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Abstract
Plastic responses can have adaptive significance for organisms occurring in unpredictable

environments, migratory species and organisms occupying novel environments. Zebrafish

(Danio rerio) occur in a wide range of habitats and environments that fluctuate frequently

across seasons and habitats. We expect wild populations of fish to be behaviorally more

flexible than fish reared in conventional laboratory and hatchery environments. We mea-

sured three behavioral traits among 2 wild (U and PN) and 1 laboratory bred (SH) zebrafish

populations in four environments differing in water flow and vegetation regimes. We found

that the degree of plasticity varied with the type of behavior and also among populations. In

general, vegetation increased aggression and water flow decreased latency to feed after a

disturbance, but the patterns were population dependent. For example, while wild U fish fed

more readily after a disturbance in vegetated and/or flowing habitats, fish from the wild PN

population and lab-reared SH strain showed little variation in foraging across different envi-

ronmental conditions. Zebrafish from all the three populations were more aggressive when

tested in an arena with vegetation. In contrast, while there was an inter- population differ-

ence in shoaling distances, variation in shoaling distance across environmental conditions

within populations was not significant. These results suggest that both foraging and aggres-

sion in zebrafish are more plastic and influenced by immediate context than is shoaling dis-

tance, which may have a stronger genetic basis. Our findings point to different underlying

mechanisms influencing the expression of these traits and warrants further investigations.

Introduction
Phenotypic plasticity is the ability of an organism with a given genotype to change its pheno-
type in response to changes in the environment. The ability of individuals, populations or
species to switch between behaviors across situations can have important ecological and evolu-
tionary implications. For example, phenotypic plasticity can play a role in the process of diver-
sification and species range-expansion [1]. Several species show behavioral variation as an
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adaptive response to different environments [2, 3] and as an important strategy for coping
with environmental variability [4, 5]. Behavioral divergence between populations can take
place over shorter periods than in higher order clades [6]. Different ecological environments
can impose strong divergent selection leading to radiation in behavioral responses among pop-
ulations [7]. As long as there is minimal gene flow between populations, these radiations can
drive evolutionary divergences. Here we study the behavior of zebrafish populations from dif-
ferent (lab-bred, lake, and pond) habitats and rearing conditions in a series of environments
and measure the extent of behavioral variability within populations.

The ability to switch behavior is also related to early experience—juvenile cod from wild
habitats that are more heterogeneous differed in their shoaling responses when moved between
different habitats, whereas those from hatchery environments (plain habitats) responded in the
same way across testing conditions [8]. The effect of habitat complexity on behavioral plasticity
would depend on the early rearing experience [9, 10]. Learning and memory can also influence
animals to adjust their behavior in variable environments. For example, although early research
showed a genetic basis for antipredatory response in fishes, recent evidence from several spe-
cies suggests that learning plays an important role in development of this behavior [11, 12].
Further, it has been demonstrated recently in populations of three-spined sticklebacks that
learning and memory are influenced by habitat stability and predation pressure [13]. Members
of a shoal observe the behavior of their shoalmates and are able to respond to predator threats
more efficiently (through improved predator avoidance and escape responses) [14, 15, 16]. Ad-
ditionally, shoaling with knowledgeable conspecifics can also improve foraging efficiency
through increased detection of food resources [17] and attraction to novel food items [18]. Re-
cent tests on Atlantic salmon have shown that combination of enriched environments with live
prey provided to hatchery reared fish prior to release into the wild increased their post release
survival rates [19]. Training hatchery reared fish through social learning, that is, learning by
observing or interaction with shoalmates has thus been suggested as a useful tool for successful-
ly restocking populations [20].

