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Abstract: Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors.
Over the past fifteen years, investigations in cardiovascular biology have provided remarkable
insights into this receptor family. These studies have shifted pharmacological dogma, from one which
centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules.
Important studies have examined, separately, the structural compartmentation of ion channels and
βAR. Despite links being assumed, relatively few studies have specifically examined the direct link
between structural remodeling and electrical remodeling with a focus on βAR. In this review, we
will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte
microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will
then discuss the advances in methodologies in this area with a specific focus on super-resolution
microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-
based agonists. The advent of powerful computational modelling approaches has allowed the science
to shift from purely empirical work, and may allow future investigations based on prediction. Issues
such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we
will speculate as to the potential developments within this field over the next ten years.

Keywords: electrophysiology; cardiac; t-tubules; microdomains; arrhythmia; beta-adrenergic; sym-
pathetic nervous system; cAMP

1. Introduction

The genesis of the mechanical pumping of the heart results from the synchronous
contraction of individual cardiomyocytes. This activity is externally moderated by many
factors such as the extracellular matrix, vasculature, the autonomic nervous system, inflam-
matory factors, and many more. However, the pathophysiology of arrhythmia ultimately
emanates from the change in the activity of these cells. Thankfully, the simplistic view of
cardiomyocytes as coming in two variants, atrial or ventricular, seems to be waning [1,2].
The reality is that the four chambers of a healthy heart are replete with sub-domains contain-
ing myocytes which, structurally, may bear more resemblance to cells from other chambers
than their immediate neighbors [3]. It is therefore impossible to consider arrhythmia and
the electrical remodeling of the heart without an analysis of the sub-cellular organization
within populations of myocytes. The study of the t-tubules and the wider transverse-axial-
tubules system (TATS) has been intrinsically important in the recognition of this structural
heterogeneity within the cells of the myocardium [4]. Within atrial populations, there are
reported to be multiple structural types containing either ventricular-like cells with a full
TATS, cells with some tubulation, and cells in which a TATS is absent [3]. For many years, it
was believed that atrial myocytes did not contain a TATS, the rationale being that they were
too small to require the effects of voltage activated ion-channels to be conducted into the
cell interior [5,6]. This view was overturned by studies in large mammals and rodents with
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the advent of improved cell isolation and imaging techniques [7,8]. Ventricular cells were
hypothesized to be completely tubulated throughout the myocardium. This has proven
to be an incomplete picture as experiments on healthy rodents reveal that the cells of the
apical left ventricle have a sparser TATS than the cells taken from the basal left ventricular
myocardium [9]. This is hypothesized to be due to load differences within the heart, as
mechanical unloading disrupts the normal TATS structure of the left ventricle [10]. A
more appropriate view of this situation may therefore be that cell size and TATS (although
indirectly linked) simply develop to match the mechanical niche of the particular section of
the myocardium.

2. Electrophysiological Remodeling of the Heart and TATs

There are manifold etiologies which may initiate cardiac electrophysiological remod-
eling, but all pathophysiological processes can be characterized as either contributing to
the trigger or the substrate of arrhythmia [11]. Broadly, these physical processes may be
assumed to be physiological and structural, respectively, but practically there is an overlap.
The molecular and cellular processes can be simplified to issues which affect the normal
ionic fluxes within cells, the ability of cells to integrate, and changes in macro-cellular
structure (affecting action potential). The exact contribution of these processes to arrhyth-
mogenic phenomena, such as early and delayed after depolarizations, rotor formation, and
ventricular tachycardia trains, is covered more extensively elsewhere [12–14].

The remodeling of the TATS tends to be viewed as the passive loss of the normal
density and regularity of TATS of cardiac cells. In the situation of cellular hypertrophy
this is imagined as the dispersal of the TATS membrane into the external membrane of a
growing cardiomyocyte, resulting in the decay of the tubules from a perfect regular system.
Several threats to this view have emerged over the past years.

First, there appears to be multiple t-tubular types, many of which are not transverse,
and have led to the term TATS becoming more commonplace as axial tubules are under-
stood to be an essential part of the system (in fact, this has been understood for nearly four
decades [15]). Axial tubules may, in fact, have different electrophysiological properties as
compared to their transverse counterparts with respect to calcium handling [16] at different
junctures in pathology, and it is unclear if they are intrinsic to the maintenance of function
or push the tissue toward further damage [17]. Within end stage heart failure there appear
to be giant wedge formations in the transverse plane of the cardiomyocyte, but it is unclear
if this too is a passive effect or if these structures have some physiological relevance [18].

Second, many of the studies of t-tubulation in the context of heart failure come from
murine or small animal models. These species are understood to have higher t-tubular
density than larger mammals (perhaps indicating the role of the TATS in maintaining beat-
to-beat consistency in contraction, where a high heart rate is required) [19]. Even in these
models, we observe that there is variation in the density, regularity, and the configuration
of the TATS within the cardiomyocytes of healthy rodent hearts [9]. This contributes to the
view of the TATS as being significantly plastic, maintaining a dynamic equilibrium, and
adapting to the electro-mechanical needs of the heart [20]. The third threat to the view of
the TATS as a monolithic network, with a rigid, perfect structure which is lost in pathology,
is its interaction with other cellular microdomains. For example, the TAT system has been
indicated to be a framework for caveolae and is the site of multiple ‘caveolations’ [21,22].
It is unclear what the physiological relevance of these multiplexed membrane systems is at
the current time.

