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Summary

1. Biological invasions are facilitated by the global transportation of species and climate

change. Given that invasions may cause ecological and economic damage and pose a major

threat to biodiversity, understanding the mechanisms behind invasion success is essential.

2. Both the release of non-native populations from natural enemies, such as parasites, and

the genetic diversity of these populations may play key roles in their invasion success.

3. We investigated the roles of parasite communities, through enemy release and parasite

acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus

hypnorum, in the United Kingdom.

4. The invasive B. hypnorum had higher parasite prevalence than most, or all native congen-

ers for two high-impact parasites, probably due to higher susceptibility and parasite acquisi-

tion. Consequently parasites had a higher impact on B. hypnorum queens’ survival and

colony-founding success than on native species. Bombus hypnorum also had lower functional

genetic diversity at the sex-determining locus than native species. Higher parasite prevalence

and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by

B. hypnorum. These data may inform our understanding of similar invasions by commercial

bumblebees around the world.

5. This study suggests that concerns about parasite impacts on the small founding popula-

tions common to re-introduction and translocation programs may be less important than

currently believed.

Key-words: Apicystis, biological invasion, Bombus hypnorum, enemy release, parasite acquisi-

tion, Sphaerularia

Introduction

Biological invasions occur when non-native species suc-

cessfully establish in a new location and rapidly expand

their range (Williamson 1996). Such invasions may affect

the diversity and abundance of native species, species

interactions (e.g. symbioses) and the provision of ecosys-

tem services (such as pollination), which are important for

human well-being (Pimentel, Zuniga & Morrison 2005;

Pejchar & Mooney 2009; Vila et al. 2010). The invasion

success of a non-native species may be facilitated by a

release from natural enemies, such as herbivores, preda-

tors and parasites, potentially leading to a rapid increase

in distribution and abundance of the invasive species

(Elton 1958; Keane & Crawley 2002; Torchin et al. 2003).

Evidence supporting the enemy release hypothesis can be

found from studies of plant–herbivore interactions (e.g.

Agrawal & Kotanen 2003; Colautti et al. 2004; Agrawal

et al. 2005; Liu & Stiling 2006) but the evidence from ani-

mal–parasite systems is less clear (e.g. Dunn & Dick 1998;

MacNeil et al. 2003; Georgiev et al. 2007). Given the his-

torical, current and predicted global impact of invasive

species (Elton 1958; Vitousek et al. 1996; Wilcove et al.

1998; Pimentel, Zuniga & Morrison 2005) and the impor-

tance of species range expansion due to climate change

(Parmesan et al. 1999; Hickling et al. 2006) understanding

the mechanisms that facilitate these events is a key chal-

lenge (e.g. Phillips et al. 2010; White & Perkins 2012).

Previous studies of the role of parasites in enemy

release, in both plant and animal systems, largely examine

either parasite prevalence or the impact of individual par-

asite species (e.g. MacNeil et al. 2003). However, parasites

exist in communities (Cloutman 1975; Holmes & Price

1986) and invasive species may host multiple parasite

species (e.g. Georgiev et al. 2007). Interactions among
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parasite species, within a host, include competition for

resources (Rigaud, Perrot-Minnot & Brown 2010) and

alteration of transmission rates (e.g. castrating parasites

reducing the transmission of other parasite species to the

offspring of the host, Ben-ami, Rigaud & Ebert 2011).

The presence of multiple parasite species can induce a

range of host immune responses, which may have diver-

gent impacts on individual parasite species (Schmid-Hem-

pel 1998). In addition, the structure of parasite

communities can have significant consequences for assess-

ing the impact of individual parasites (e.g. Rutrecht &

Brown 2008). Consequently, understanding the structure

of parasite communities and their subsequent impact (Ri-

gaud, Perrot-Minnot & Brown 2010) is essential to estab-

lish the role of parasites in invasions.

While invading species may be released from parasites

in their new location, the impact of parasites in the

invaded communities may, in turn, be modified by inva-

sive species. This may occur through parasite introduction

(Dunn 2009) or parasite spillover (Daszak, Cunningham

& Hyatt 2000; Kelly et al. 2009) where invading host spe-

cies introduce non-native parasites and these spillover to

infect native hosts. Invasive species may also acquire par-

asites from congeneric host species in the new location

(parasite acquisition: Dunn 2009) which may result in an

increase (through invasive species acting as a reservoir for

native parasites followed by parasite spillback; reservoir

host: Norman et al. 1999; Daszak, Cunningham & Hyatt

2000; Dunn 2009; Kelly et al. 2009; parasite spillback:

Daszak, Cunningham & Hyatt 2000; Kelly et al. 2009) or

a decrease in parasite abundance in native species

(through parasite dilution, where invading hosts provide

an additional or alternative host for native parasites

‘diluting’ the parasite prevalence and/or abundance in

native hosts: Norman et al. 1999; Ostfeld & Keesing

2000) depending on the competence of the invasive host

at transmitting the infective stages of the parasite. These

factors may occur individually or in concert, and thus

investigating enemy release in the invaded range should

take account of these complex interactions.

An additional factor that may play a key role in the

host–parasite interactions of invasive species is the genetic

diversity and provenance of the invasive host. Invasive

species are likely to establish in a new location from only

a few propagules or reproductive individuals, and there-

fore the founding population will have low genetic diver-

sity (Dlugosch & Parker 2008). Low genetic diversity in

natural populations is known to be associated with higher

rates of parasitism (e.g. Whitehorn et al. 2011) and thus

genetically depauperate invasive species may be more

likely to acquire parasites from congeners. In addition,

invading hosts have not co-evolved with native parasites.