Pond/lake and river habitats are different in many respects, especially with regards to water
flow, and could differ in water clarity, presence of vegetation and predators. These factors
could be critical to fish populations for foraging, responding to predatory threats or even mat-
ing tactics. Indeed, stickleback populations exposed to different environmental conditions have
been found to differ in the types of information they use to solve spatial tasks—fish from unsta-
ble river habitats rely less on visual cues than fish inhabiting visually stable habitats such as
ponds [21]. Zebrafish, native to south and south-east Asia, occur across a range of flow and
vegetation regimes (still-water lakes with thick vegetation to flowing clear water streams) [22].
Their natural environments often fluctuate in water flow and vegetation conditions across the
year- habitat stability may vary between microhabitats especially during the dry seasons when
certain regions get cut off from the main channels and these habitats might return to steady
flowing conditions during the wet season. Hence individuals that can switch behavior in re-
sponse to these fluctuations may have a survival advantage. Fish that have been reared in
hatchery environments experience minimal heterogeneity in habitat or environmental varia-
tion. Here, we predict that given this variability in natural environmental conditions, one
would expect zebrafish populations that evolved in the wild to show greater behavioral flexibili-
ty than fish evolving in a stable laboratory environment. Wild populations from different flow
and vegetation regimes (e.g. lakes and streams) may also vary in degree of behavioral plasticity.
For example, fish from stagnant lakes may exhibit similar plasticity to laboratory-bred popula-
tions than do fish from streams. Furthermore, some behavior patterns (e.g. foraging) can be
strongly influenced by environmental cues while others are more constrained by correlated be-
havior. Here we ask the following questions with regards to feeding latency, aggression and
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shoaling behavior in zebrafish populations- 1) What are the effects of water flow and vegetation
on behavioral response among populations from lab and wild rearing environments 2) Do pop-
ulations differ in their responses when tested in tanks with/without flow and vegetation and
lastly, 3) do zebrafish populations from different rearing environments (lake, stream and lab
conditions) show variable plastic response when presented with fluctuating flow and vegetation
conditions? Specifically, we tested our hypothesis that wild zebrafish would show greater vari-
ability in behavioral response than test subjects from lab bred populations when subjected to
differing flow and vegetation regimes (i.e., with/without flow and/or vegetation).

Material and Methods

Model system
Danio rerio is a small cyprinid fish (~ 30mm SL), native to part of the Southeast Asian region-
eastern and south western India [22, 23], Bangladesh [24] and Myanmar [25]. At the micro-
habitat level, these habitats differ in water flow, vegetation and turbidity [24, 26]. They swim in
shoals of 2–10 individuals [27], typically in slow-moving streams and stagnant water bodies,
paddy fields, low-lying floodplain lakes, ponds and irrigation channels [28, 29].

We used three populations of zebrafish for this study. ‘SH’ or Scientific Hatcheries, was de-
veloped in the early 1990s, and is available commercially from Scientific Hatcheries in Hun-
tington Beach, CA. SH have evolved now for dozens of generations in stable, high density
conditions similar to conditions in commercial hatcheries. We collected two wild populations
in January- February 2007 fromWest Bengal state (in northeastern India). We collected ‘PN’
fish from an oxbow lake (approx. 180m wide and 10m deep in the middle of the lake) (located
in North 24 Pargana district of West Bengal, India) with still water and floating and submerged
vegetation. Zebrafish prefer shallower parts of the lake (within 1.5–2m deep) along the lake
fringes. The lake fringes are also high in submerged (reeds) and floating vegetation (Eicchornia
crassipes). Individual fish in this lake would have the opportunity to move readily from the
deeper and less vegetated center of the lake to the shallower and densely vegetated fringes. The
PN lake population is subjected to predatory pressures from birds (herons, kingfishers and cor-
morants) as well as large piscivorous fish (Channa spp., Xenontodon cancila, Oreochromis mos-
sambicus ([22], pers. obs.). The other fish species that we collected from this habitat and share
habitat space with zebrafish include Esomus danricus, Colisa lalia and Aplocheilus panchax.
The ‘U’ population occurs in irrigation canals (along paddy fields in South 24 Pargana district
of West Bengal, India), with slow moving water and floating/submerged vegetation, in a more
uniform habitat. The channel is 15–20 m wide, and 0.5 m deep. This is a slow flowing habitat
(water flow<1 m/s) consisting of dense vegetation (mostly, smaller macrophytes, and floating
bryophytes Lemna spp.). Due to the smaller size of this habitat, zebrafish are subjected to lower
predatory pressure from large piscivorous fish. Some predatory birds (kingfishers), however,
are likely to be present. The substrate in both the lake and slow-moving channel habitat was
predominated by silt and sand. Very similar vegetation and faunal records have been made in
recent zebrafish studies in lake and stream habitats around this region (Bengal, Bangladesh,
and Meghalaya) by [22], [24].

