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Abstract

The practice of precision medicine will ultimately require databases of genes and mutations

for healthcare providers to reference in order to understand the clinical implications of each

patient’s genetic makeup. Although the highest quality databases require manual curation,

text mining tools can facilitate the curation process, increasing accuracy, coverage, and pro-

ductivity. However, to date there are no available text mining tools that offer high-accuracy

performance for extracting such triplets from biomedical literature. In this paper we propose

a high-performance machine learning approach to automate the extraction of disease-gene-

variant triplets from biomedical literature. Our approach is unique because we identify the

genes and protein products associated with each mutation from not just the local text con-

tent, but from a global context as well (from the Internet and from all literature in PubMed).

Our approach also incorporates protein sequence validation and disease association using

a novel text-mining-based machine learning approach. We extract disease-gene-variant

triplets from all abstracts in PubMed related to a set of ten important diseases (breast can-

cer, prostate cancer, pancreatic cancer, lung cancer, acute myeloid leukemia, Alzheimer’s

disease, hemochromatosis, age-related macular degeneration (AMD), diabetes mellitus,

and cystic fibrosis). We then evaluate our approach in two ways: (1) a direct comparison

with the state of the art using benchmark datasets; (2) a validation study comparing the

results of our approach with entries in a popular human-curated database (UniProt) for each

of the previously mentioned diseases. In the benchmark comparison, our full approach

achieves a 28% improvement in F1-measure (from 0.62 to 0.79) over the state-of-the-art

results. For the validation study with UniProt Knowledgebase (KB), we present a thorough

analysis of the results and errors. Across all diseases, our approach returned 272 triplets

(disease-gene-variant) that overlapped with entries in UniProt and 5,384 triplets without

overlap in UniProt. Analysis of the overlapping triplets and of a stratified sample of the non-

overlapping triplets revealed accuracies of 93% and 80% for the respective categories

(cumulative accuracy, 77%). We conclude that our process represents an important and

broadly applicable improvement to the state of the art for curation of disease-gene-variant

relationships.
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Author Summary

To provide personalized health care it is important to understand patients’ genomic varia-

tions and the effect these variants have in protecting or predisposing patients to disease.

Several projects aim at providing this information by manually curating such genotype-

phenotype relationships in organized databases using data from clinical trials and bio-

medical literature. However, the exponentially increasing size of biomedical literature and

the limited ability of manual curators to discover the genotype-phenotype relationships

“hidden” in text has led to delays in keeping such databases updated with the current find-

ings. The result is a bottleneck in leveraging valuable information that is currently avail-

able to develop personalized health care solutions. In the past, a few computational

techniques have attempted to speed up the curation efforts by using text mining tech-

niques to automatically mine genotype-phenotype information from biomedical litera-

ture. However, such computational approaches have not been able to achieve accuracy

levels sufficient to make them appealing for practical use. In this work, we present a highly

accurate machine-learning-based text mining approach for mining complete genotype-

phenotype relationships from biomedical literature. We test the performance of this

approach on ten well-known diseases and demonstrate the validity of our approach and

its potential utility for practical purposes. We are currently working towards generating

genotype-phenotype relationships for all PubMed data with the goal of developing an

exhaustive database of all the known diseases in life science. We believe that this work will

provide very important and needed support for implementation of personalized health

care using genomic data.

Introduction

Many genetic mutations protect or predispose individuals to disease [1]. The practice of preci-

sion medicine involves identifying such mutations in patients and modifying patient treatment

to reflect each individual’s unique physiologic risks and strengths [2]. Databases of gene-dis-

ease relationships play a key role in this process by acting as a reference to which providers

may refer to determine the significance of their patients’ mutations [3, 4]. In a similar way,

these databases also play a key role in translational research [5, 6].

Currently, the highest quality databases require manual curation, often in conjunction with

support from automated systems [7, 8]. Creating entries in these databases requires substantial

human investment. For example, in the UniProt Knowledgebase (UniProtKB), each mutation

receives a multitude of annotations providing information about gene function, role in disease,

and molecular interactions, and other things [9]. These manual curation efforts are critical

because the biomedical literature is a unique source of genotype-phenotype information.

Curations in genotype-phenotype databases are also important components of synthesized

knowledge bases of clinically actionable genetic information such as the Reference Variant

Store (RVS) [6]. Yet, the high cost of expert curation of UniProtKB and databases alike is a

rate-limiting factor for content coverage and updates.

Computational approaches to gene curation could potentially relieve the bottleneck of

human resources in disease mutation annotation. Fully automating the curation system

remains beyond the capacity of even state-of-the-art text mining systems, but automation of

parts of the process is feasible. A separate, yet important role of text mining in database gene

Text Mining Genotype-Phenotype Relationships

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005017 November 30, 2016 2 / 19

research that used animals. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing Interests: The authors have no

competing interests to declare.



curation is that text mining tools can shed perspective on the scope and breadth of current

databases by summarizing the entirety of relevant information in the biomedical literature.

Identification of genotype-phenotype relationships is a key concern in both clinical and

research communities. Several well-known databases employ manual curation of biomedical

literature to provide comprehensive coverage of such relationships in humans. Examples of

these include OMIM [10], HGMD [11], Comparative Toxicogenomics Database (CTD) [12],

GHR (http://ghr.nlm.nih.gov/) and UniProtKB [9]. Recent efforts in the direction of (semi-)

automated approaches to facilitate database curation of genotype-phenotype relationships

include extraction of sequence variation information from biomedical text. Overall, most

methods confine their scope to mutation entity extraction without exploring the relationships

of those mutations to other entities, such as diseases or genes. Examples of mutation recogni-

tion tools include MutationFinder [13], tmVar [14], and several others [15].