Third, the loss of TATS is intrinsically linked to the altered expression of the scaffold-
ing molecules which stabilize the tubular elements. The panel of molecules involved in this
process comprises Junctophillin-2 (JPH2) [23], bridging integrator 1 (BIN-1) [24], caveolin-3
(Cav3), and cholesterol [25]. These molecules are both responsible for maintaining the
morphology of the tubule and the electrophysiological characteristics of the structure by
anchoring and controlling molecules such as ion channels. Therefore, the situation is
potentially complicated by genetic factors and the combined mechanisms of tubular loss,
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loss of electrophysiological organization, and the unexpected properties of molecules such
as JPH-2 which act as a transcription factor [26]. This all occurs against the backdrop of
highly specialized, cardiac sub-domains. JPH-2 is understood to control the structure of
the calcium dyad by linking ion channel function to control calcium-induced calcium re-
lease [27], as well as being involved in the maintenance of normal tubular morphology [28].
BIN-1 is also crucial for the maintenance of ion fluxes in healthy ventricular cardiomy-
ocytes [29]. Caveolae appear to control distinct sub-populations of calcium channels within
the cardiomyocyte membrane, with ramifications for electrophysiology [30].

3. A Focus on the Ventricular Myocardium

The atria contain some of the most important myocardial sub-domains from the
perspective of arrhythmia generation. The sinoatrial node contains specialized myocytes
which contain virtually no TATS but are filled with other important signaling microdomains
such as caveolae [31]. It is outside of the remit of this review to discuss the interaction
of adrenoceptors and TATS in the setting of electrical remodeling in cells which are not
normally tubulated. Therefore, this review will essentially discuss the cells of the areas of
the myocardium which are normally tubulated, namely the ventricles; the ideas can be
extrapolated to the tubulated trabeculae of the atria where empirical data are unavailable.
Ventricular cardiomyocytes do not have a pace-making role and, therefore, arrhythmic
events emanating from these cells relate to focal behavior (aberrant electrical behavior in
small groups of cells) or non-conduction of action potentials. Focal behavior is primarily
contributed to by cellular events such as early after depolarizations (EADs) or delayed
after depolarizations (DADs). EADs and DADs are caused by the mis-activation of cellular
ionic currents; this activation may affect cells in the vicinity and has ramifications for force
production, as the cell’s contraction is not synchronized with the rest of the tissue. Electrical
desynchrony between cells within the tissue is the primary culprit in the phenomena of
non-conduction of action potentials. This can be caused by a lack of junctional connectivity
between cardiomyocytes at the gap junctions. Weakly coupled cardiomyocytes cause
arrhythmogenic foci in failing hearts [32]. Delays in conduction of APs can also be caused
by scar tissue and fibrotic processes which are produced within the heart in response to
hypertrophy or to replace cardiomyocytes after cell death. In the following section we
describe the nature of beta-adrenergic receptors and the electrophysiological processes they
control in ventricular cardiomyocytes.

4. The β-Adrenergic Receptors

The sympathetic stimulation of the heart is central to the maintenance of normal
organ structure and function, as well as adaptation to the rigors of mammalian life [33].
Within the myocardium, this control is exerted in part by neurohormonal activation of the
family of adrenoceptors comprising the alpha and beta sub-families. In this review, we
will concentrate purely on the involvement of beta-adrenoceptors in electrophysiological
remodeling. However, it is important to remember that alpha-adrenoceptors have a signifi-
cant role in the control of the myocardial vasculature and, consequently, arrhythmogenesis
resulting from cell death or ischemia [34]. Physiological neurohormones will activate both
receptor families, therefore there will be an interplay between the effects of both systems.

Beta-adrenoceptors (βAR) are members of the Rhodopsin-like super family of G-
protein coupled receptors [35]. There are three known βAR subtypes (β1AR, β2AR, and
β3AR). β1AR couples to Gs and exerts positively inotropic effects on cardiac function.
β2AR and β3AR are pleiotropic; β2AR may exert effects through either Gs or Gi, whereas
β3AR stimulates Gi or eNOS [36,37]. As a result, β2AR and β3AR effects are either car-
diostimulatory, inhibitory, or cardioprotective, depending on the effector panel activated.
The molecular pathways controlled by βAR subtypes are reviewed elsewhere [38], but
broadly fall into three categories: the control of adenylate cyclase, by Gα G-protein sub-
units and the consequent activation/deactivation of the cAMP dependent effectors; the
pathways activated by Gβγ G-protein subunits; or those activated by β-arrestins [38,39].
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This complicated picture has recently been enhanced by the finding that β2AR will directly
inhibit β1AR activity through highly localized mechanisms [40]. The four canonical cAMP
effectors are PKA, exchange protein activated by cAMP (Epac) [41], hyperpolarizing cyclic
nucleotide channels (HCN) [42], and popeye domain-containing peptides (POPDC) [43].

5. cAMP Restriction and Compartmentation

The concept of organellar compartmentation of biochemical events is highly intuitive
to cell biologists, but its true relevance to pharmacologists has only been discussed in the
last 2–3 decades. The empirical studies of these phenomena are even more recent. The
seminal studies of the localization of cAMP by t-tubules were performed by Viacheslav
Nikolaev [44–46] and others in the Lohse and Gorelik laboratories, βAR were the model
receptors and ventricular myocytes the model system. In these experiments, cAMP appears
to be localized by t-tubulation [44]; this is speculated to be achieved by several mechanisms
not limited to PDE hydrolysis: PKA binding; physical restriction; and the localization of
receptors themselves. Measurement of the kinetics of cAMP by FRET was, and remains, the
primary method of examining the receptor effects. In early experiments, compartment level
application was achieved through the application of agonists via modified micropipettes;
since then, localized cAMP responses have been studied with localized FRET sensors [47],
tethered sensor PDE system [48], and size restricted agonist application [49], as well as
predictive computational models [50].

Despite the significant technological advances in the past years, the speculated patho-
logical nature of de-tubulation with respect to cardiac physiology is mainly assumed. This
is perhaps unsurprising, given that integrated organ level analysis of cardiac electrophysiol-
ogy is conventional, but studying cAMP physiology is currently almost completely limited
to the whole cell level.