Consequently, invading hosts may be maladapted to

native parasites and these parasites may therefore have a

greater (or lesser) impact on such hosts (Thompson 2005).

Relative to native hosts, if the non-native species is less

susceptible to parasites and/or these parasites have a

smaller impact on fitness, non-native hosts are likely

to benefit from enemy release despite the acquisition of

generalist parasites from congeners.

While bumblebees (Bombus spp.) are generally consid-

ered to be in decline (Goulson, Lye & Darvill 2008; Wil-

liams & Osborne 2009), which is concerning as they are

important ecological and commercial pollinators, they can

also be highly invasive (Dafni 1998; Goulson 2003). In

Japan, commercially introduced Bombus terrestris L. have

escaped and threaten native congeners and their interac-

tions with native plants (Matsumura, Yokoyama & Wash-

itani 2004; Inoue, Yokoyama & Washitani 2008). Invasive

B. terrestris have spread throughout Tasmania in the last

20 years (Allen et al. 2007; Schmid-Hempel et al. 2007)

probably from New Zealand, where they were introduced

in the 19th century (MacFarlane & Griffin 1990). Most

recently, invasive B. terrestris has spread across Argentina

and Chile, where it is blamed for rapid declines in the

only native bumblebee species, Bombus dahlbomii Gu�erin-

M�eneville (Torretta, Medan & Abrahamovich 2006; Plis-

chuk & Lange 2009; Goulson 2010; Arbetman et al. 2013;

Morales et al. 2013).

Using the successful establishment of a non-native inva-

sive bumblebee, Bombus hypnorum L., across England and

Wales over the last decade (Goulson & Williams 2001;

BWARS), we aim to identify the role of parasites and

genetic diversity in this invasion. Bombus hypnorum, the

tree bumblebee, has expanded across England, Wales and

Scotland, to Lennoxtown, Scotland (c. 600 km), to Truro,

Cornwall in the South West (c. 300 km) and Pembroke-

shire in Wales (c. 320 km) since its first discovery in the

New Forest, Wiltshire, England in 2001 (BWARS, Goul-

son & Williams 2001). The parasite community of bum-

blebees is composed of generalist parasites and has been

well characterized (MacFarlane, Lipa & Liu 1995; Sch-

mid-Hempel 1998; Rutrecht & Brown 2008), making this

an excellent opportunity to examine how enemy release

and parasite acquisition may impact an invasive species,

particularly as recent work has suggested that nest para-

sites play a role in the dynamics of native bumblebee pop-

ulations (Antonovics & Edwards 2011).

Enemy release can occur in two ways. First, an invad-

ing species, in the invaded range, may escape from the

enemies it would have encountered in its native range. A

model proposed by Drake (2003) suggests that such

enemy release may be important for the establishment of

small invading populations. Second, invading species may

escape from enemies present in the invaded range, as

those enemies are not adapted to exploit it (Dunn 2009).

A comparison of enemies of invading species and those of

congeneric native species investigates the second mecha-

nism and we take this approach because the origin of our

focal species is currently unknown. To investigate the

potential release from natural enemies of the non-native

B. hypnorum, we determined the parasite community in

queens of this invasive bumblebee species and compared

it to those of five native bumblebee species with the
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expectation that B. hypnorum would have lower parasite

prevalence and lower parasite species richness than native

congeneric species, and thus it should be released from its

parasite enemies. In addition to investigating parasite

prevalence, parasite species richness and parasite commu-

nity structure, we also investigated the parasite impact on

a proxy for host fitness, and functional genetic diversity

at the sex-determining locus, in laboratory-reared colonies

of B. hypnorum. We expected that parasites would have a

greater impact on fitness in B. hypnorum than in native

congeneric species and that the genetic diversity of B. hyp-

norum would be lower than that of native Bombus species.

Methods

biology of the study system

Most bumblebees are annual eusocial species, passing through a

solitary overwintering phase as queens. This makes the queen a

key component of the annual life cycle. Interestingly, bumblebee

queens are particularly heavily impacted by parasites (Rutrecht &

Brown 2008). Consequently, parasites that reduce the survival

and colony-founding success of the queen are likely to have a

high impact on bumblebee populations and, therefore, in this

study we focused on bumblebee queens. The ultimate measure of

parasite impact on fitness would be the proportion of sexuals

produced by colonies that contribute their genes to the subse-

quent generation. However, such an analysis is logistically extre-

mely challenging and beyond the scope of this study. Bumblebee

gynes (unmated new queens) disperse from their natal nests to

mate in late summer, prior to finding a hibernation site. Queens

hibernate in individual hibernacula, which can be dispersed or

aggregated, depending on the species, and different species favour

different hibernation sites (Alford 1969b; Sladen 1912). Variation

in hibernation sites may impact the probability of infection by

some parasite species (see below) but too little is known about

hibernation site choice to make any predictions. Post-hibernation

queens disperse again, with estimates of aggregate dispersal of at

least 5 km (Lepais et al. 2010), and congregate at florally rich

sites to forage for nectar and pollen. Parasites can be acquired

from natal nests, interactions with males during mating, during

hibernation and through foraging pre- and post-hibernation (Sch-

mid-Hempel 1998).

