD at the RT level in

the absence of bias (i.e. when the mean and SD of the distributions from which the RTs for the

two trial types are drawn, are identical within each ‘individual level’ dataset). In addition the

ABV measure is also found to be sensitive to the changes in overall mean RT, again even when

the RT for congruent and incongruent trials are sampled from identical distributions. Neither

ABV nor TL-BS indices were found to be responsive to changes in the magnitude of bias in the

absence of bias variability. In two bias dynamics simulations, ABV and the TL-BS positive/

Fig 5. ABV time series (BI per bin) and traditional BI when increasing dynamic bias switching

frequency and increasing dynamic bias magnitude. Each row depicts data for the ‘change group’ in the

1000th study of runs 1, 5, and 10 of the increasing dynamic frequency simulation (top) and the increasing

dynamic magnitude simulation (bottom).

doi:10.1371/journal.pone.0166600.g005
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negative indices respond to increasing frequency of switches in attention allocation towards or

away from the emotional stimulus, yet in a non-linear fashion. Finally, each of the new indices

respond linearly to increasing magnitude of bias in the presence of bias switching between pos-

itive and negative values (i.e. towards and away from valenced information).

Importantly, sensitivity to changes in RT mean (ABV) and SD (ABV & TL-BS indices) were

observed even when the RT for congruent and incongruent trials (within individual datasets i)
were sampled from the same distributions and therefore should be regarded interchangeable.

The inherent logic of the DPT dictates that in the absence of IT-CT differences, any observed

statistical difference cannot be reflecting attention allocation bias defined as a differential

response time for congruent and incongruent trials.

When no bias dynamics were implemented, the new measures either did not respond at all

or to a smaller extent than the traditional BI to RT differences between congruent and incon-

gruent trials (i.e. bias). The two dynamic bias simulations show that in the presence of bias

dynamics (operationalized as sign switches over subsets of trials) the new measures are more

sensitive to magnitude differences than to frequency differences in bias dynamics. Yet, those

measures that respond to a satisfactorily extent (ABV and the TL-BS positive/negative indices)

respond non-linearly to increases in dynamic bias frequency and also respond strongly to

increasing SD in the absence of bias. Thus, for any individual study that returns a significant

group difference, or even for any two individual values, it cannot be known whether the higher

value reflects a higher or lower frequency of bias switching, a difference in magnitude of a

dynamic bias, SD(RT) differences in the absence of bias, or a combination of these characteris-

tics. Thus, in their current form, the ABV and TL-BS indices are not suitable for empirical

purposes.

When comparing the current results to previously reported results obtained from real data,

there are two important things to keep in mind. Firstly, our simulated data is particularly

‘tidy’. Within study groups, all ‘participants’ show similar mean RT, SD(RT), and/or magnitude

of bias, and in the dynamic simulations ‘participants’ all switch attention after the same num-

ber of trials. Also, as opposed to what is typical for RT data, our data is not skewed. This pro-

vides our analyses with more control over the data characteristics we wish to manipulate, and

more power than any real dataset could. Our results provide a ‘proof of principle’, showing the

probabilities of measures responding one way or another when certain specified data charac-

teristics are manipulated. Secondly, if our results suggest that for a given set of data characteris-

tics, the alpha is increased from .05 to say .20, that is highly problematic from an empirical

point of view, yet for any individual dataset the probability of not finding a false positive differ-

ence is still 80%.

For these reasons, it is not a particularly useful exercise to engage in a detailed mapping of

our results onto previously reported results [1,2]. Nonetheless, we wish to address the excellent

efforts undertaken by Zvielli and colleagues in order to provide a number of cross validating

analyses. Their cross-validations include one specifically aimed at the possibility that TL-BS

might be affected by variance. ‘Fake’ TL-BS’s (terminology by Zvielli et al.) were computed by

randomly assigning a mock CT or IT ‘status’ to the neutral-neutral trials (NT) in each of their

datasets. The resulting TL-BS indices were found to be not associated with arachnophobia sta-

tus (study 1) or daily smoking rate (study 2). For study 1 three factors may be at play, namely

reduced power due to only half the number of trials being available, reduced power relative to

our simulations due to this being real (and therefore more ‘messy’) data, and finally the possi-

bility that the SD for the NT did not differ between the two groups, despite the presence of a

mean RT difference (predicting group status) and considerable SD differences observed at the

bias index level (data characteristics at trial level were not reported). We verified that the use of

logistic regression is not a factor here: in our simulation data comparing percentage of
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significant group differences for logistic regressions versus Welch’s t-tests, yields a maximum

difference in percentage significant results per run of 5%. In Zvielli et al.’s study 2, traditional