Several groups, however, have addressed variant relationship mining in text. One early,

notable method developed by Kuipers et al [16] introduced an automatic method for extract-

ing and validating mutations for a single disease–Fabry disease. Since their approach finds

mutations on a single gene (GLA) at Xq22.1 for Fabry disease, it uses regular expression to

identify mutation mentions and assumes them to be related to the disease and gene. Other

early approaches to relationship extraction include, MuGeX [17], EnzyMiner [18], and OSIRIS

[19]. Each of these has been reported with limitations and over-specialization [20]. More

recently, Hakenberg et al developed an approach to mining a variety of pharmacogenomic

relationships from PubMed abstracts [21]. Their work is particularly noteworthy in its com-

parison of text-mined results to a manually curated database–PharmGKB. Laurila et al mined

functional impact information about gene variants [22], and Macintyre et al created a rule-

based approach to identifying gene-disease and gene-variant relationships from literature for

the purpose of investigating the impact of intergenic (non-coding) variants [23]. Of all the

works on mutation relationship extraction, one of the most notable is the EMU tool developed

by Doughty et al [20]. EMU provides a semi-automated approach to extract disease-related

mutations from PubMed abstracts and full text. This work, which truly addresses broad geno-

type-phenotype relationship extraction is most comparable to our present work.

In all the above automated approaches, there are two common limitations: (a) disease-to-

mutation relationships in the text are not explicitly detected or utilized for extraction; rather,

a relationship is typically assumed (i.e. co-occurrence); (b) none of the above mentioned

approaches explicitly focuses on extracting a three-way relationship between gene, mutation

and the disease from the text. Regarding the latter limitation, the EMU tool can extract three-

way relationships from text, but its primary focus is mutation extraction. Its gene and disease

association extraction functionality is limited. Likewise, the works by Macintyre et al [23] and

Hakenberg et al [21] include extraction of both gene-disease relations and gene-variant rela-

tions, but extraction of the entire triplet is not expressly evaluated.

We have previously approached parts of this problem as well. One work [24] used a

machine learning approach to determine disease-mutation association from PubMed

abstracts. In another study [25] we experimented with crowd-based human judgment to deter-

mine binary associations between genes and mutations in PubMed abstracts. These previous

works separately addressed identification of disease-mutation associations and gene-mutation

associations, but neither attempted extraction of complete disease-gene-variant triplets. Devel-

oping an efficient, robust and fully automated approach to extract a full three-way relationship

or triplet of disease-gene-variant from text is still challenging for several reasons. Firstly, cor-

rectly mining complex bio-entities from biomedical literature has been a long-standing chal-

lenge. Secondly, mining three-way relationships is even more complicated than mining two-

way relationships. The challenges in gene-variant-disease extraction are heightened due to
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several factors concerning natural language processing and information presentation in bio-

medical literature. An example explaining such challenges is shown in Fig 1. As shown in the

figure, a common challenge of text mining this information is that a single abstract may con-

tain references to multiple diseases, genes, and mutations. The conventional, co-occurrence-

based approach of assuming hereditary hemochromatosis (HH) to be related to all the muta-

tions found in an abstract frequently results in false positives, as it does in this example. For

this reason it is important to examine the text to establish gene-mutation and disease-mutation

relationships. Fig 1 contains an abstract retrieved through a PubMed search for HH with vari-

ous entities annotated using PubTator. In this abstract all named variants belong to the ATP7B

gene and have a proposed association with Wilson disease (not HH). Researchers used known

HH-causing variants in the HFE gene (none of which are mentioned in the abstract) to iden-

tify people in a population of Wilson disease patients who may also have had HH. A third dis-

ease–congenital spherocytosis–is cited as a confounding factor in their analysis. The author’s

ultimate conclusion is that their methodologies were insufficient to definitively demonstrate a

defining association between Wilson disease and variants of the gene in question.

In this paper we propose a novel, end-to-end approach to automate the extraction of dis-

ease-gene-variant triplets from biomedical literature. We employed our previously published

supervised machine-learning approach to detect relationships between disease and mutation

mentions in text. Then we mined gene association information using a novel approach that

leverages global context (using PubMed and the Web via Bing search) followed by gene

sequence validation in order to identify an exact gene match for the mutation. The end result

of the proposed approach is a disease-gene-variant triplet. We describe the development of

this system and analyze its performance in extracting gene mutations for a set of ten common

diseases set forth in the list provided in Doughty et al [20] (breast cancer, prostate cancer,

Fig 1. An example showing the complexity of mining triplet information from a PubMed abstract.

doi:10.1371/journal.pcbi.1005017.g001
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pancreatic cancer, lung cancer, acute myeloid leukemia, Alzheimer’s disease, hemochromato-

sis, age-related macular degeneration (AMD), diabetes mellitus, and cystic fibrosis). The per-

formance of the proposed approach is evaluated in two ways: (1) direct comparison with the

previous EMU approach using a benchmark dataset; (2) validation with a popular human-

curated database (UniProtKB). The main contributions of this work are as follows:

1. Development of a novel framework for extracting full disease-gene-variant triplet informa-

tion from text.