sampling scheme

Our sampling methodology was designed around the biology of

the system (see above). Bumblebee queens were collected,

between February and May 2011, from two primary florally rich

sites in Surrey and Berkshire, Windsor Great Park (Lat. 51�41,
Long. �0�60) and the Royal Horticultural Society (RHS) Gar-

den, Wisley (Lat. 51�32, Long. �0�58). Additional queens were

collected from florally rich sites at the Royal Botanic Gardens,

Kew (Lat. 51�47, Long. �0�30); Royal Holloway, University of

London (RHUL) (Lat. 51�43, Long. �0�56) and Horsell, Surrey

(Lat. 51�32, Long. �0�57). Our sampling area was geographically

restricted due to the requirement to catch sufficient queens within

a limited time period. However, due to the rapid establishment of

this invasive species in the United Kingdom, we believe that the

population in South East England is likely to be representative of

the UK B. hypnorum population as a whole. The non-native spe-

cies B. hypnorum and five native species B. jonellus Kirby,

B. pratorum L., B. lucorum L., B. pascuorum Scopoli and B. ter-

restris were collected. The queens were collected using an ento-

mological net and placed in individual plastic vials in a chilled

container and transported to RHUL. On each day, sites were col-

lected to exhaustion. The queens were spring queens, foraging

after emerging from hibernation, and therefore from the first vol-

tine generation. While abundant species may be the most obvious

source of generalist parasites, such parasites are also more likely

to infect related host species (Perlman & Jaenike 2003), and our

sampling strategy was designed to cover both possibilities, with

B. jonellus and B. pratorum being the phylogenetically closest rel-

atives to the invasive B. hypnorum (Cameron, Hines & Williams

2007) and B. lucorum, B. pascuorum and B. terrestris being the

most abundant native bumblebee species (Goulson & Darvill

2004; Goulson et al. 2005; Williams 2005).

parasite – faecal check

Faecal samples were taken and examined using a 9400 phase

contrast microscope for the following parasites: Sphaerularia

bombi Dufour, a nematode worm; Apicystis bombi, a neogregar-

ine; Crithidia bombi, a trypanosome; and Nosema bombi Fantham

& Porter, a microsporidian. All these parasite species can be reli-

ably identified as patent infections using microscopic techniques

(e.g. Otterstatter & Thomson 2006; Rutrecht & Brown 2008).

While multiple Crithidia spp. have been identified, molecular data

show that only Crithidia bombi occurs in this area (M.J.F. Brown

unpublished data). These are all generalist parasites with a global

distribution (MacFarlane, Lipa & Liu 1995; Schmid-Hempel

1998) and both S. bombi and A. bombi have previously been

reported in B. hypnorum (MacFarlane, Lipa & Liu 1995). Hereaf-

ter, we refer to these using their generic names. Sphaerularia

infects bumblebee queens hibernating in the soil, castrating them

and preventing them from founding colonies (Alford 1969a,b; Po-

inar & van der Laan 1972) and Apicystis kills bumblebee queens

before they are able to found colonies (Rutrecht & Brown 2008).

Consequently, both of these parasites have a high impact on

spring queens. Crithidia reduces overall colony fitness by, on

average, 40% (Brown, Schmid-Hempel & Schmid-Hempel

2003a), and Nosema has similar effects (Otti & Schmid-Hempel

2007; Rutrecht & Brown 2009).

parasite – dissection

The B. jonellus, B. pratorum and B. pascuorum queens were sacri-

ficed by freezing after the faecal check and stored at �80 °C.

They were later thawed, dissected and checked again for bumble-

bee parasites including Sphaerularia, Apicystis, Crithidia, Nosema

and Locustacarus buchneri Stammer. L. buchneri is a tracheal

mite whose impact on queens is currently unknown, although

correlative studies on males and workers show lethargy and the

cessation of foraging in workers of B. bimaculatus and reduced

life span in B. occidentalis (Husband & Sinha, 1970; Otterstatter

& Whidden 2004).

bee husbandry

Bombus hypnorum queens were reared in the laboratory at a con-

trolled temperature (25–27 °C) and humidity (50–60%), and
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received sugar-water and pollen ad libitum. The queens were kept

in the dark and a red light was used for working. Queens were

kept in queen-rearing boxes, with a sugar-water dispenser and a

pollen ball to encourage egg-laying. Records were kept of the

reproductive output of B. hypnorum queens including eggs laid,

number of workers, males and gynes (new queens) produced.

Dead queens, either at natural death or at sacrifice, were stored

at �80 °C. Queens with no offspring were sacrificed and frozen

after 10 weeks in the laboratory. The queens were thawed, dis-

sected and checked for parasites as above.

Sterile procedures were used when handling queens in the lab-

oratory, to prevent cross-contamination. Nevertheless, two

B. hypnorum queens that were infected by Crithidia bombi when

dissected, but were not infected when the faeces samples were

examined, were consequently rejected from the data set due to

possible cross-contamination.

Queens of B. terrestris and B. lucorum were reared for other

experiments by another researcher but we were still able to assess

their parasite status (as described above) and whether they pro-

duced normal or diploid male colonies (see below).

diploid males

Bumblebees are haplodiploid, females being diploid (heterozy-

gous) and males haploid (hemizygous). However, diploid (homo-

zygous) males occur in inbred or genetically depauperate

populations, and are indicative of low genetic diversity (Ducha-

teau, Hoshiba & Velthuis 1994). A standard protocol for identify-

ing diploid male production is through the presence of males in

the first brood (which is usually just females) at a 50:50 sex ratio

(Gerloff & Schmid-Hempel 2005). Consequently, the timing of

male production was recorded to assess whether colonies were

producing diploid males (Duchateau, Hoshiba & Velthuis 1994).

analyses

Parasite prevalence was calculated by dividing the number of

infected queens by the total number of queens of each species,

with 95% confidence intervals using the Clopper–Pearson ‘exact’

method. Here, we report only parasite prevalence, as for the mac-

roparasite Sphaerularia the impact of an individual worm is the

same as the impact of multiple worms (Alford 1969a), and noth-

ing is known about whether variation in microparasite infection

intensity affects host fitness. The parasite prevalence data and

parasite impact on colony-founding data were analysed using

Binary Logistic Regressions with the parasite (or parasite impact)

as the dependent variable, bumblebee species and site as categori-

cal variables with B. hypnorum set as the indicator species, and

the forward log ratio procedure. All analyses were conducted

twice, once with the entire data set and once with just the two

main sampling sites (Windsor and Wisley), as these were where

most of the queens were collected.