BI and the TL-BS positive indices correlated with smoking rate, while the negative TL-BS and

the TL-BS variability indices did not. Based on our results, we suggest this to indicate absence

of systematic SD changes at the RT level along the smoking rate continuum, as such would

likely have caused the TL-BS variability index to correlate with smoking rate. This would

explain why Zvielli and colleagues found their ‘fake TL-BS’ to not correlate, despite having the

same numbers and thus power as the real-TL-BS in study 2. In the absence of SD and despite

the presence of mean RT differences, the ‘fake TL-BS’ (which based on neutral-neutral trials

cannot represent bias) would respond similarly to the TL-BS in our mean increasing simula-

tion, i.e. not at all. The reported associations of daily smoking rate with the real TL-BS positive

indices on the other hand, can at least partly be ascribed to the presence of bias. In addition,

and as explained in the methods section, in the presence of a positive bias more positive than

negative TL-BS are generated, which may explain why, in study 2, the positive TL-BS indices

returned significant results and the negative did not. Nonetheless it is indeed possible that the

TL-BS measures have responded to higher variability in attention allocation bias in the experi-

mental group in study 2, as underscored by Zvielli and colleagues showing that the TL-BS posi-

tive parameters explain variance beyond traditional BI. Yet in study 1, BI and TL-BS positive

parameters did not explain variance beyond mean RT differences.

Future Directions

In spite of the current results, we do not wish to dismiss the notion that attention allocation

bias is likely to be a highly dynamic phenomenon and the need to move beyond the traditional

static BI. There is a high ecological validity to this notion, which we fully support. However,

our current results indicate clearly that, at least in their current form, the two new methods do

not provide an adequate assessment of the dynamic nature of biases in attention allocation. It

is currently completely unclear which processes determine the obtained values on these indi-

ces: bias dynamics, cognitive control type processes or other (random) influences. Given our

findings, we feel that it is very worrisome that dynamic bias measures are being used as if they

are already fully developed and validated, bypassing the question of what it is that they mea-

sure. They are being implemented at a rapid speed, thereby propagating the idea that these

methods provide valid and reliable indices of attention bias, suitable for use in clinical samples

[23,26–28] and as a target outcome for treatment [29–32]. We strongly caution against this

development as much more basic science is required, while skirting this stage will likely lead to

considerable waste of time and money. We wish to stress the need to develop better ways of

assessing the likely dynamic nature of biased attention.

For the recently proposed new methods, further research of a more methodological nature

would be required to overcome the sensitivity to variance that is not due to attention alloca-

tion, which we suggest is a major problem with these new methods. In the following para-

graphs, we share a number of observations and thoughts and outline some key questions that

we suggest will help the field to develop more appropriate methods to assess dynamics of atten-

tion allocation.

Characteristics of the DPT derived bias index. It is important to keep the DPT mechan-

ics in mind when developing variability indices for DPT derived data. ABV is defined as ‘SD(BI

across bins) / mean RT(CT+IT)’. This formula is functionally related to the ‘coefficient of variation’