2. Proposal of a novel, global-context-based (as opposed to a local, co-occurrence-based) text

mining approach to mine gene associations.

3. Testing the performance of our approach on ten common diseases using all relevant

PubMed data for each disease.

4. Development of a new human-annotated corpus containing 430 disease-gene-variant trip-

lets with their corresponding PMIDs. This corpus may be used by future researchers for

building machine learning models as well as for performance evaluation.

Methods

Dataset used

The dataset used in this work is comprised of PubMed articles. Although the technique devel-

oped is applicable for any disease, we have analyzed and presented results for a set of ten dis-

eases [20]. For each disease, we assembled a “Disease_corpus” by collecting a list of PMIDs

from PubMed using the following query: “disease_name [tiab] AND English [26] AND

has_abstract [filter]”. For each PMID in the Disease_corpus, we collected the PubMed title,

abstract and annotation results for gene, mutation and disease mentions via PubTator [27]. In

PubTator, the gene, mutation and disease annotations were extracted by GNormPlus [28],

tmVar [14] and DNorm [29], respectively.

Our approach for identifying gene-disease-mutation relationships is portrayed schemati-

cally in Fig 2 and can be summarized as follows: Step 1: Identify all diseases, genes, and muta-

tions in PubMed abstracts; Step 2: Associate mutations with a given disease from all articles in

PubMed about that disease; and Step 3: Link the proteins or genes with each mutation using

an aggregation of information extracted from PubMed, the Web (using Bing search engine fea-

tures), and sequence analysis. This process results in a list of triplets of the form <disease,

gene, variant>. Details of each step are as follows:

Step 1: Identifying disease, gene and mutation mentions. We used PubTator to identify

disease, gene and mutation mentions. PubTator employs the following entity recognition tools

for these tasks:

GNormPlus. GNormPlus extracts gene/proteins from a given text in two steps. In the

first step it recognizes the gene/protein entity mention using a novel CRF++ [30] based mod-

ule in combination with the species recognition module SR4GN [31]. In the second step, the

gene/protein mention is normalized using GenNorm [32] in combination with the compos-

ite mention simplification tool, SimConcept [33] and an abbreviation resolution tool Ab3P

[34].

tmVar. tmVar uses a conditional random field (CRF) model to detect mutation mentions

in text [14]. The CRF model identifies the mutation type, reference amino acid or nucleotide,

mutant nucleotide or amino acid and the mutation position as the states for the CRF i.e. each

component of a mutation is treated as an individual state in the CRF and thus sequentially
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retrieved. The information about these components is learned from a curated tmVar corpus.

Some additional rare mutation mentions are handled in the post-processing module.

DNorm. DNorm segments the given text into sentences and identifies disease mentions

using BANNER [35]. The mentions are then normalized to disease concepts in MeSH by find-

ing the best match using a learning-to-rank technique [29]. Finally the disambiguation related

to primary disease or a disease synonym is resolved using a disease concept hierarchy. The out-

put is a tuple of disease mention text span and corresponding concept (MeSH ID).

Step 2: Disease-Mutation relationship extraction. The details of this step can be found

in our earlier work [24]; this information is also available in the supplementary material, S1

Text. In summary, mutations associated with the queried disease are identified using a

machine-learning(ML)-based classification algorithm trained to detect disease-related muta-

tions using a novel feature set derived by mining the text in PubMed abstracts. The feature set

captures information such as mutation and disease mention proximity, disease mention fre-

quency, same-sentence mention of mutation and disease and text sentiment (polarity) to dis-

tinguish between disease-related and non-related mutation mentions in text. The output of

this step is a list of PMID-mutation pairs that are predicted to be related to the target disease.

In our previous work, we tested our ML model and showed that retraining ML classifiers with

disease-specific training sets is not necessary for classification of disease-mutation relation-

ships in unrelated diseases, e.g. we trained a model using the prostate cancer training set and

successfully applied it to finding relevant mutations for AMD. Therefore, for all diseases in

this work (except breast cancer, which has its own training data available), we use the prostate

cancer training set to build the ML model.

In the second step of the disease-mutation identification process, the PMID-mutation pairs

for the disease are converted into an ordered list. Unique mutations are ranked in descending

order by the number of PMIDs in which each mutation appears, and a corresponding list of

referencing PMIDs is provided for each mutation. We refer to this list as the “Mutation-list”.

Fig 2. Overview of the proposed approach.

doi:10.1371/journal.pcbi.1005017.g002
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This list features later in our gene-ranking process. The tmVar algorithm extracts all types of

mutations, including insertions, deletions, and substitutions. The tmVar also recognizes multi-

ple levels of mutation nomenclature, including DNA, RNA, and protein. However, for com-

parison purposes with UniProt KB (which curates only protein substitutions), we emphasize

protein substitutions throughout the remaining text. Moreover, protein substitutions account

for the majority of the total extracted mutations. We have provided information about all

other types of mutations mined by our text mining approach in the supplementary material,

S2 Text.