The relevance of de-tubulation of cardiomyocytes and dispersal of βAR to electro-
physiological remodeling stems from two competing phenomena relating to molecular
compartmentation. First, compartmentation results in the concentration of a molecular
cascade to a region of space. This proximity allows signaling to be efficacious. The loss
of compartmentation in this context means that the system is no longer modifiable by the
adrenoceptors. Counter-intuitively, the hydrolytic activity of PDEs can allow the persis-
tence of high concentrations of cAMP within an effector microdomain through selective
localization and source-to-sink fluxes [51]. The second and older notion of cAMP compart-
mentation is related to this, given that it was based on the idea of the ‘broadcast’ of cAMP.
This conceives compartmentation as a suppressive system, where compartmentalized
cAMP does not hit effectors and is prevented from exerting controls on effectors. In this
context, the loss of t-tubular integrity and the compartmentation of cAMP mean that cAMP
begins to hit effectors that it should not in domains that were otherwise restricted [44]. The
loss of compartmentation in this context means that electrophysiology is modified by the
incorrect activation of effector molecules. Practically, these two systems probably coexist,
and new experimental technologies are required to properly delineate the real nature of
the biological effects of t-tubule loss.

Similarly, caveolar domains, comprising the molecules Cav3 and cholesterol, are
specifically important for the compartmentation of β2AR-cAMP [9,52,53] and, at sub-
maximal levels, β1AR-cAMP [54]. A number of mechanisms for this have been suggested,
including increased PDE4 hydrolysis [9] and enhanced efficiency of protein phosphatase
activity acting on the EC-coupling machinery [53]. The exact interplay between these
domains and molecules has not been elucidated due to the lack of experimental techniques.
However, improved imaging has revealed bona fide caveolae within t-tubules in rabbit
cardiomyocytes [22]. Therefore, it can be assumed that there is some synergy between
these domains, with respect to the control of TATS. Concurrent changes in the TATS,
caveolae, and Cav3 localization are observable in hypertrophic remodeling in a rat model
of myocardial infarction [17]. In the following sections, we will describe the ways in
which βAR modulate the contributory molecular and cellular processes which control the



Cells 2021, 10, 2456 5 of 21

electrophysiology of the tubulated cells of the heart. This will the allow us to infer the
contributions of βAR in the context of microdomain and electrophysiological remodeling,
as well as the effects of remodeling on βAR.

6. The Molecular Modulation of Cardiac Electrophysiology by
β-Adrenergic Receptors
6.1. Calcium

Historically, the central effector of βAR was considered to be cAMP-dependent protein
kinase A (PKA). The primary effect of βAR-cAMP-PKA activation is on cardiomyocyte cal-
cium handling. These effects are exerted by the β1AR and β2AR-subtypes in Gs mode [55].
L-Type Calcium channels (LTCC) are phosphorylated by PKA [56], which increases the
rate of calcium influx.

βAR-cAMP-PKA was implicated in the enhancement of ryanodine receptor (RYR2)
activation, increasing the rate of calcium released from SR-Ca2+ stores. A PKA-mediated
phosphorylation of RYR2 was believed to be the mechanism [57], but doubt has since been
cast on this hypothesis [58]. The activation of RYR2 by βAR also occurs through a more
indirect mechanism involving Ca2+/calmodulin-dependent protein kinase II (CaMKII) [59].
CaMKII seems to only phosphorylate RYR2 in the dyadic cleft; this mechanism involves
nNOS [60]. The action of LTCC induces the release of calcium from the RYR2 in a process
known as calcium-induced calcium release (CICR). JPH-2 is intrinsically important to the
process, as it is involved in the direct link between the LTCC and RYR2 to maintain the
process [27]. This sort of complex should be considered similar to the general structural
and molecular compartmentation of βAR by membrane microdomains within the TATS.

βAR-cAMP-PKA (both sub-types) also phosphorylates phospholamban (PLB), the
inhibitor of the sarcoplasmic reticulum (SR) calcium transporter (SERCA2A) [61]. The deac-
tivation of PLB by phosphorylation enhances the rate of uptake of calcium, abbreviating the
contraction of the myocyte and inducing a positively lusitropic effect on the myocardium.
CaMKII also phosphorylates PLB [62]. Calcium sparks (aberrant, intermittent sub-cellular
calcium events) are considered as elemental components of arrhythmias and are the result
of the dyssynchronous opening of RYR2. βAR stimulation will therefore cause an increase
in spark activity allowing these events to aggregate and potentially drive arrhythmia [63].

These effects seem particularly important in settings of chronic βAR stimulation and
may involve the enhancement of basal Ca2+ levels by βAR-PKA activity and other cAMP
effectors such as Epac [64]. Non-cAMP mediated mechanisms may involve the action of
β-arrestins [65,66], NO [67], or β3AR-eNOS [68]. The overload of calcium is assumed to
cause DADs [69]; this is speculated to be due to its effect on the sarcoplasmic reticulum
Ca2+ stores or a chloride current, but a more multifactorial cause is now suggested [70,71].
High calcium levels at the action potential plateau may be a cause of EADs [72].

6.2. Potassium

The slow-inward potassium current (IKs) conducted by the channel formed by the
molecules KCNQ1/KCNE1 is directly modulated by the action of βAR-Gs-PKA, which
phosphorylates the complex and increases its activation [73]. The electrophysiological
consequence of this is the shortening of the action potential and enhanced cardiac function.
This process requires appropriate scaffolding of the PKA by the A-kinase anchoring protein
(AKAP9- Yotiao). The inwardly rectifying potassium currents IKr (hERG) and the IK1 (Kir2,
3 + 6) [74] seem to be minimally affected by βAR stimulation under physiological condi-
tions [75]. The fast transient outward potassium current Ito,f (Kv4.2 and Kv4.3) [76] can be
suppressed by βAR, but it is unclear if this effect is relevant in mature cardiomyocytes and
in an acute physiological setting [77].
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6.3. Sodium

The cardiac sodium channel (Nav1.5) is responsible for the initial voltage dependent
depolarisation of cardiac tissue [76]. Separate populations of the channel modulate the ac-
tion potential upon excitation; the majority of sodium channels act in a way which produces
a rapid transient Na+ current (INaT). In conditions of sustained depolarization, a separate,
much smaller population of sodium channels may cause a longer lasting, non-activating de-
polarization. This is the late sodium current, or INaL. βAR Gs-PKA controls INaL through
both direct PKA mediated activation and CaMKII-dependent mechanisms (CaMKII is
somewhat of a downstream effector of PKA due to its dependence on calcium) [78]. In-
triguingly, these activation events modulate specific parts of the action potential phase,
with PKA effects occurring early in the AP plateau whereas CaMKII effects occur later.
This is concordant with the CaMKII activity occurring downstream of PKA. Further βAR
effects are exerted by βAR-Gs-cAMP mediated activation of Epac and reactive oxygen
species (ROS), which is activated by βAR-Gs via NAPDH oxidase 2 (NOX2) [78].