(SD/mean), which reflects variability in magnitude. Do note, however, that the ABV formula

uses the mean RT rather than the mean BI over bins as the denominator. Importantly, while

coefficients of variation allow comparisons of variability between measurements taken on
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different scales (for instance questionnaires that tap into the same construct), they are valid

only for measures that can take only positive values. The reason is that a coefficient of varia-

tion, and also the ABV index, cannot discern between positive and negative values in the data-

set that it is calculated on. The numerator (SD) is an absolute (i.e. always ‘positive’) value that

reflects the ‘spread’ of observed values in either direction from the observed mean. The SD
used in the ABV formula is the SD observed over a series of bias indices (one per bin). A bias

index carries two separate ‘pieces’ of information: its absolute value (e.g. 40 vs. 20) indicates

the magnitude of bias, while its sign (+20 vs. -20) indicates its direction. When calculating SD
over a time series of bias indices, the information carried by the signs of the original values, the

direction of bias, is lost. Moreover, any SDs value is relative to its associated mean value. Thus,

when calculating ABV, the information on bias magnitude is lost as well. Something similar

happens in the calculation of the TL-BS variability index. This index is conceptualized as the

length of the TL-BS line (e.g. the line through a time series of bias indices). When we look at a

TL-BS time series, the (actual) difference between any two consecutive TL-BS no longer

reflects the magnitude of bias (i.e. its distance from bias = 0 is unknown) but is still meaningful

in that its sign indicates the magnitude by which bias (assuming a sufficiently error-free mea-

surement) is rising or falling. Yet by taking the absolute difference, this information gets

‘dropped’, and a relative increase in bias becomes numerically equal to a relative decrease in

bias. As a result of these two steps (looking at relative rather than actual changes, and then tak-

ing the absolute value of these relative changes) the resulting index reflects neither bias direc-

tion nor magnitude. The TL-BS positive/negative indices do not suffer this problem to the

same extent, as they reflect actual rather than relative values and thus retain information on

the magnitude of bias, even though information on the direction is separated over the separate

indices for positive and negative TL-BS. Here lies a major challenge for devising future new

indices to analyze dynamics of biased attention based on DPT data. Because the sign of a bias

index carries crucial information in addition to the information carried in the magnitude of

the value, existing methods of indexing data variability will not readily translate.

A simple count of the times a time series of bias indices moving through the observed mean

bias value may provide a simpler index of switching frequency, yet would also be sensitive to

SD differences. Another alternative approach might be the use of MLM or SEM type

approaches to try and tease apart variability of the RT from variability of the IT-CT difference

(bias).

Redefining attention bias?. The notion that attention allocation is a dynamic process

holds face validity and, although often implied, has never been forwarded so explicitly as in the

pioneering papers proposing the ABV and TL-BS measures. Traditionally, the concept of

attention allocation bias is often described using phrases such as ‘the tendency to attend more

towards emotional/relevant stimuli’, which, if ‘more’ is taken to indicate ‘more often’, seems to

reflect the intuitive notion that this is not an absolute phenomenon. On the other hand, the

DPT literature is rife with rather absolute statements implying biases in certain directions to

be generally observed among certain individuals. We would wager that most dot probe

researchers recall exchanges in which, following an explanation of the mechanics of the DPT,

the question was posed why so many trials are needed to assess this bias. Another familiar situ-

ation is individual participants asking researchers to inform them on the magnitude of their

bias. The typical answer in the first situation is that bias is not an absolute phenomenon and

that many trials are necessary to ‘catch’ a tendency to orient more often towards or away from

emotional information among the many trials where this tendency does not prevail. The typi-

cal answer in the second situation is that bias does not necessarily manifest clearly in any indi-

vidual participant, and may even only be reliably observed at a group level [24]. Critically,

these answers are often followed by a statement indicating that the DPT typically exhibits high
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SDs. Such prototypical exchanges also raise the question of whether reaction time based tasks,

such as the dot probe, are best suited for indexing attention allocation bias. Especially if we

(re)define this bias more specifically as “expressed in fluctuating, phasic bursts, toward or away

from target stimuli” ([1], p3), we should consider the possibility that RT based measures might

lack the temporal resolution to index such fluctuations. This is partly due to the fact that

response times are a composite of many sub processes, including attention orienting, response

selection, motor initiation and execution, and the response processing by hard- and software.

Among all these sub processes, we seek to distill the time required to execute just one, attention

orientation, from the sum index of the recorded response time. This necessitates the use of

large numbers of trials and samples. Thus, it is not surprising that tasks like the DPT typically

yield high measurement error rates.