Parasite species richness, the number of parasites species in

each of the parasite communities (where each bee species is a

habitat that hosts a parasite community and each individual bee

is a site within that habitat), and the similarity of those parasite

communities were analysed using SPADE (Species Prediction And

Diversity Estimation) software (Chao & Shen 2010).

As a measure of genetic diversity at a functionally important

locus, the sex-determining locus, we estimated the number of sex

alleles in the native and invasive bumblebee populations, and in a

continental European population of B. hypnorum (data from

Brown, Schmid-Hempel & Schmid-Hempel 2003b), using the for-

mula h = 2/N where ‘h’ is the probability of a diploid colony and

‘N’ is the number of sex alleles (Adams et al. 1977; Duchateau,

Hoshiba & Velthuis 1994) (and differences tested using Fisher

Exact tests). The minimum number of sex alleles was estimated

by comparing the number of observed and expected diploid male

colonies for a range of values, and determining where they cease

to be significantly different.

Statistical analyses of data were performed using IBM SPSS 19

for Windows and SPADE (Species Prediction And Diversity Esti-

mation) software (Chao & Shen 2010).

Results

A total of 378 bumblebee queens, collected in 225 h

across 45 days, were examined for parasites (59 B. hypno-

rum, 47 B. jonellus, 104 B. pratorum, 50 B. pascuorum, 61

B. lucorum and 57 B. terrestris) and five parasite species

were found (Sphaerularia, Apicystis, Crithidia, Nosema

and Locustacarus).

parasite prevalence

The prevalence of Sphaerularia among bumblebee species

differed significantly (Wald = 25�584, d.f. = 5, P < 0�001)
and ranged from 29% in B. hypnorum to 0% in B. jonel-

lus (Fig. 1). The prevalence of Sphaerularia in B. hypno-

rum was significantly higher than its prevalence in B. jonellus

(Wald = 7�281, d.f. = 1, P = 0�007, ExpB = 0�058), B. prato-
rum (Wald = 12�623, d.f. = 1, P < 0�001, ExpB = 0�156),
B. pascuorum (Wald = 10�051, d.f. = 1, P = 0�002,
ExpB = 0�089) and B. terrestris (Wald = 7�416, d.f. = 1,

P = 0�006, ExpB = 0�205) but not significantly higher than

in B. lucorum (20%, 12/61; Wald = 0�921, d.f. = 1,

P = 0�337, ExpB = 0�654). The prevalence of Sphaerularia

across sites differed significantly overall (Wald = 11�887,
d.f. = 4, P = 0�018) but in pairwise comparisons, the only

significant difference was between Windsor and Horsell

(Wald = 8�633, d.f. = 1, P = 0�003). The remaining sites,

Wisley (Wald = 3�147, d.f. = 1, P = 0�076), Kew

(Wald = 0�697, d.f. = 1, P = 0�404), and RHUL

(Wald = 1�457, d.f. = 1, P = 0�227), did not differ signifi-

cantly to our primary site (Windsor). The prevalence of

Sphaerularia was not affected by collection date (this vari-

able was not present in the final model). Qualitatively

similar results were found when analyses were restricted

to data from the two main sites (Windsor and Wisley;

data not shown).

As with Sphaerularia, the prevalence of Apicystis among

bumblebee species differed significantly (Wald = 18�927,
d.f. = 5, P = 0�002) and ranged from 18% in B. hypnorum

to 0% in B. jonellus (Fig. 1). The prevalence of Apicystis

in the non-native B. hypnorum was significantly higher

than its prevalence in B. jonellus (Wald = 4�841, d.f. = 1,

P = 0�028, ExpB = 0�095), B. pratorum (Wald = 9�216,
d.f. = 1, P = 0�002, ExpB = 0�090), B. pascuorum (Wald =
6�120, d.f. = 1, P = 0�013, ExpB = 0�108), B. lucorum
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(Wald = 6�080, d.f. = 1, P = 0�014, ExpB = 0�072) and

B. terrestris (Wald = 4�416, d.f. = 1, P = 0�036,
ExpB = 0�244). The prevalence of Apicystis across sites did
not differ significantly overall (Wald = 6�454, d.f. = 4,

P = 0�168) and was not affected by the collection date.

Again, results were qualitatively similar in the site-

restricted analysis.

Crithidia was the only parasite found in all six bumble-

bee species and prevalence ranged from 18% in B. terres-

tris to 5% in B. pratorum (Fig. 1). The prevalence of

Crithidia among bumblebee species did not differ signifi-

cantly (Wald = 6�846, d.f. = 5, P = 0�232). The prevalence

of Crithidia across sites did not differ significantly overall

(Wald = 7�722, d.f. = 4, P = 0�102) and, once again, was

not affected by the collection date. Again, these results

were qualitatively similar in the analysis restricted to the

main sampling sites.