In the lab, we housed fish from all three populations in standard 19-l glass aquaria (40.5 X
21.5 X 26.5 cm3) with 15–20 individuals, under uniform conditions of a daily diet of fish flakes
and brine shrimp, a 12:12 day-night cycle, and water temperature of ~26°C. Wild collected fish
were kept in these conditions in the laboratory for 2.5 months before they were used for beha-
vioural tests. This was done to ensure that all individuals used in the experiments were not
stressed from the relocation.
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Behavioral Protocol
We tested fish in four large test arenas (106-l plastic translucent tanks, 45.2 x 84.8 x 45.5 cm3),
each containing a different environmental treatment of vegetation and flow regimes (1- clear
with flowing water; 2- vegetated with still water; 3-, clear with still water and; 4- vegetated with
flowing water). We used wet rotor pumps to generate a water velocity of 14 cm/sec in two of
the test arenas, and evenly distributed 4–5 submerged plastic plants to create a vegetated habi-
tat in two of the test arenas. To avoid bias due to satiation, test fish were fed a day before the ex-
periments were conducted. Sex ratio among wild populations in zebrafish has been observed to
be 1:1 (Spence et al., 2007, 2008). We therefore created shoals of 6 (adult, 1:1 male-female
ratio) individuals from a single population (U, PN, or SH), and introduced the shoal into one
of the 4 treatment tanks (chosen at random). We allowed the shoal to acclimate for 20–25 min-
utes, and then measured 1) Latency to Feed (time for any fish to approach dry flake food offered
at one end of the test arena), 2) Aggression (total number of chases initiated by any member of
the shoal in 5 min), and 3) Shoal Distance (average of 10 estimates of the maximum distance
between fish taken during a 5-min period). The ‘Latency to Feed’ was used as a measure of the
inclination of fish to feed versus the extent of their wariness. The ‘Shoal Distance’ provided an
estimate of shoal cohesiveness- larger the average distance between members, less is the cohe-
sion. We then transferred the entire shoal into a second test arena with different environmental
features (chosen at random without replacement), allowed them to acclimate for 20–25 min-
utes, and repeated the behavioral measures. We repeated this entire procedure until we had
measured each shoal in each of the 4 test arenas. All experiments were conducted between
10.00–14.00 hours and the tanks were lit overhead with fluorescent lamps placed uniformly
above all tank treatments. We tested a total of 16 unique shoals (96 individual fish) from the U
population and 12 shoals each from PN and SH populations (72 fish from each). All behavioral
observations were video- recorded using a digital camera placed directly overhead. Measure-
ments of “latency to feed” were done directly while “Aggression” and “Shoal distance” were
measured from the video recordings by two independent observers. Readings were then com-
pared to check against any observer biases.

Zebrafish populations are widely distributed in this region and the species is designated as
“least concern” by IUCN’s redlist of threatened species. Further, as the collections were made
outside a reserved forest or protected area, we did not require prior permits or approval for col-
lection in India. The field study did not involve any endangered or protected species. The pro-
tocol for this study was approved by the Institutional Animal Care and Use Committee of
Indiana University (Protocol#: 07–074).

Statistical Analyses
We performed a multivariate ANOVA (MANOVA) to study the effects of population, and
tank-treatment type and their interactions effects on behavioral responses. Here, the dependent
measures were the three behavioral responses (Latency to Feed, Aggression and Shoal dis-
tance), the 4 types of test arenas (with different flow and vegetation regimes) were the within-
subject factors, while the 3 populations (U, PN and SH) were the between-subject factors. In
order to test the effect of tank-treatment type on behavioral responses within populations, we
then used repeated-measures (within groups) ANOVAs for the effect of tank treatment type
(within subject factor) across each population. The assumption of sphericity was tested by the
Mauchly’s test and wherever it showed a violation, a corrected value (Greenhouse-Geisser
correction) of F was used. We further performed posthoc tests (with Bonferroni adjustments
for multiple comparisons) to examine differences across pairs of treatment types within
populations. Data on measures of Aggression (as these are count measures) was square-root
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transformed while measures of Latency to feed and Shoal distance were natural-log trans-
formed to obtain normal and homoscedastic residuals. All analyses were conducted using SPSS
version 16 [30].

Results

Effects of tank-treatment type and population on behavioral responses
The Mauchly’s test for the assumption of sphericity was met for all three behavioral traits (Ag-
gression: χ2 (5) = 10.37, p = 0.065; Latency to feed: χ2 (5) = 6.94, p = 0.22; Shoal Distance:
χ2 (5) = 9.55, p = 0.089). The results of the repeated measures MANOVA show that there was
a significant overall within-subject effect of tank-treatment type (Pillai’s Trace = 0.746,
F (9,306) = 11.252, p<0.001) as well as interaction effect for tank and population type (Pillai’s
trace = 0.37, F (18,306) = 2.39, p = 0.001).