Overt versus covert orienting?. Another longstanding debate in this field that most

researchers are aware of but that is not very often explicitly addressed in recent ABM and DPT

publications is the question of overt versus covert orienting. Dot probe assessed bias is often

regarded as a measure of covert attention orientation, i.e. a reallocation of attentional focus

that is not necessarily accompanied by a physical reallocation in the form of a head-, or eye-

movement, saccade or even micro-saccade. Especially for DPTs using very brief stimulus expo-

sure times, covert attention orienting may be understood as a reorienting of attention that pre-

cedes and guides subsequent covert (physical) orienting [33]. In the past decade, eye-tracking

technology has taken a high flight, yet the dot probe has remained the ‘gold standard’ because

it may be capable of indexing something that eye-tracking can not: covert attention allocation.

Paradoxically, for certain populations (most notably depressed patient and depression ana-

logue samples), some agreement exists that biased attention orienting as measured by the DPT

specifically occurs at longer stimulus durations (e.g. [34], yet see [35]) potentially reflecting a

tendency to dwell on negative information more rather than automatic attention capturing

[36,37]. Moreover, in the DPT based ABM literature it is most common to use a 500 ms stimu-

lus duration, a time frame sufficiently long to suggest that this is not meant to assess initial,

automatic, covert orienting of attention. In line with these developments, an increasing num-

ber of studies have utilized eye-tracking to assess overt biases, often comparing overt and DPT

derived indices in the same population. A review of this literature is beyond the scope of the

current paper (see for instance [38]), yet a renewed focus on the overt/covert question may

help the field in redefining our concept of ‘attention allocation bias’ and what we should aim

to measure. One particularly interesting recent study aimed at reducing overt eye-movements

during a DPT assessment and found significant threat related BI specifically when analyzing

trials in which no overt eye-movements were made, suggesting that DPT may indeed assess

covert attention orienting even at longer (400 ms) stimulus durations [39].

Definition of dynamic?. Following the question of how to define attention allocation bias

itself, the next question is how to define dynamics in attention allocation bias. Explanations

provided in both the ABV and TL-BS papers seemingly combine two different definitions of

‘dynamic’, which we have tried to separately assess in the two dynamic bias simulations. On

the one hand there is a notion of dynamic differences in the magnitude of bias. This notion

leans heavily on the definition of bias implied in the DPT itself: a larger difference in RT

between IT and CT trials reflects a larger magnitude of bias. However, in both the ABV and

TL-BS papers attention variability appears to also be defined as a tendency to switch attention

allocation towards and away from emotional information more often, i.e. at a higher frequency.

We observe that our dynamic bias frequency simulation, in which an increasing frequency of

switches was implemented, also resulted in differences in bias magnitude. The observed tradi-

tional BI within a bin in the ABV method is lower or higher as a result of the proportion of the

trials belonging to a positive or negative bias subset. Similarly, the observed TL_BS calculated

Capturing Dynamics of Biased Attention

PLOS ONE | DOI:10.1371/journal.pone.0166600 November 22, 2016 17 / 22



around the trials where bias is switching, yield a lower value than the TL-BS calculated for a

trial pair were both trials belong to the same subset (i.e. both trials belonging to BI = +20 or

-20 subset). Thus it may not be possible to completely tease apart dynamics as being due to

increased frequency of switching or increased amplitude while switching, and likely even less

so in actual observed data (see for instance Fig 1 in [1]) in which both frequency and amplitude

seems to differ between the two datasets). Nonetheless, as we pursue better ways to index

dynamics of attention allocation, it would be good to have a clear definition of what constitutes

dynamics change and what the implications are of bias being dynamic in terms of either fre-

quency or magnitude.

Validity of SD(BI) or SD(RT) as indices of psychopathology?. We believe that the sensi-

tivity of the ABV and TL-BS indices to SD(RT) in the absence of IT-CT differences renders

these indicators problematic for empirical purposes. The DPT task (and similar other tasks)

relies heavily on the notion that the presence of bias is to be inferred from a differential

response between trials that differ on a critical feature. In the context of DPT this is whether

the target appears on the location previously occupied by the emotion or the neutral stimulus.