Step 3: Gene-variant relationship extraction. Once the disease-mutations are identified

(Step 1), the next step is to extract the gene associated with each mutation. Performing this

step within the local textual and structural information of individual abstracts is challenging

and error-prone because (a) automatic gene recognition remains quite difficult and (b) in

many cases abstracts mention multiple genes and mutations. Thus, we designed a three-step

approach that takes advantage of global information beyond a single abstract. The steps for

this approach are summarized in Fig 3, and the details are described below:

1. Gene extraction from a PubMed corpus (PubMed Rank): Given a mutation and a referenc-

ing PMID list, all genes (normalized to Entrez Gene ID) mentioned in the PubMed

abstracts of corresponding PMIDs are collected and then ranked based on the aggregate

score of their mentions in the local abstract as well as in all other abstracts. For example, if a

gene is mentioned three times in one abstract, two times in another and one time in a third

abstract, the aggregate score for that gene would be six. Scoring genes in this fashion allows

all the candidate proteins for a given mutation to be ranked and listed in descending order

by aggregate score. We call the resulting candidate list the PubMed Rank List. Using all

related PMIDs to identify the correct gene match for the mutation, we minimize the effect

Fig 3. A schematic of identifying a ranked list of genes using global knowledge for a given mutation.

doi:10.1371/journal.pcbi.1005017.g003
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of errors of our automatic gene tagger and increase the likelihood of finding a correct

match since the correct gene may be mentioned repeatedly in multiple PMIDs.

2. Gene extraction from a Web corpus (Bing Rank): Parallel to the process described above, a

Bing Rank list of candidate genes is also generated from the Web using the Bing search

engine’s free API service [36]. The most frequent mention for each entry from the Muta-

tion-list (obtained from the referencing abstracts) is given as the input query to the Bing

search engine. Gene mentions for each query are mined from the title and text snippets of

the top-20 Bing search results. We utilize the full text search feature provided by Bing with-

out mining the full text because the relevant information is displayed by the search engine

in the form of web-snippets. All gene mentions that occur in Bing text snippets containing

mutation mentions are mined and added to the candidate list. Finally, the gene mentions

extracted from the search snippets are normalized to Entrez Gene IDs and then ranked in

descending order of frequency. We call the resulting candidate list the Bing Rank List. Since

this list is generated using Web search results, it is based on global knowledge beyond the

biomedical literature. We present an analysis of the effect of incorporating Bing into our

ranking strategy in the supplementary material, S3 Text.

3. Rank aggregation: As shown in Fig 3, the two candidate lists of genes, PubMed Rank List
and Bing Rank List are combined to develop a unique list of candidate genes for each dis-

ease-mutation pair. All genes with a frequency greater than one ((f>1) that occur only in

the Bing Rank List are appended directly to the end of the PubMed Rank List. By doing so,

the genes extracted from PubMed are assumed to be more relevant than those extracted

from Bing. This is based on our observation that the Bing search results include noisier text,

hence more false positive genes. The gene names that overlap between Bing Rank List and

PubMed Rank List are therefore more important and their ranks need to be aggregated. For

such genes, we simply raise their rank order in the PubMed Rank List by substituting the

PubMed rank with the Bing Rank if they had a higher rank order in the Bing Rank List than

in the PubMed rank List.

4. Sequence validation: in the final step of determining the associated gene for a given variant-

disease pair, the exact match is identified from the candidate genes (from step 3.c) by

sequence analysis of the gene, similar to the sequence filter step in Doughty et. al [20]. This

analysis requires matching the reference or mutant amino acid (AA) or nucleotide in the

protein or the gene sequence on the mutation position mentioned in the mutation. If the

AA in the protein sequence at a mutation position (mut_pos) matches with the reference or

mutant AA in the mutation, then that gene (gene_i) is marked as the exact match for the

mutation. All protein isoforms of a gene were considered; a match in any protein isoform

results in gene selection. Otherwise, the next gene in the candidate list is checked and so on

until a match is found. In cases where none of the proteins provides an exact match, the

topmost ranked protein is selected. We used the used NCBI’s gene2refseq to obtain the pro-

tein isoforms for genes. The protein sequence was obtained from FASTA data from NCBI’s

RefSeq database [37].

Results

In this section, we describe the experiments performed to assess the performance of the pro-

posed approach. The analysis proceeds in two ways: (1) to assess the validity of our approach,

we performed an intrinsic evaluation and comparison with the state of the art using a gold-

standard benchmark dataset; (2) to assess the utility of our approach, we compared the
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results of our approach with entries in a popular human-curated database (UniProt) for ten

diseases.

Intrinsic evaluation: Comparison with EMU

The performance of the proposed approach is first evaluated for disease-gene-variant triplet

extraction from biomedical literature on the benchmark datasets for prostate and breast cancer

used to report the performance of the EMU approach [20]. These datasets consist of manually

annotated lists of disease-gene-variant triplets from 203 and 141 PubMed articles for breast

and prostate cancer respectively. Using these benchmark datasets, we report the accuracies of

our approach in standard measures (precision, recall and F-measure) and compare the accu-

racy of our text-mined triplets (cross-validation based) directly with the results of EMU.