6.4. Hyperpolarization Activated, Cyclic Nucleotide (HCN) Gated Channels and the
Funny Current

HCN channels must be covered in this section, although they are unlikely to occur in
myocytes which are normally tubulated. These channels modify the pace of myocardial
contraction from specialized cells within the sino-atrial node [42]. As the name suggests,
their activity is intrinsically modulated by cAMP, which is produced following βAR-Gs
activated adenylate cyclase activity. Increased levels of cellular cAMP activate the channels
enhancing the rate of spontaneous action potentials produced by the SAN cells increasing
the heart rate.

6.5. Sodium–Cation Exchangers

At least three notable exchanger channels exist in cardiac tissue to balance the con-
centration of cytosolic levels of different cations by extruding sodium. The activation of
these molecules will modify the degree of membrane depolarization and the strength of
excitation–contraction coupling. The sodium–calcium exchanger (NCX) transports three
sodium ions for each calcium ion into the cell (forward mode–Ca2+ efflux) or out (reverse
mode–Ca2+ influx). The mode of the channel is determined by the concentrations of various
ions and the transmembrane voltage conditions [79]. There are phosphorylation sites on the
intracellular loop of NCX, but the physiological relevance of the upregulation/activation
of NCX channel activity by βAR is controversial [80]. The modulation of NCX by βAR-
PKA seems to occur under certain experimental conditions [81], but not others [82–84].
The sodium–potassium exchanger (Na/K-ATPase) exports three sodium ions out of the
cardiomyocyte, and imports two potassium ions by hydrolysing a molecule of ATP [85].
The Na/K-ATPase is inhibited at baseline by a molecule of phospholemman. βAR-PKA
drives the phosphorylation of phospholemman, removing the inhibition and activating
Na/K-ATPase. Na/K-ATPase activity is also directly driven by β3AR activity [86]. At
baseline, the β1-subunit of the Na/K-ATPase is glutathionylated (driven by ROS), this
modification inhibits the channel. Through a complicated mechanism, β3AR drives the
deglutathionylation of the pump, enhancing its activity. The sodium–proton exchangers
(NHE1) activity is upregulated by the action of β1AR-PKA [87]. Interestingly, the activation
of NHE1 also regulates NCX activity due to the accumulation of sodium, modifying its
directionality. NCX is, therefore, directly and indirectly modulated by βAR. NHE1 activity
drives the NCX into reverse mode enhancing the accumulation of calcium within the cell
driving enhanced excitation contraction coupling. All ion channel complexes influenced
by βAR, referred to in this section, are illustrated in Figure 1.
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tion sites.

6.6. Reactive Oxygen Species

Reactive oxygen species (ROS) are crucial cellular signaling molecules as well as con-
tributors to cellular toxicity. NOX2 appears to be activated by βAR stimulation through a
Gs-dependent mechanism. This enzyme produces two super-oxide molecules by oxidizing
a molecule of NAPH. As discussed, this synergizes with βAR stimulated CaMKII and
PKA activity to alter Ina, which contributes to the alteration of the action potential. ROS
may also be produced by βAR stimulation through the general upregulation of oxidative
phosphorylation, required to meet the cells enhanced energetic demands [88].

7. The ‘Structural’ Modulation of Cardiac Electrophysiology by
β-Adrenergic Receptors
7.1. Cardiomyocyte Adhesion

Cardiomyocytes build a functional syncytium by connecting to each other at the
intercalated discs at the cell ends. These linkages produce myofibers which tesselate, and
form a helical wrap of fibre layers from the endo- to epicardium, producing the ventricular
wall. Intercalated discs are built through the deposition of desmosomes, adherens, and gap
junctions. The cohesion of cardiomyocytes is intrinsically important to the production of
force by the cells and consequently the contraction of the myocardium. Tight coupling of the
cells is also crucial for the effective propagation of the action potential and the maintenance
of normal cardiac electrophysiology. Sympathetic signaling has been demonstrated to
be ‘adhesiotropic’, promoting the stronger coupling of cardiomyocytes by causing the
βAR-Gs-cAMP-PKA mediated phosphorylation of plakoglobin (PG). This modification
drives greater desmosomal contact in a desmoglein (DSG2) dependent manner [89,90].
This process also seems to involve ERK [91].



Cells 2021, 10, 2456 8 of 21

7.2. Cardiomyocyte Hypertrophy

Cardiomyocyte hypertrophy is the primary driver of myocardial hypertrophy. Pressure-
overload drives concentric hypertrophy of cardiomyocytes where normal cellular geom-
etry is maintained, whereas volume-overload drives eccentric hypertrophy. In eccentric
hypertrophy, myocytes increase in length. Concentric hypertrophy leads to the thicken-
ing of the ventricular wall, and a reduction in the size of the ventricular cavity, whereas
eccentric hypertrophy leads to an increase in the size of the heart and an enlargement
of the ventricular chamber. βAR signaling has diverse roles in these processes and this
paragraph is a gross simplification of these processes, which are of significant relevance
to electrophysiological remodeling. βAR-Gs-AC-cAMP (mainly β1AR) [92] stimulation
directly drives cardiomyocyte hypertrophy by activating Epac1 and pro-hypertrophic ge-
netic programs mainly coordinated by CREB [92–95]. The βAR-Gi-PI3K-AKT-GSK3β and
βAR-Gi-Ras-Raf-MEK-ERK axes are driven by the ‘stimulus trafficking’ of β2AR to cause
the activation of Gi and potentially β3AR in Gi mode [96–98]. These two ‘non-classical’ Gi
driven pathways seem to exert their pro-hypertrophic effects by modifying the signaling of
GATA4. As well as driving a ‘hyper-physiological’ gene expression program and changing
the molecular profile of the cell, the physical increases in cell size will affect the cell capaci-
tance and intrinsically modify the cells electrophysiology. The changes at the cellular level
must necessarily translate to changes affecting the whole heart, whereby the propagation
of the action potential is altered, and hence the electrophysiology substrate is reconfigured.