Locustacarus was only present in one of the six bumble-

bee species sampled, B. pratorum, with a prevalence of

16% (N = 104), and Nosema was only present in two

B. terrestris, with a prevalence of 4% (N = 57) and one

B. pascuorum queen, with a prevalence of 2% (N = 50).

parasite species richness

Observed parasite species richness differed among the

sampled bumblebee species (Kruskal–Wallis H = 24�764,
d.f. = 5, P < 0�001, N = 378) and ranged from zero to

three parasite species (Fig. 2). Using the SPADE estimated

species richness the number of parasite species in the non-

native B. hypnorum (3�0 species, 95% CI = 3�0–3�0) was

between the estimate for B. jonellus (1�1 species, 95%

CI = 1�0–3�0) and B. pascuorum (4�5 species, 95%

CI = 4�0–9�0) (Fig. 3).

(a) (b)

(c) (d)

(e)

Fig. 1. The percentage prevalence of the

five parasite species across the native and

non-native host species, calculated using

the number of infected queens divided by

the total number of queens for each Bom-

bus species with 95% confidence intervals:

(a) Sphaerularia bombi, (b) Apicystis

bombi, (c) Crithidia bombi, (d) Nosema

bombi and (e) Locustacarus buchneri.
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parasite community structure

In contrast to our expectations that the invasive B. hypno-

rum may have escaped from its parasite enemies, the para-

site communities across the non-native and native Bombus

species were similar overall (‘Morista similarity’ multiple

community measure = 0�597). Interestingly, in pairwise

comparisons between the invasive species and the native

species, B. hypnorum was more similar to the common

species B. pascuorum (0�998), B. lucorum (0�917) and

B. terrestris (0�898) than to the closely related species

B. jonellus (0�295) or B. pratorum (0�360).

Fig. 3. Estimate of parasite species rich-

ness (showing 95% confidence intervals)

for non-native and native Bombus queens,

calculated using SPADE (Chao & Shen

2010).

B. hypnorum (N = 59) 

Sphaerularia 

Apicystis 

Crithidia 

32 

Uninfected 

10 4 

6 

2 

4 
1 

B. jonellus (N = 47) 

44 
Uninfected 

Crithidia 

3 

B. pratorum (N = 104) 

74 
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2 

Locustacarus 
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B. pascuorum (N = 50) 

41 
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B. lucorum (N = 61) 

44 
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B. terrestris (N = 57) 
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Crithidia 
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38 
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(a) (b)

(d)(c)

(e) (f)

Fig. 2. Diagrams of parasite community

structure in queens of the six Bombus spe-

cies showing overlaps where multiple

infections occur: (a) B. hypnorum, (b)

B. jonellus, (c) B. pratorum, (d) B. pascuo-

rum, (e) B. lucorum and (f) B. terrestris.

(Size of ovals is not representative of

numbers).
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parasite impact on longevity and
colony-founding

As expected, Apicystis in B. hypnorum, B, terrestris and

B. lucorum was associated with shorter longevity post-

capture (U = 464�000, P < 0�001, N = 177). As found in

other studies, queens infected with Apicystis did not

found a colony or produce any offspring (Rutrecht &

Brown 2008). The mean post-capture life span of Bom-

bus queens infected with Apicystis was 12�31 days

(�7�786 SD, N = 16) and for uninfected queens

52�91 days (�35�55 SD, N = 161). Sphaerularia com-

pletely inhibited colony foundation in the two native

species, as expected. However, the impact of Sphaerularia

on B. hypnorum differed: five of the B. hypnorum queens

(29%, N = 17) infected with Sphaerularia laid eggs (two

produced live offspring) and this differed significantly

from the expectation that no queens infected with Spha-

erularia would lay eggs (v2 = 5�8621, d.f. = 1,

P = 0�0155). Due to sample sizes, we were not able to

assess differences in the impact of the remaining, less

abundant parasites. However, previous studies suggest

that these have little effect on field caught spring queens

(e.g. Crithidia, Shykoff & Schmid-Hempel 1991). Conse-

quently, from hereon we focus on these two high-impact

parasites, Apicystis and Sphaerularia.

parasite community impact

The impact of individual parasites on a host population is

modified by the structure of the parasite community (Ri-

gaud, Perrot-Minnot & Brown 2010). Consequently, we

determined the overall impact of Apicystis and Sphaeru-

laria on our invasive and native hosts in the context of

their parasite community structure. In contrast to an

additive scenario, where the impact of parasites might be

considered individually, the synergistic scenarios account

for co-occurrence of parasite species within hosts. To be

conservative, we calculate the community-level impact

with and without our knowledge of the differential impact

of Sphaerularia across species (see above). Under the

additive scenario, where the prevalence of high-impact

parasites (Apicystis, c. 19%; Sphaerularia, c. 29%) was

simply added, c. 48% of our B. hypnorum queens would

be lost from the population of queens potentially able to

found a colony (Fig. 4). Under the synergistic ‘commu-

nity’ scenario, as 8% of B. hypnorum queens were infected

by both Sphaerularia and Apicystis (Fig. 3a), c. 40% of

queens would be lost (11% with only Apicystis, 21% with

only Sphaerularia and 8% with both). As 8% (N = 59) of

our B. hypnorum queens infected with Sphaerularia were

able to lay eggs they may have been able to produce a

colony. Thus, under the synergistic ‘probable’ scenario

(Fig. 4) c. 32% of our B. hypnorum queens would be lost

from the population of potential colony-founding queens.

For the native species, because Apicystis causes early mor-

tality (this study; MacFarlane, Lipa & Liu 1995; Rutrecht

& Brown 2008) and Sphaerularia causes complete castra-

tion (this study; Alford 1969a; MacFarlane, Lipa & Liu

1995; Rutrecht & Brown 2008; Kelly 2009) the commu-

nity and probable scenarios are identical.