Table 1 displays a comparison between our proposed approach and the previous state of the

art (EMU). The table includes results with and without sequence filters as well as results for a

simple co-occurrence relationship extraction baseline that uses our entity tagging tools. Since

EMU also used a co-occurrence approach but with different entity tagging tools, this co-occur-

rence column allows a comparison of the performance of the different entity tagging tools. As

shown in Table 1, our entity tagging tools performed similarly to those of EMU. Without

sequence filters, our approach achieves marked improvement over the results of EMU in preci-

sion and overall F1-measure on both datasets, although EMU has better recall. Employing a

sequence filter improves the precision of EMU at the expense of substantial decreases in recall

(The EMU with sequence filter removes gene-variant pairs that fail the protein sequence vali-

dation check, reducing the overall number of mutations extracted by EMU and therefore the

recall also decreases), but this tradeoff does not occur in our approach. Rather, the use of a

sequence filter improves all three metrics.

Overall, for the prostate cancer dataset, our full approach achieves 39% improvement in

precision (from 0.59 to 0.82) over the EMU approach with a sequence filter incorporated.

Incorporation of a sequence filter improves the precision at the expense of recall for EMU, but

for our approach, the addition of a sequence filter has the opposite effect–both precision and

recall improve with the addition of the filter. This is because our approach evaluates each gene

in the candidate list of genes and thus increases the likelihood that the final gene match is cor-

rect. Consequently, the overall F1-measure is 28% higher (from 0.62 to 0.794) than EMU’s F1-

measure. Similarly for the breast cancer dataset, we find that the precision of the proposed

approach is 22% higher (from 0.61 to 0.742) than the precision value for EMU, and the F1-

measure is 15% higher (from 0.64 to 0.74). This is a significant improvement in the state of the

art for disease-gene-variant triplet extraction. Moreover the balanced performance of our

Table 1. Comparison of proposed approach with EMU approach on benchmark datasets. The parantheses values correspond to (true positives, false

positives) for precision and (true positive, false negatives) for recall.

Corpus EMU: Without

sequence filter

Our baseline approach: Co-

occurrence only

Our approach: Without

sequence filter

EMU: With

sequence filter

Our full approach: With

sequence filter

PCA

Precision

0.39 (151, 237) 0.37 (154, 263) 0.75 (132, 42) 0.59 (127, 89) 0.82 (144, 32)

Recall 0.80 (151, 37) 0.82 (154, 34) 0.70 (132, 56) 0.66 (127, 61) 0.77 (144, 44)

F-measure 0.52 0.51 0.724 0.62 0.794

BCA

Precision

0.34 (242, 470) 0.33 (252, 504) 0.738 (206, 73) 0.61 (193, 121) 0.742 (207, 72)

Recall 0.85 (242, 42) 0.89 (252, 32) 0.725 (206, 78) 0.68 (193, 91) 0.73 (207, 77)

F-measure 0.49 0.49 0.73 0.64 0.74

doi:10.1371/journal.pcbi.1005017.t001
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approach offers practical advantages for database curation: achieving high precision at the cost

of a small decrease in recall suggests that the extracted results contain very few errors (false

positives) with comparable coverage (recall).

Extrinsic evaluation: Comparison with UniProtKB

To assess the potential of our approach in assisting database curation, we performed an extrin-

sic analysis by comparing our text-mined results against curated relationships for a total of ten

diseases. UniProtKB–the Universal Protein Resource Knowledge Base–is a database of protein

sequence and annotation data produced in Switzerland through collaboration between the

European Bioinformatics Institute (EMBL-EBI), the Swiss Institute of Bioinformatics (SIB)

and the Protein Information Resource (PIR) [38]. Its scope includes all human genes and func-

tion-altering gene variants along with any diseases caused by those variants [39]. Data collec-

tion from UniProtKB is explained in detail in the supplementary material, S4 Text. The raw

output of our algorithm across the literature for these ten diseases can be found in the supple-

mentary material (S1 Data) along with a thorough analysis of these results in S5 Text.

We compare the text-mined results with the UniProt curated set. As shown in Fig 4, the red

bars denote the counts of text-mined results for each disease, and the blue bars denote the

counts of curated variants for each disease in the UniProtKB dataset. As is apparent in the fig-

ure, text mining extracts a significantly larger number of triplets than exist in UniProtKB

curations.

From UniProtKB, we collected 1,529 unique gene-variant pairs for the ten diseases. In com-

parison, we extracted 5,656 gene-variant pairs from the literature using our text mining

approach for the same diseases. We divided the UniProtKB entries and text-mined disease-

gene-variant triplets into three separate groups by their overlap and evaluated the proposed

approach differently in each group (shown in Fig 5). We evaluated the accuracy (in precision)

of gene-variant pairs that were only found through text mining via human annotation of a

stratified random sample of the results (Analysis 1). Overlapping mutations were evaluated

directly with UniProtKB with respect to their gene association (Analysis 2). Finally, we

Fig 4. Comparing PubMed text-mined results with UniProtKB curated set.

doi:10.1371/journal.pcbi.1005017.g004
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analyzed gene-variant pairs that were unique to UniProtKB–potential false negatives for our

approach (Analysis 3).

Analysis 1: Evaluation of un-curated mutations. Text mining returned 5,384 triplets

that were not found in UniProtKB. These variants and their supporting literature references

are potential candidates for curation. On the other hand, it is possible that these results contain

false positives. We assessed the accuracy of this group via human judgment of a stratified

random sample of the results for each disease (described below) given the absence of a gold

standard.

In the random sampling, all 5,384 text-mined triplets were categorized into three represen-

tative groups based on their mutation frequency in literature: (a) 138 highly frequent muta-

tions (seen in>10 PMIDs), (b) 343 moderately frequent mutations (4 to 10 PMIDs), and (c)

4903 low-frequency mutations (<4 PMIDs). We randomly sampled a maximum of 10, 15 and

30 instances from these high, moderate and low frequency mutation categories respectively.