7.3. Extra-Cellular Matrix Remodelling

As cardiomyocytes increase in size, the extra-cellular matrix adapts to accommodate
the cells. βAR activity also drives this mechanism by activating the expression of a panel of
matrix metalloproteinases (MMP) in cardiomyocytes and cardiac fibroblasts. It seems that
this process is caused by the ROS-dependent activation of c-Jun N-terminal kinase (JNK),
which causes the expression of extracellular matrix metalloproteinase inducer (EMMPRIN)
in cardiomyocytes, which in turn causes the stimulation of cardiac MMP2 and MMP9 [99].
Very recently, this picture has been complicated by the understanding that MMPs are
both pro- and anti-hypertrophic. These phenomena may be due to study in different
cellular and pathological contexts. The cardiomyocyte βAR response which drives these
processes intrinsically requires the function of cardiac fibroblasts. These processes are
reviewed more extensively elsewhere [100]. Fibrosis is also an essential element of the
organ’s maintenance of its integrity against cell death and apoptosis. β1AR signaling is
pro-apoptotic, whereas β2AR and β3AR signaling are anti-apoptotic. The effect of βAR
is, therefore, highly contextual. However, the generally malignant apoptotic and necrotic
effects of chronic βAR signaling have been understood for many years [101]. Aberrant
sympathetic activation may, therefore, remodel cardiac electrophysiology by producing
lesions which act as a barrier to the conduction of the action potential. This will interact
with the other mechanisms discussed above.

7.4. Mechano-Transduction

The ventricular wall is under consistent stretch, strain, and shear stress for the en-
tire life of the organism. Mechanical and electrical activity are intimately linked through
mechanosensitive molecular signaling within the cardiomyocyte. Adrenergic activity seems
to be primarily linked to mechano-transduction through RYR2. As already described, βAR
can modulate RYR2 activity through upregulation of ROS, NOS, and through CaMKII
(also activated by ROS). This has made CaMKII a target of interest for anti-arrhythmic
therapy. The eNOS-Akt-PI3K pathway positively modulates EC coupling in T-tubular,
while negatively regulating the β-adrenergic response in a different subset of caveolae at
the surface sarcolemma [69]. It would seem likely that this effect probably involves β3AR,
given that this receptor also seems to be heavily localized to t-tubules [102] [103]. Nitric
Oxide appears to be intimately connected to mechano-electric coupling within cardiomy-
ocytes [104]. Unlike eNOS, nNOS can be directly activated by stretch or catecholamines
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in cardiac myocytes, and local NO-CaMKII by βAR [105]. These signals can produce
arrhythmogenic Ca2+ waves from RYR2 specifically from the cellular dyad [106]. There are
several stretch activated ion channel groups within the cardiomyocyte, one of which is the
tension dependent Na+/H+ exchanger. Under increased ventricular tension and enhanced
after-load, these exchangers will increase ventricular inotropy, perhaps in synergy with
sympathetic activation [107]. NOX2, which is under βAR regulation, is a further mechano-
sensitive link to cardiac electrophysiology. The activation of NOX2 is a crucial link in the
production of X-ROS, which acts a principal modulator of calcium spark activity [108].
Modifying electrophysiological experimental paradigms from the classic cardiomyocyte
in a solution in a Petri dish may be required to investigate these phenomena more fully.
Isolated cardiomyocytes, which are the primary model when studying these phenomena,
are not loaded; afterload is considered to be crucial for mechano-transduction. By placing a
cell in a hydrogel which can be stiffened, researchers have been able to investigate cellular
electrophysiology under conditions or normal afterload. In these experiments, it has been
possible to demonstrate that APD prolongs until alternans develops [109]. An illustration
of molecular and organellar pathways modulated by βAR is presented in Figure 2.
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8. The Relevance of T-Tubules to the Modification of βAR Driven Changes in
Cardiac Electrophysiology

As is evident from the passages above, sympathetic stimulation, transduced by the
βAR, coordinates a significant number of molecular and cellular processes which alter
electrophysiology, to facilitate enhanced excitation–contraction coupling within tubulated
cardiomyocytes. As we have already described, the remodeling of t-tubules is germane
in heart failure, and probably exists contiguously with electrophysiological remodeling.
Nevertheless, an attempt must be made to establish if any of the processes exist ‘upstream’
of others, making them useful therapeutic targets. As described, conceptually, a problem
exists when building hypotheses as to the relevance of de-tubulation to the remodeling
of βAR control of electrophysiology. The loss of tubules may in some cases lead to ‘gain
of function’ or ‘loss of function’ for the βAR. In this scenario, only empirical data will
suffice, and experimental modalities must have t-tubular resolution to allow us to draw
conclusions as to the likely results of structural remodeling for the influence of βAR on
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cardiac electrophysiology. In the next section, we explore the physiological methods
researchers have used to explore the effect of t-tubular remodeling on βAR activity.