If we consider the ‘probable’ impact of Sphaerularia and

Apicystis on the non-native B. hypnorum and on the five

native bumblebee species (Fig. 5), we find the combined

impact of Apicystis and/or Sphaerularia among bumblebee

species differed significantly (Wald = 21�668, d.f. = 5,

P = 0�001). The combined impact of Apicycstis and/or

Sphaerularia on the non-native B. hypnorum was signifi-

cantly higher than the combined impact of Apicystis and/

or Sphaerularia on B. jonellus (Wald = 7�796, d.f. = 1,

P = 0�005, ExpB = 0�053), B. pratorum (Wald = 11�759,
d.f. = 1, P = 0�001, ExpB = 0�197), B. pascuorum (Wald

= 8�138, d.f. = 1, P = 0�004, ExpB = 0�167) and B. terres-

tris (Wald = 4�636, d.f. = 1, P = 0�031, ExpB = 0�346).
The combined impact of Apicycstis and/or Sphaerularia on

B. hypnorum was not significantly higher than the impact

on B. lucorum (Wald = 0�946, d.f. = 1, P = 0�331,
ExpB = 0�658). The combined impact of Apicycstis and/or

Sphaerularia on non-native and native Bombus species

across sites did not differ significantly (Wald = 9�177, d.f.

Fig. 4. Percentage of Bombus hypnorum

queens lost from the potential colony-

founding population as a result of ‘high-

impact’ parasites. Sphaerularia bombi and

Apicystis bombi, are shown additively in

‘na€ıve’ scenario, with parasite overlap in

the ‘community’ scenario and with the

actual impact taken into consideration in

the ‘probable’ scenario.
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= 4, P = 0�057). Thus, the number of queens lost from the

population of queens potentially able to found a colony is

higher for B. hypnorum (c. 32%) than B. lucorum (c.

23%), B. terrestris (c. 18%), B. pascuorum (c. 10%) and

B. pratorum (c. 8%). Bombus jonellus were not infected

with either Apicystis or Sphaerularia.

functional genetic diversity at the sex-
determining locus

Of the 59 B. hypnorum queens, 13 produced a colony in

the laboratory (i.e. produced one or more live offspring)

but of these, three produced 50% male offspring from

the first brood indicating that they were producing dip-

loid males (Duchateau, Hoshiba & Velthuis 1994; Gerl-

off & Schmid-Hempel 2005). In total 59 B. terrestris

colonies and 57 B. lucorum colonies were reared in the

laboratory but none of these produced males from the

first brood (M. F€urst, pers. comm.). Consequently, the

number of sex alleles in the B. hypnorum population was

estimated to be four, compared to at least 32 for B. ter-

restris and at least 31 for B. lucorum (as shown in

Table 1) This compares with an estimate of seven sex

alleles for 10 Continental European (Scandinavian)

B. hypnorum colonies (also shown in Table 1) using the

same method and data from Brown, Schmid-Hempel &

Schmid-Hempel (2003b). Although the estimates for

B. hypnorum were calculated from a small number of

colonies, these estimates indicate that the invading

B. hypnorum population in the United Kingdom has

lower genetic diversity than the native B. terrestris and

B. lucorum populations, and appears to have lower

genetic diversity than the Continental European B. hyp-

norum population.

Discussion

The successful invasion of the non-native B. hypnorum

suggested that this species may have escaped from its nat-

ural enemies, benefitting from a lower parasite load than

native congeners. However, in sharp contrast, we found

that not only was B. hypnorum infected by the same gen-

eralist parasite species as native congeners, but that the

prevalence of the high-impact species: Apicystis and Spha-

erularia was also higher (Apicystis 19% and Sphaerularia

29%) than in native bumblebee species (Apicystis 0–7%

and Sphaerularia 0–20%). These results suggest that

enemy release is not the main driver for the successful

establishment, range expansion and invasion of this non-

native species.

Assessing the impact of parasites on invasive species

requires the host to be sufficiently established to provide

a large enough sample size for analysis. Despite the fact

that our sample area was invaded by this species in 2004,

only 3 years after the start of the invasion, this was the

first year sufficient spring queens could be caught to

enable a comparison of parasite communities between it

and native species (M.J.F. Brown, unpublished data).

While our samples of B. hypnorum were taken from only

a portion of its invasive range, given the rapid expansion

of this species we believe that our results are likely to be

representative of the larger population and provide the

first insight into the impact of parasites on invasion in

this system.

Before discussing our results further, a number of cave-

ats must be addressed. First, some of our sampled

individuals may have been sisters, originating from the

same natal colony. This has potential implications for

both statistical independence and parasite status. How-

0% 

20% 

40% 

60% 

80% 

100% 

B. 
hypnorum 

(N = 59) 

B. jonellus 
(N = 47) 

B. pratorum 
(N = 104) 

B. 
pascuorum 

(N = 50) 

B. lucorum 
(N = 61) 

B. terrestris 
(N = 57) 

B
om

bu
s 

qu
ee

ns

Potential colony No colony

Fig. 5. Percentage of Bombus queens lost

from the potential colony-founding popu-

lation as a result of the ‘high-impact’ par-

asites: Apicystis bombi and Sphaerularia

bombi.

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of

Animal Ecology, 83, 1428–1440

Parasites, genetic diversity and bumblebees 1435



ever, given what is known about bumblebee nest density

in the United Kingdom (Knight et al. 2005) and queen

dispersal (Lepais et al. 2010), and the low rate at which

sisters appear in samples of worker populations (Knight

et al. 2005), this seems unlikely to be a major concern.