Repeating such sampling for ten diseases gave a total of 58, 112 and 260 instances (430 total) in

the respective categories (Table 2). Thus this sample represents approximately 8% (430/5384)

of the total uncurated mutations.

In manually annotating these sampled mutations, it is not uncommon that–for any given

gene-variant-disease triplet, separate publications disagree regarding whether or not a true

association exists. For example, regarding the (NOS3 –Glu298Asp–Alzheimer disease) triplet,

PMID 23952620 contains the following assertion:

Fig 5. Three-tier analysis of text-mined vs. curated gene-disease-variant triplets.

doi:10.1371/journal.pcbi.1005017.g005

Table 2. Precision computation based on human annotation of random samples from uncurated mutations.

Frequency Group High (138) Medium (343) Low (4903) Total (5384)

Correct triplets 47 89 195 331

Triplets evaluated 58 112 260 430

Accuracy (precision) 0.81 0.80 0.75 0.77

doi:10.1371/journal.pcbi.1005017.t002
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. . .no significant association was observed between the NOS3 Glu298Asp polymorphism and
AD risk.

However, PMID 16813604 contains the opposite assertion:

. . . The meta-analysis showed a small effect of the Glu298Asp GG genotype on AD risk.

Since we performed our comparison between our approach and UniProt at the triplet level

and not at the level of the individual articles supporting those triplets, we adopted a simple set

of rules for judging between disputing assertions: when disagreement between articles was

identified, the association or lack of association was determined by the conclusions of review

articles or meta-analyses if present. If no review or meta-analysis was available, the most recent

articles dictated the final judgment. In the few instances when meta-analyses and equally

recent articles supported opposite assertions, we permitted curators to use their own judgment

after evaluating all the PMIDs. In this task, curators were permitted to refer to the full text of

the articles for additional information.

The manual annotation of the sampled mutations thus proceeded in the following manner.

A part (approximately 40%) of the sampled mutations for each disease was annotated by two

human annotators independently. Each annotator performed two tasks, (i) labeling the text-

mined mutation with its actual gene and disease association by reading the relevant literature;

and (ii) marking ‘True’ when the text-mined triplet fully matched the actual gene and disease

association (‘False’ otherwise). We evaluated the consistency of the manual annotators by com-

paring their respective sets for overlap and disagreements. We found an 81% inter-annotator

agreement in their annotations. We review the insights that we gained from this exercise in the

Discussion section. After that, one of the original annotators–a fourth-year medical student–

proceeded to annotate the remaining 60% of the sampled mutations. Table 2 contains the

results of these manual annotations.

As shown in Table 2, with regards to the disease-gene-variant triplets that were found only

through text mining, the performance of our approach reaches a precision of 0.81 for highly

frequent mutations and 0.80 and 0.75 for less frequent ones. For the aggregate of the mutations

analyzed, the overall precision is 0.77. Each incorrect triplet can be classified by whether the

error resulted from an incorrect gene, incorrect mutation, or incorrect disease. Likewise

errors can be classified by whether they resulted from incorrect entity tagging (e.g. the entity

“F442A” in PMID: 2960133 was incorrectly classified as a mutation when it is actually an adi-

pocyte cell line) or from incorrect relationship extraction (e.g. in PMID: 21852217, I253M was

incorrectly classified as relating to IRS1 when it is really a variant of IGFBP1). We formally

evaluated all errors by frequency classification. Of a total 23% error rate, 8.4% came gene

errors, 13.2% from disease-mutation misclassification errors and 1.4% from mutation errors.

We provide a detailed breakdown of these errors in the supplementary material, S6 Text.

Analysis 2: Evaluation of overlapping mutations. In this category, a correct association

between disease and variant has already been confirmed by the presence of this association in

UniProtKB. Thus, the only remaining step to confirm the correctness of the full triplet is to

assess whether the gene extracted via text mining matches the curated gene. Using the pro-

posed approach, we were able to match gene-variant pairs with an average accuracy of 93%

over all 10 diseases. Disease-wise analysis of the overlapping mutation is provided in the sup-

plementary material, S1 Fig. Below we highlight the disease-wise analysis of the diseases where

the accuracy falls below 95%.

From the gene comparison results, we find that the accuracy of extracted triplets in this

group is over 95% for the majority of diseases with the exceptions of breast cancer (83.7%),
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cystic fibrosis (89.5%), Alzheimer’s disease (86.7%) and pancreatic cancer (66.7%). Several spe-

cific reasons account for the lower gene match for these four diseases:

Pancreatic cancer. We found there were only three overlapping mutations, thus a 66.7%

match corresponds to a 2/3 match.

Breast cancer. Of the 14 mutations with a gene error, 11 of them were curated in UniProt

from a single, large-scale study involving 13,023 genes for breast and colorectal cancer (PMID:

16959974). We discovered that neither the abstract nor the full text of this PMID contains any

mention of the curated genes. Even after examining the supplementary material for this study

we concluded it was not possible to definitively confirm a true gene association for these vari-

ants without additional sources of information.