Perhaps the primary link between electrophysiology, t-tubules, and remodeling of
cardiac electrophysiology is the loss of the dyadic ‘neighborhood’ of calcium-handling
molecules [110]. Orphan extra-dyadic RYR2 channels appear to significantly contribute
to the calcium spark rate within cardiomyocytes, and it must be assumed that this is due
to decreased control of the RYR2 within molecular complexes [103]. Losing t-tubules
therefore increases the population of ‘orphaned’ RYR2s; this situation may be exacerbated
by altered βAR localization and activation. A further complicating factor, is the discovery
that there are separate populations of LTCCs within ‘healthy’ t-tubulated cardiomyocytes.
The extra-tubular LTCCs are directed towards caveolar compartments and link more closely
to CaMKII [30]. One would assume that losing t-tubules also shifts the equilibrium with
a greater number of LTCCs entering these CaMKII activation domains, with the effect of
increased CaMKII activity and enhanced RYR2 and spark function.

9. Experimental Techniques to Probe TAT/βAR Effects in Cardiomyocytes with
‘Tubular’ Resolution
9.1. Removing T-Tubules from Cardiomyocytes

Perhaps the most straightforward way of investigating the effect of t-tubular remod-
eling on βAR activity is to remove t-tubules chemically or pathologically. Chemically,
t-tubules can be removed by exposing isolated cardiomyocytes to osmotic shock with a
solution of formamide [111]. At baseline, this reduces the calcium transient, indicating
that LTCC and RYR2 function are affected by the loss of tubules. On this de-tubulated
substrate, specific β1AR stimulation enhances the calcium transient to a greater degree. In
this study, the relative ability of ‘sarcolemmal’ or non-tubulated membrane is calculated
vs. tubular membranes and the t-tubulated membrane is posited to be less effective at
raising the calcium transient. Given the role of the t-tubule as a crucial element in the
organization of the dyad, this speaks of an inhibitory role for the tubular localization of
βAR activity. These data suggest a ‘gain-of-function’ state can be presumed for βARs’
influence on electrophysiology in a de-tubulated state, with a greater contribution of LTCC
activity (ICa) to the action potential and potentially a higher level of calcium persisting
within the cardiomyocyte at diastole. These conditions would of course have ramifications
for molecules such as NCX and CaMKII, which are Ca2+ dependent.

Cells from failing hearts are pathophysiologically de-tubulated, but the complement
of βARs is selectively modified, with the loss of β1AR and the maintenance of β2AR and
β3AR populations [112]. Failing cells are therefore awkward models for exploring the
mechanistic relationships between de-tubulation, βAR and electrophysiology. However,
they are highly relevant, especially if we consider classical electrophysiological remodeling
on a substrate of pump failure or within the aged myocardium. The phenomena described
in the first paragraph would most likely be diluted by reduction in the number of β1AR
units, and any persisting effect would be opposed by greater β2AR and β3AR activity.

9.2. Directly Applying Agonists to the T-Tubules

Despite the intrinsic importance of the micropipette to the study of cardiac electro-
physiology, it only attained the ability to resolve t-tubular microdomain physiology when
deployed as a sensor in a scanning ion conductance microscope (SICM) [113]. T-tubular
openings are generally only 100–200 nm in diameter and cannot be resolved by even the
best optical microscopy. Equally, the topology of the cardiomyocyte means that they cannot
be visualized to guide patch clamp studies using conventional means. SICM serves this
purpose, as it employs the patch-clamping pipette as a sensor probe and builds a surface
topography image including the z-plane (3D). This allows the visualization of the t-tubule
openings of a pre-defined area of the cardiomyocyte surface. Nikolaev et al. used SICM
scans of the surface of healthy and failing cardiomyocytes to guide the application of
isoprenaline to t-tubules or non-tubulated sarcolemma. The cells were pre-functionalized
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with FRET-based cAMP biosensors (SICM/FRET) [44]. Using this approach, the researchers
were able to identify that, in healthy cells, β1AR-cAMP responses could be elicited across
the cell surface, whereas β2AR-cAMP can only be activated when isoprenaline was applied
to the t-tubule. β1AR-cAMP responses permeated the cell, whereas β2AR-cAMP remained
confined within the vicinity of the application site. In de-tubulated failing cells, both
β1AR-cAMP and β2AR-cAMP responses can be elicited on the sarcolemma, and in the
remaining t-tubules, the cAMP responses permeate the entire cell. One would hypothesize
that unconfined cAMP signaling might elicit more widespread PKA activation. Given
the centrality of PKA to the control of multiple electrophysiological processes, one would
again assume that the de-tubulation would lead to a ‘gain-of-function’ on βAR signaling.
In a series of follow-up experiments, SICM/FRET, caveolin-3 was shown to be central to
the localization of β2AR-cAMP within cardiomyocytes [52]. Pathological de-tubulation
can be elicited by atrophy as well as hypertrophy in the context of failure or even changes
in myocardial provenance. In these experiments, it was demonstrated that de-tubulation
resulted in ‘gain-of-function’ with respect to βAR-cAMP, but calcium channel function
was down-regulated in the case of atrophy [114]. The electrophysiological outcome of this
scenario in the wider heart is therefore unclear. These isoproterenol application studies
can be regarded as an evolution of smart patch, which is also a method with t-tubular
resolution. This methodology has been crucial in the endeavor to understand t-tubular ion
channel content and the effect of de-tubulation during failure [113,115,116].

9.3. Localized Fluorescent Reporters

FRET-based biosensor technology has been at the forefront of the study of cAMP com-
partmentation by cellular microdomains; fortunately t-tubules and cardiomyocytes have
served as model domains and cells in many of these studies. The organellar localization
of FRET sensors recently reached its apotheosis with the production of the ‘CUTie’-based
reporters produced by the Zaccolo lab [47]. The AKAP79 localized sensor, CUTie-AKAP79,
can be regarded as a tubular sensor. Data published in 2017 indicates that t-tubular βAR-
cAMP responses are quick but remain confined by the t-tubules in healthy cells. This
relative confinement is necessary for the appropriate activation of excitation-contraction.
Where cAMP is allowed to unselectively permeate the cellular compartments, excitation–
contraction coupling is not as efficient. In the case of failing (hypertrophic) de-tubulated
cells, t-tubular βAR responses were preserved, but there was reduction in the permeance
of cAMP into the SR compartments and the myofibrils of the cells. These data seemingly
conflict with data from cytosolic FRET probes.