Secondly, queens may have emerged from closely aggre-

gated hibernacula, with implications for infection by

Sphaerularia. While little quantitative data on hibernacula

exist (Alford 1969b; Sladen 1912, 1989), by sampling flo-

rally rich sites (to which spring queens converge) across

multiple locations, and collecting sites to exhaustion on

sampling visits, our sampling design minimizes this poten-

tial bias. Similarly, any unknown impacts of parasites that

make queens more or less likely to be caught should have

been avoided. Thirdly, by sampling spring queens we were

unable to assess escape from social parasites (the cuckoo

bumblebees). While the invasive population of B. hypno-

rum has definitely escaped the social parasite B. norvegi-

cus, which is absent from the United Kingdom,

B. sylvestris, another social parasite of B. hypnorum, is

present. It would be interesting to investigate this host/

social–parasite interaction further.

The invading non-native population of B. hypnorum

supported a similar parasite community at the species

level to that of congeneric native host species overall.

We note that the potential for non-native parasite strains

to be present still exists. Bumblebee parasites can be

broadly classified as generalists (MacFarlane, Lipa & Liu

1995; Schmid-Hempel 1998). The most parsimonious

explanation, therefore, for this shared community is that

B. hypnorum acquired its parasites from native hosts.

Firstly, given the likely number of foundress queens in

the non-native B. hypnorum population (based on the

number of sex alleles in the population) and the preva-

lence of parasites in spring queens (MacFarlane, Lipa &

Liu 1995; Schmid-Hempel 1998; Rutrecht & Brown

2008) it is highly likely that B. hypnorum arrived para-

site-free in the United Kingdom, although parasitized

queens may have arrived and been unsuccessful in

founding a colony. This is supported by the Tasmanian

invasion where the low foundress population of B. ter-

restris had a low parasite load (Allen et al. 2007). Sec-

ondly, the most prevalent parasites in B. hypnorum

queens were those that either kill queens, or largely pre-

vent colony establishment, thus preventing their potential

spread from and within a non-native population (Rutr-

echt & Brown 2008). The shared parasite community

and the hibernation-site transmission route of one of the

parasites, Sphaerularia, suggest that the invading B. hyp-

norum acquired these parasites in the invaded environ-

ment. This matches the predictions of Drake’s model

(2003), where release from virulent parasites is important

for the establishment phase of the invasion. Interestingly,

the parasite community in the non-native B. hypnorum

was very similar to that of the more abundant conge-

neric native hosts (B. pascuorum, B. lucorum and B. ter-

restris) and much less similar to that of B. hypnorum’s

closer relatives (B. jonellus and B. pratorum), suggesting

that parasite acquisition was not phylogenetically con-

strained, but was driven by host abundance. Mechanisti-

cally, B. hypnorum has probably acquired its parasite

community through overlap in the use of floral resources

(Durrer & Schmid-Hempel 1994) and hibernation sites

(Alford 1969b) with the native Bombus species. While

the number of parasite species infecting B. hypnorum was

similar to that of native congeners and the parasite com-

munity in B. hypnorum was similar to the parasite com-

munity of the native species overall, prevalence levels,

particularly of the high-impact parasites, were higher in

the invasive species than in the native species. Higher

prevalence could reflect higher susceptibility, which may

relate to the low levels of genetic diversity we found in

B. hypnorum or to maladaptation to the parasites in its

new range. Previous studies have shown that inbreeding

Table 1. Estimated number of sex alleles based on the production of diploid males. The transition from significant to non-significant

differences gives the minimum number of sex alleles in the population

N

Expected Observed

v2 SignificanceDiploid Not Diploid Diploid Not Diploid

B. terrestris

Native

UK

31 3�8 55�2 0 59 3�9264 *

32 3�7 55�3 0 59 3�8198 n.s.

B. lucorum

Native

UK

30 3�8 53�2 0 57 3�931 *

31 3�7 53�3 0 57 3�8241 n.s.

B. hypnorum

Invasive

UK

3 8�7 4�3 3 10 4�9983 *

4 6�5 6�5 3 10 2�0319 n.s.

B. hypnorum

Non-invasive

Scandinavian

6 4�0 6�0 0 10 3�9521 *

7 3�3 6�7 0 10 3�3918 n.s.

*P < 0.05.

‘N’ is the number of sex alleles and each row refers to a given number of sex alleles for each species.

The bold shows the minimum estimate for the number of sex alleles in the population.
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in bumblebees correlates with higher parasite prevalence

(Whitehorn et al. 2011), but both mechanisms may be at

play. Even though infections by one parasite species,

Sphaerularia, had a reduced impact in B. hypnorum, this

was outweighed by its higher prevalence. Nevertheless,

the high prevalence and corresponding impact of

acquired parasites does not appear to have constrained

the spread of B. hypnorum across the United Kingdom.

However, this high prevalence could still affect the

native species. Firstly, higher prevalence in the invasive

species may actually reflect a parasite dilution effect,

where the presence of the new and possibly more suscep-

tible host has lowered parasite prevalence in native spe-

cies (Norman et al. 1999; Ostfeld & Keesing 2000; Dunn

2009). In the absence of long-term records of parasite

prevalence in these, or other bumblebee populations, it

is not possible to test this idea. Secondly, the non-native

host may also have a detrimental impact on the parasite

by preventing transmission. Sphaerularia larvae are usu-

ally deposited in the soil at hibernation sites by infected

queens, where hibernating queens are infected (Lundberg

& Svensson 1975), but, if infected queens found colonies,

as we found in this study, such deposition at hibernation

sites will not occur, and therefore the parasite’s life cycle

would be broken, making B. hypnorum a dead-end host

for Sphaerularia. This lack of host competence (Ostfeld

& Keesing 2000) is likely to reduce parasite prevalence

in native congeners, again through the parasite dilution

effect (Ostfeld & Keesing 2000; Dunn 2009). Further

studies are needed to determine whether this is in fact

happening, and, if so, what quantitative impact it is hav-

ing on native host–parasite interactions.