Alzheimer’s disease (AD). In AD there were two gene match errors (out of 15 mutation

overlaps). The first error came from an article (PMID: 10732806) with an abstract containing a

mutation-gene pair–‘p.V148I’and ‘presenilin-2’–that our gene extraction tool missed. The sec-

ond error occurred in PMID: 23415546 due to an error in gene identification for the mutation

‘p.A48V.’ The abstract for this PMID mentions two genes–PSEN1 and Cathepsin D (CSTD)–

but GNormPlus identified only the PSEN1 gene and not CSTD, which is the actual gene asso-

ciated with the mutation.

Cystic fibrosis (CF). The ten overlapping mutations with gene match errors were all in the

CFTR gene. CFTR is the most prominent gene related to CF; however, the PMIDs referencing

these mutations were not annotated with this gene mention; this was thus a gene extraction

error.

Analysis 3: Evaluation of gene-variant-disease triplets present only in UniProtKB. A

likely reason why these triplets were not returned by our text mining approach is that they are

not mentioned in the abstract. Thus to verify this hypothesis, we obtained the reference

PMIDs from UniProt for each triplet and used an automated approach to screen each abstract

for the presence of the gene, mutation and disease information.

As explained in the Methods section, PubTator uses several state-of-the-art text mining

techniques to annotate PubMed abstracts. Therefore we used PubTator to annotate the three

entities—gene, mutation and disease—in the PubMed abstracts found in UniProt dataset but

not in text mined results. These PubTator annotations were then compared with the triplets

present only in the UniProtKB dataset. The comparison was performed at the concept level

(i.e. each entity was normalized to a concept). The results of this analysis are shown in Table 3.

PubTator tools annotate the entities with a reasonable accuracy for use in large-scale automatic

extraction—87% (GnormPlus), 78% (DNorm) and 91% (tmVar). However, we also acknowl-

edge that some errors may have occurred in this analysis as a result of using these automated

tools.

We found that breast cancer has the highest number of missed mutations, but a relatively

low number of supporting PMIDs. As shown in the table, the PubTator analysis revealed

that none of the 45 unique PMIDs had all the three entities within their abstract. Further

manual analysis of these PMIDs showed that the large-scale study mentioned earlier (PMID:

16959974) accounted for 587 of the total missed mutations. PMID: 16959974 is a landmark

paper entitled, “The consensus coding sequences of human breast and colorectal cancers.” It

contains the results of an analysis of 13,023 genes. The curated mutations from results of this

study largely came from data tables in the supplementary material. A similar analysis of the

remaining diseases showed that none of the disease-related PMIDs except those for lung can-

cer (LCa) and AML contained full triplet matches of the missed mutations. For lung cancer

and AML, these errors were due to two reasons: error of mutation-disease association (ML

classifier error) and PMID missed in the initial PMID list for these diseases. As shown in

Table 3, both these errors were relatively infrequent. It is possible that entities missed by
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PubTator in abstracts biased the results in this analysis so we also performed an ad hoc analysis

of several of the PMIDs from this set to ensure that the PubTator tool was correctly identifying

the entities, especially the sequence variants. Our ad hoc analysis confirmed the absence of

mutation mentions in the abstracts. This was as expected because PubTator uses the tmVar

tool to extract mutation mentions, and tmVar’s accuracy (F-measure) is over 90% for bench-

mark datasets for mutation identification [14]. Moreover, point substitutions, being the easiest

variant form to identify with tmVar, will have a higher accuracy for discovery in the text.

Hence, their absence in tmVar results most certainly imply that these mutation mentions were

absent in the abstract.

In general, we infer from this analysis that our approach of text mining abstracts for muta-

tions missed mutations most often because the complete information about the disease-muta-

tion association was not present in the abstracts but rather was in the full text or

supplementary data analysis of the supporting literature.

Discussion

Based on the aforementioned three analyses of the text-mined mutations and the UniProt

curated mutations, we state the following findings:

1. The uncurated triplets found by text mining are potentially good candidates for database

curation. Moreover, text mining is able to find the related genes for these mutations with

over 80% accuracy, which is consistent with the evaluation results on the two gold-standard

benchmark datasets.

2. The performance validation of the text mining approach for the overlapping mutations

shows that the text-mined results are comparable to human curation results.

3. Human curation results supersede the text-mined results when the mutations are not men-

tioned in the abstracts but are mentioned elsewhere in the full-text or supplementary data.

One reason that may explain the relatively low overlap between the results of our approach

and the curations in UniProtKB is a difference in institutional focus. UniProtKB only curates

gene variants that result in alterations of protein function, and while our approach does

Table 3. Analysis of missed mutations.

Disease <Protein-

Mutation-PMID

>analyzed

Had disease

mention

Had protein

mention

Had mutation

mention

Had triplet

mention

#of

PMIDs

Comments

Breast cancer 677 622 50 3 0 45 PMID: 16959974 had 587/677

mutations

Cystic fibrosis 19 5 4 7 0 15

Prostate cancer 87 51 69 10 0 38

Lung cancer 123 43 112 9 3 44 PMID: 17349580- classification

error. PMID: 18227510- no lung

cancer Mesh terms

Age-related Macular

Degeneration

19 17 17 0 0 7

Acute Myeloid

Leukemia

49 29 45 6 1 26 PMID: 16247455: missed due to

classification error

Alzheimer’s disease 15 8 12 0 0 10

Hemochromatosis 1 0 1 1 0 1

Diabetes mellitus 19 8 14 3 0 19

Pancreatic cancer 5 1 4 0 0 5

doi:10.1371/journal.pcbi.1005017.t003
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identify function-altering variants, it also includes a much broader range of associations,

including disease-causing, protective, and treatment-response associations. Although we have

presented our findings as a comparative analysis with data from the well-known UniProtKB,

we nevertheless consider that the text mining results will act as a complimentary support to

curators of any database to enhance the efficiency of the curation of disease mutations and

genes. For instance, the uncurated text mined results may represent priority candidates for

human curators during triage. A key step in making our approach useful for such databases

will be developing additional text mining filters that can permit curators to retrieve custom

sets of gene-variant-disease triplets with accompanying evidence that will best suit their insti-

tutional objectives.