More recently, the researchers involved with these studies have, collectively, taken
the view that in many of these experiments the adrenergic stimulus has been supra-
physiological (inducing artificial supra-physiological cAMP responses). They have also
suggested that cAMP compartment has been more exquisitely localized than was ever
conceived, and that many FRET sensors have not been localized enough [117]. This leaves
the community in the dark as to what the exact nature of de-tubulated cAMP responses
would be, and makes it even trickier to hypothesize what the ultimate relevance the loss of
t-tubules has for the control of PKA activity, and consequent effects on electrophysiology.

Ultra-specific fluorescent probes have been used to demonstrate the localization of
β2AR to t-tubules in healthy cardiomyocytes. This work demonstrates that, in overex-
pression systems, βAR loses their normal localization and kinetics, becoming more motile
within the cell membrane. Intriguingly, this paper also mentions populations of cells in
which β1AR are absent, which is consistent with mosaicism with respect to muscarinic
receptors as well [118].

9.4. Polymer-Based Agonists

Barthé et al. have described experiments utilizing polymer-bound isoprenaline to
selectively stimulate non-tubulated βAR. In these experiments, the size exclusion of the
agonist from the t-tubule results, predictably, in the right shifting of the isoprenaline dose re-
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sponse curve. Interestingly, experiments from FRET-based biosensors reveal (by deduction)
that specific organellar effects of cAMP at the nucleus are exerted by the tubular β2AR.
Cytosolic effects of cAMP (specifically on excitation–contraction coupling) are exerted
faithfully by PEGylated isoprenaline, i.e., by populations of βAR on the sarcolemma [49].

9.5. Measuring Activity within T-Tubules

Experiments with super-resolution STED (stimulated emission depletion) microscopy
revealed that axial elements within the t-tubular system are responsible for the control of
rapid calcium handling [16]. Interestingly, these structures proliferated in hypertrophic
cells, which is speculated to drive faster excitation–contraction coupling and to be com-
pensatory within this disease state. However, this may also contribute to arrhythmogenic
behavior. As well as measuring calcium handling, a significant number of techniques
based on electron tomography have been pioneered to assess the dynamics of t-tubule
remodeling at almost beat-to-beat resolution [119]. These techniques have demonstrated
that significant effects are induced by conventional tissue fixation techniques [120]. This
has obscured our ability to properly track caveolar interactions [22] and has obscured fasci-
nating and important dynamical phenomena such as solute transfer (which also indicates
electrical properties) [121,122] and species differences in t-tubule morphology [123]. The
wider use of these methods could improve our understanding of the links between t-tubule
remodeling and electrophysiological changes.

Random-access microscopy (RAMP) represents a modification of confocal and fluores-
cent microscopy. It permits the measurement of calcium handling and action potentials at
multiple sub-cellular locations within a cardiomyocyte. Sacconi and collaborators have
deployed this technology to demonstrate that, in failing cells, certain t-tubules are detached
from the wider network and are not electrically active [124,125]. Equally, some apparently
typically attached elements within the TATS do not transmit action potentials normally, and
axial tubules seem to act as a redundancy mechanism [124]. Further experimentation using
failing cells from animals after preparation with coronary ligation or osmotic disruption
revealed that defective electrical activity around t-tubules may contribute to Ca2+-based
arrhythmogenesis by favoring increased spark activity and asynchronous calcium release.
RAMP microscopy reveals ‘failure-event’ action potentials which occur in the vicinity of
detached t-tubules. Disorganized calcium time-to-peak and delay in re-uptake occur in this
context. Importantly, for this review, this study demonstrated that these changes were not
exacerbated by application of isoprenaline [126]. These findings were replicated in a study
which demonstrated that βAR stimulation increases the frequency of Ca2+ sparks and re-
duces Ca2+ transient variability [127]. However, βAR hastens the decay of Ca2+ transients
similarly in control and HF. βAR stimulation in HF accelerates Ca2+ rise exclusively in the
proximity of tubules which conduct the action potential, the delayed Ca2+ rise found at
t-tubules that fail to conduct the action potential is not affected by beta-adrenergic signaling.
This suggests the blunted effect of the β-adrenergic signaling may be directly caused by the
lack of electrical activity. Impaired EC-coupling and adrenoceptor responsiveness probably
results from failure to initiate LTCC activation. Here, the ‘substrate’ is lost, therefore the
function is lost. The rate of Ca2+ reuptake increases in all parts of the cell, so it seems
that PLB is still phosphorylated by βAR-PKA activity, despite t-tubule loss [127]. Here,
we see an example of the potential, for both ‘gain of function’ and ‘loss of function’ in
the case of de-tubulation with respect to βAR activity. βAR activation may continue to
activate calcium handling and EC-coupling, but be completely impeded in the context of
the loss of electrical activity. This resonates with the suggestion that TATS regularity is not
completely consistent, and therefore these populations of detached or electrically inactive
cells may have a purpose in controlling normal physiology. In cells from HCM mice,
very minimal alterations were required to alter calcium handling in otherwise regularly
tubulated cells [128]. The EC-coupling power and synchronicity due to de-tubulation and
reduced βAR response will affect mechanical efficiency. However, patches of electrically
inactive membrane may act as a barrier to arrhythmic activity, preventing it from being



Cells 2021, 10, 2456 13 of 21

propagated elsewhere. Specifically, it may prevent DADs by changing the coupling of
RYR2. However, orphan RYR2 are shown to induce aberrant spark activity, and the loss
of TATS may itself cause aberrant Ca2+ waves due to the loss of synchronicity and alter
myofilament activity. This may induce arrythmia through mechanoelectrical feedback [129].
Experimental methods with t-tubular resolution are illustrated in Figure 3.
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9.6. Computational Models