There exist no other systematic differences between DPT trials, including the fact that the par-

ticipant is presented with both an emotional and a neutral stimulus on each trial. If the

responses (RTs) for both trial types are numerically interchangeable (as they are in several of

our simulations in which the underlying distributions for CT and IT trials were specified iden-

tically within each individual dataset ‘i’), any observed statistical difference cannot be attrib-

uted to differential responses to different trial types, and therefore not be taken to indicate bias

as meant to be indexed by the task.

Nonetheless, it is important to acknowledge that the recently proposed measures were

found to be associated with arachnophobia status (Zvielli et al., study 1), daily smoking rate

(Zvielli et al., study 2), and levels of PTSD and depression symptoms (Iacoviello et al., 2014).

Many researchers in the field will recognize that analogue and patient groups tend to show

larger SDs on both the mean RT for CT/IT trials, as well as bias indices, which often manifests

as an undesired finding of heteroscedasticity (or ‘heterogeneity of variances’). On the other

hand, Zvielli and colleagues found that mean RT differences between the groups were predic-

tive of group status (study 1) and smoking rate (study 2), but understandably did not proceed

to suggest that these are to be used in the future as functional indices of psychopathology

related group differences in attention bias in the context of a DPT. The question thus becomes

whether SD differences can be explained in a functional, theoretically relevant, way. A body of

literature exists in which SD in reaction time tasks is thought to reflect ‘mental noise’, associat-

ing SD(RT) differences observed in forced-choice tasks to measures associated with psychopa-

thology such as neuroticism, cognitive control, and self-reported symptom levels [40]. This

literature may have served as a starting point for Iacoviello and colleagues [2]. In the context of

DPT data, it is important to recognize that mean RTs and bias indices each have their own dis-

tributions, which do not necessarily take the same form. I.e. RTs typically show a very skewed

distribution, yet their resulting BIs much less so. Similarly, the SD for the RTs do not need to

be directly related to the SD observed for bias. The currently presented results suggest that the

ABV and TL-BS measures cannot discern SD at the RT level from SD at the bias level. A possi-

ble future research direction could be to develop better measures to assess the reliability of SD
differences for the bias index between control and patient/analogue populations, without los-

ing, as argued above, both vital pieces of information contained in a bias index, and in con-

junction with a proper, falsifiable, theory on their cause.

Aim to reduce SDs?. A perhaps more recommendable approach would be to aim to

improve the measurement of biased attention allocation itself by reducing SD at the RT level.

As mentioned in the introduction, in recent years an increasing number of researchers have
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voiced concerns regarding the reliability and stability of measures such as the DPT. With the

rising interest in DPT based potential new treatments (ABM) in mind, it seems more urgent

than ever to focus on improving methodologies to establish reliable assessment of attention

allocation bias.

Tasks other than DPT?. Our simulations are very specifically modeled after the dot probe

task given that that is the task that the newly proposed indices were presented for. Yet, several

principles demonstrated will likely also hold if similar methods are applied to other tasks that

rely on a difference between two types of trials to demonstrate the presence or absence of a

processing bias (difference). These include the emotional Stroop, single cueing, and emotional

visual search tasks, for which it may similarly be argued that the bias meant to be indexed is

likely a dynamic rather than a static phenomenon.

Conclusion

Our simulation results show that in their current form, indices of bias variability derived from

dot probe task data are unsuitable for empirical research purposes: for any significant differ-

ence observed on these indices it is impossible to know whether it reflects SD differences in the

absence of bias or also a quality of bias dynamics. The authors proposing ABV and TL-BS indi-

ces have done the field a great service in demonstrating that new approaches are possible and

clarifying our previously implicit understanding of attention allocation biases as being an

inherently dynamic process. We sincerely hope that these efforts may serve as an impetus to

the field to redefine our concepts and methods with the aim of increasing our understanding

of, and ability to reliably measure, (components of) biased attention allocation.
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