An important consideration in the field of automated mining of gene-variant-disease asso-

ciations from literature is that nomenclature standards for gene variants have evolved over

time as researchers have understood new levels of genetic complexity [40–42]. One trend has

been a movement to describe all variants by the sequence of the coding DNA strand and avoid

other levels of description (i.e. mRNA and protein). As mentioned previously, our approach is

fairly agnostic to variant nomenclature alterations because of the robust nature of tmVar’s

mutation identification algorithm–we extract all types and descriptions of variants. Neverthe-

less, in this work, we concentrated on protein sequence nomenclature largely to facilitate com-

parison with the UniProtKB database. Since our algorithm incorporates a sequence filter and

since protein sequences are notoriously variable, it is possible that this processing step may

have removed correct variant associations with slightly different protein sequence numbering

from our results. This could also explain some of the difference in overlap between our

text-mined results and the curated associations in UniProtKB. Normalization of variant men-

tions in literature is an important next-step for automated extraction of genotype-phenotype

relations.

Discrepancies between human annotators: As mentioned previously, two human annota-

tors evaluated each text-mined result in approximately 40% of the sample set for each of the

ten diseases. Following independent evaluation of each variant triplet, the annotators met and

discussed the variants that they had rated differently and reached a consensus. A comparison

of these specific instances revealed several trends. For example, disagreements were more com-

mon when sentence syntax was complex (e.g. PMID 22774841, disease: hemochromatosis, var-

iant: W779X, gene: ATP7B –final judgment: no association), when the article in question

addressed a disease related to but distinct from the disease in question (e.g. PMIDs 21853126,

21680267 and 18580449; disease: pancreatic cancer; variant: P86S, gene GCGR–final judg-

ment: true association), when disagreement exists in the published literature about the signifi-

cance of a given variant (e.g. PMID: 23397959, disease: AML, variant: K751Q, gene: ERCC2

(XPD) versus PMID: 24486506 for the same disease and variant–final judgment: true associa-

tion), or when the genetic variants returned via text mining were the result of experimental

modifications (e.g. PMID 18595696, disease: cystic fibrosis, variant: K1250A, gene: CFTR–

final judgment: true association).

Limitations and Future Directions

We identify a few areas of work that may enhance our approach and improve its utility for

future research and other applications. First, although our approach robustly identifies gene

variant mentions of different types across multiple nomenclature styles, we do not currently

normalize variants. To avoid duplicate references in this work we have constrained our evalua-

tion to only variant mentions at a protein level. Our work could be improved if we were to nor-

malize all gene variant references to a single notation format, preferably to a complementary
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DNA sequence. Such normalization would facilitate future comparisons with data sources and

also increase the utility of the sequence validation step in our approach. Still, this sequence val-

idation step will only be possible for substitutions and deletions and not for insertion-type var-

iants. This limitation did not affect our analysis in this work since UniProtKB only curates

substitution variants and does not curate insertions or deletions. In future studies, we may

need to incorporate a sequence validation method that will permit validation of insertions as

well as substitutions and deletions.

Another important limitation of the current approach is that it mines information only

from abstracts and not full text or supplementary material, which have been shown to be an

important source of genetic variant information [43]. An extension to full text will require

more advanced systems to overcome the additional noise in the full text and tables. As shown

in the results of Analysis 3, we miss a large proportion of the UniProtKB mutations because

they either appear in full text or supplementary material. For these reasons, an extension of

the current work to full text is one of the important future steps of our efforts. Two potential

resource for developing this extension are the Variome Corpus, which contains ten full-text

articles with manual annotations applied according to the Variome Annotation Schema guide-

lines [44], and the Biomedical entity Relation ONtotlogy COrpus (BRONCO), which contains

a large collection of annotated relationships between genes, variants, drugs, and cell lines

from the full text of 108 articles [45]. Finally, this proposed framework directly uses several

state-of-the-art tools (like tmVar, DNorm and GNormPlus). Future advances in the respective

domains of these tools would enable increased performance of the proposed approach. This

study has been helpful to excavate several examples which will serve as feedback to the inde-

pendent machineries of mutation, gene, and disease annotation systems.

In conclusion, we have shown that our approach for text mining disease mutations and

their associated genes from the biomedical literature is successful. We have also shown that the

training step for this approach is generalizable among different types of diseases. Our approach

can thus apply broadly to a variety of diseases.

The intrinsic evaluation shows that our approach achieves state-of-the-art performance and

compares favorably to a competitive system. Our comparative analysis with real-world cura-

tion data confirms the accuracy of our approach and demonstrates that text-mined results

may be potentially useful for expanding the coverage of curation and improving curation

quality.
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