The goal of one of the earliest mathematical models of βAR behavior was focused
on understanding mechanisms of ionic control which contribute to EADs [72]. Therefore,
the literature regarding the study of arrhythmia and βAR is quite well developed and
has been reviewed in excellent detail elsewhere [130–132]. There are, however, some
important issues which should be covered here. These models have mainly focused on
ventricular myocytes, but studies which specifically focus on atrial cells (with significant
ramifications for electrophysiology) are beginning to appear. The role of t-tubular com-
partmentation has been incorporated into the models in a couple of studies [133,134].
Beta-adrenergic behavior has been directly investigated in a computational model of heart
failure [135]. These computational models have been invaluable in uncovering new elec-
trophysiological processes and explaining emergent phenomena; however, incorporating
organellar cAMP/PKA compartmentation remains a significant problem in the area. We
would therefore posit that computational modelling represents a significant avenue of
further research in this area. More sophisticated models should be able to incorporate the
molecular processes more comprehensively, as well as introducing elements of anatom-
ical macrostructure and 4D effects from the entire organ. The action potential duration
varies during normal human physiology, this is hypothesized to be due to the activity of
oscillations in the βAR stimulation of the tissue. Computational modelling reveals that
afterdepolarizations and spontaneous APs were induced by phasic β-AR activity with high
levels of Ca2+ overload [136]. This work specifically suggested a role for mechano–electric
coupling and stretch in the phasic modulation of APD. Understanding the effects of β-
adrenergic stimulation and stretch on calcium and force dynamics computational models
of the cardiomyocyte remains a popular topic of research [137].
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9.7. Whole-Heart Models

Studies of single cells are, intrinsically, a means to an end. When considering questions
of cardiac electrophysiology, we are ultimately interested in the phenomena occurring
within the integrated myocardium in a native heart. Recent improvements in Langendorff,
whole-heart optical imaging experiments have allowed researchers to better assess t-
tubulation and arrhythmia in intact preparations. The Song lab have implemented highly
novel confocal microscopy techniques to demonstrate the de-tubulation of epicardial
cardiomyocytes [138]. The Efimov group have pioneered whole-heart imaging with a
variety of fluorescent probes, measuring calcium handling and conduction within healthy
donor and diseased myocardium [139]. In these experiments, they have discovered that the
balance of βAR activity undergoes sub-type specific remodeling. Specifically, in healthy
hearts, β1AR has a slightly pro-arrhythmic character, whereas in failing hearts (in which we
can assume hypertrophic de-tubulation and receptor de-compartmentation has occurred),
β2AR activity becomes belligerent. Further study with a similar model system using rat
hearts explored the attenuation of alternans by βAR stimulation in the border zone of a
healed infarct [140]. On the other hand, in more experiments with human hearts, βAR
stimulation may enhance the dispersion of repolarization transmurally, which may be
dangerously arrhythmogenic in certain patients [141]. Dual optical mapping has also
been utilized to uncover the role of βAR-CaMKII dependent activation of a population of
‘small conductance’ calcium-activated potassium channels. These studies suggested this
to be a pro-arrhythmic mechanism within the hypertrophied heart of rats [142]. Weakly
coupled myocytes are implicated in created calcium-dependent arrhythmic foci [32]. As
well as imaging electrophysiology, an increased number of studies are appearing where
FRET based cAMP-biosensors have been measured in whole-heart ex vivo preparations [9].
One could imagine a powerful future combination of these techniques to explore the
ramifications of decompartmentalized βAR signaling within an intact heart and its effects
on cardiac electrophysiology. As well as optical imaging, the use of multi-electrode arrays
has the potential to be very useful for the investigation of autonomic effects on cardiac
electrophysiology [143]. Very recently, this approach has been used to describe a further
role for cellular uncoupling in arrhythmic mechanisms in the whole heart [144].

10. Future Directions

As should be apparent from the preceding text, the modulation of cardiac electrophys-
iology by βAR signaling has numerous complexities not limited to the effects of t-tubular
(and other) microdomain localization, subtype-specific behavior, cellular location, dynam-
ics, and pathological substrates. βAR, in of itself, is neither pro- nor anti-arrhythmic, but
with the loss of micro-domain integrity comes miss-sense within the βAR signal trans-
duction. This leads inexorably toward the worsening of arrhythmia and the loss of pump
function. Studies have, necessarily, focused on the interaction of one or two of these vari-
ables. Methodologies which can directly resolve electrophysiological behavior at the level
of the microdomain in the presence or absence of βAR signaling are required to move the
field forward. Ideally, these studies would also be able to interrogate this behavior in the
intact organ and in a sub-type selective manner; many studies use isoprenaline, and the
results are therefore the integrated physiological effect of all βAR function. ‘Cell-in-Gel’
methodologies may represent a useful medium-term solution to this, by permitting the
study of cardiomyocytes under normal after-load [109]. These integrated methods are
required alongside enhanced computational modelling, which will permit better hypothe-
sis generation.

The need for progress with these studies is pressing from a translational point of view,
as we are beginning to understand that the loss of microdomain integrity is an excellent in-
dicator of prognosis and the likelihood of functional recovery of diseased myocardium [18].
Sophisticated ex vivo experiments which must be regarded as very close to the current
gold standard indicate the significant, malignant changes in electrophysiology and in the
βAR signaling which are induced in the progression to failure. It is likely that successful
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management of these changes would represent a positive therapeutic pathway. It is also
likely that current mechanical device therapies will not reach their potential as a ‘bridge
to recovery’ without correcting these pathologies. Equally, βAR signaling is likely to be
intrinsic in the establishment of normal microdomain configurations and electrophysiology
within the cardiomyocytes, so these processes must be understood to optimize tissue engi-
neering approaches. The advent of high-throughput cardiomyocyte contraction analysis
may also allow the findings made at the level of the molecule and microdomain to be
translated more rapidly into an understanding of structural/functional differences between
populations of cardiomyocytes. This may be relevant to electrophysiological differences
within different myocardial layers and regions [145].
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