In addition to assessing its impact on parasite preva-

lence, estimating functional genetic diversity at the sex-

determining locus enables us to retrospectively assess the

number of initial foundress queens in the invasive popula-

tion (Lundberg & Svensson 1975; Schmid-Hempel et al.

2007). Bombus hypnorum queens can be polyandrous and

mate with between one and six males (Pouvreau 1963; Es-

toup et al. 1995; Schmid-Hempel & Schmid-Hempel 2000;

Paxton et al. 2001), thus the B. hypnorum population in

the United Kingdom may have been founded by as few as

one or two multiply mated queens. Previous studies of

both deliberately introduced populations of bumblebees in

New Zealand (Lye, Lepais & Goulson 2011), and intro-

duced B. terrestris in Tasmania also found that popula-

tions may have been established from as few as one or

two mated queens (Schmid-Hempel et al. 2007). Although

B. terrestris (and B. lucorum) are usually monandrous,

these studies show that bumblebees can establish and

become invasive from a small number of founding queens.

Finally, diploid-male producing colonies of B. terrestris

have been shown to have significantly lower fitness under

semi-natural conditions (Whitehorn et al. 2009), and con-

sequently the high proportion of diploid-male producing

B. hypnorum colonies found in this study should constrain

population expansion.

Nevertheless, despite its high parasite prevalence and

low diversity at the sex-determining locus, B. hypnorum

has rapidly expanded its range in the United Kingdom.

What factors might contribute to this success? One con-

tributing factor may be its association with the ‘urban’

environment (urbanization is increasing in Europe, Ei-

genbrod et al. 2011), and its use of resources rarely

exploited by other bumblebee species such as nesting sites

in trees, bird-boxes and buildings (BWARS; C.M. Jones

pers. observ.). Bombus hypnorum is also a generalist for-

ager that visits a wide range of flowers (BWARS) and

generalists are often associated with biological invasion

success (Williamson 1996). Furthermore, B. hypnorum has

a bivoltine life cycle (producing two generations per

annum) (Edwards & Jenner 2005) and thus their popula-

tion might increase more rapidly than univoltine species,

such as B. lucorum or B. pascuorum. In addition, a second

generation B. hypnorum queen could mate and found a

colony without hibernating, thus avoiding possible infec-

tion by Sphaerularia during hibernation.

A final possible explanation is that the bumblebee spe-

cies assemblage in Great Britain is depauperate compared

with that in Continental Europe, presumably due to the

emergence of sea barriers to dispersal at the end of the

last Ice Age. In some sense, then, B. hypnorum may sim-

ply be invading favourable habitat. Similarly, two related

Pyrobombus species, B. pratorum and B. monticola,

invaded Ireland, in the 1940s and 1970s, respectively,

where the bumblebee species assemblage is even more

depauperate than Great Britain (Speight 1974; Fitzpatrick

et al. 2007) suggesting that bees from the Pyrobombus

sub-genus, such as B. hypnorum, may be successful invad-

ers. Unfortunately, no parasite or genetic data exist from

the early stages of these invasions to compare with the

current study.

Invasion by B. terrestris of South America (c. 400 km

in 8 years, Torretta, Medan & Abrahamovich 2006; Mor-

ales et al. 2013), an area with a native bumblebee fauna,

has proceeded at a similarly rapid rate as B. hypnorum in

the United Kingdom (c. 600 km in 10 years, BWARS). In

South America, parasites have been implicated in the

invasion success through their impact on the native Bom-

bus species (Torretta, Medan & Abrahamovich 2006; Plis-

chuk & Lange 2009; Arbetman et al. 2013). Our data

from the B. hypnorum invasion suggest that it would be

extremely valuable to examine the parasite communities

and levels of genetic diversity in other invading and native

populations to see whether our results are representative

of a more general pattern. Unfortunately, while data exist

for genetic diversity and parasites in invasive populations

in New Zealand and Tasmania (Allen et al. 2007; Schmid-

Hempel et al. 2007; Lye, Lepais & Goulson 2011), the

absence of a native bumblebee fauna makes it difficult to

extrapolate these results to other areas.

To conclude, this study shows that high parasite impact

and low functional genetic diversity at the sex-determining

locus have not prevented the invasion of a non-native
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bumblebee. This not only has implications for under-

standing economically important and ecologically devas-

tating invasions (Inoue, Yokoyama & Washitani 2008;

Plischuk & Lange 2009; Arbetman et al. 2013), it also has

implications for the successful design of re-introduction

programs which begin with low founding populations and

low parasite load (IUCN; Frankham, Ballou & Briscoe

2010). While the obvious next steps would be to investi-

gate B. hypnorum in its native range, or the parasite com-

munity and genetic diversity of other invasive Bombus

species in their invaded ranges, this work provides an

important step in understanding the role of parasites and

genetic variation in insect invasions. A recent study

(Venesky et al. 2012) suggested that captive breeding pro-

grams for re-introductions should select for tolerance to

natural enemies, to avoid the impact of such enemies in

small re-introduced populations with low genetic diversity.

Our results, where a genetically depauperate, invasive

population has expanded despite high parasite impact,

suggest that such complex selection may not be required.
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