Population differences in behavior
Repeated measures ANOVAs on each behavioral trait response with tank treatment as within
subject and population as between subject factor were conducted (Table 1, Figs 1, 2 and 3). No
significant effect of either the tank treatment or the interaction (tank treatment X population)
was found for Latency to feed measurements. Post-hoc paired comparisons for differences be-
tween populations revealed significant difference between both the wild populations (U and
PN) with the lab (SH) population (SH Vs U; Mean difference = 2.47, p<0.001 and SH vs PN;
Mean difference = 2.40, p<0.001). While tank treatment was found to significantly affect Shoal
distance, interaction effects between tank treatment and population were not significant. Post
hoc paired comparisons between populations revealed no significant differences. Tests for ef-
fects of tank treatment and population on Aggression showed significant main effect of tank
treatment and interaction effects (tank treatment X population) (Table 1). Posthoc paired tests
to compare pairs of populations, however, did not reveal significant differences.

Behavioral plasticity across environmental situations
Repeated measures ANOVA were performed within each population separately to test the
effect of tank treatment for each behavioral response, followed by multiple paired post-hoc
comparisons (with Bonferroni adjustments) between tank-treatments within populations. Pop-
ulations were found to differ in the extent of behavioral plasticity to varying tank conditions
(Table 2).

Table 1. Repeatedmeasures ANOVA on effects of population (between subject) and tank treatment
type (within subject) on behavioural responses.

Behaviour Factors F(df) P

Latency to feed Tank treatment type 2.72 (3, 111) 0.05

Tank treatment type X Population 2.27 (6,111) 0.04

Population 47.4 (2, 37) <0.001

Aggression Tank treatment type 54.26 (3, 111) <0.001

Tank treatment type X Population 5.37 (6,111) <0.001

Population 0.003 (2, 37) 0.99

Shoaling distance Tank treatment type 6.15 (3, 102) 0.001

Tank treatment type X Population 0.89 (6,102) 0.50

Population 2.30 (2, 34) 0.11

doi:10.1371/journal.pone.0125097.t001
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None of the three populations showed significant variation in feeding latency across tank
treatments (p<0.01). While Shoal distance measurements among the wild U, and PN popula-
tions did not show significant plasticity across treatments (Table 2), there was a weak effect of
tank treatment in the lab SH populations (p = 0.03). Pairwise comparisons (post-hoc tests)
showed no significant differences among tanks except for one paired test (within the lab SH
population) between Shoal distance in the tank with flow, no vegetation and the tank with no
flow or vegetation (paired samples t-tests with p values adjusted by the bonferroni adjustment)
(Tables 3, 4 and 5).

In contrast, Aggression was significantly different for all three populations when their re-
spective responses were tested for effect of tank environments (Table 2). Post hoc (with Bonfer-
roni adjustments for multiple comparisons, selection criterion α = 0.05/6) pairwise
comparisons of responses showed significant differences (i.e., p<0.008) for several paired sam-
ples t- tests between tank types for all three populations (Tables 3, 4 and 5).

Discussion
In environments that are unpredictable and variable, flexibility in behavior is critical [31]. The
present study shows that zebrafish populations vary in their extent of behavioral plasticity, but
that trends varied across types of behavior. Whereas Aggression varied significantly across en-
vironmental context for all three populations, Shoal Distance did not, suggesting that it is likely
fixed by underlying physiological mechanism or developmental experience. Latency to Feed

Fig 1. Box-plot representing population-wisemeasurements of Latency to feed (in seconds) in each
tank treatment type (tank 1, tank 2, tank 3, and tank 4). Tank 1 (Flow, no vegetation), 2 (No Flow,
vegetation), 3 (No flow, no vegetation) and 4 (Flow, Vegetation). Outliers are shown as solid dots.

doi:10.1371/journal.pone.0125097.g001
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depended on population identity, with most of the variation being explained by domestication
(the lab strain acclimated more quickly after being placed in a test arena). More interestingly,
fish from the U stream population took different amounts of time to recover from disturbance
depending on habitat, whereas fish from the PN lake population varied little in Latency to Feed
across treatments.

While some behavior patterns may fluctuate readily with environment and social context,
others are more likely to be determined by a hardwired mechanism (physiological and/ genetic
pathways, early experience). Sih [32] indicated that learned and conditioned responses are typi-
cally dictated by early ‘rearing’ experiences and in such cases, an interaction of developmental
and adult environment plays a major role in behavioral expression [33]. There are convincing
arguments for plasticity as an agent of micro- and macroevolutionary change [34, 35, 36]. Plas-
tic responses may be necessary for colonization of novel habitats [1, 35, 37]. For example, die-
tary plasticity is widespread and frequent in many land bird species during migration [38].
Being an adaptive advantage for a species to respond appropriately to new environments [39,
40], behavioral plasticity enhances their invasive abilities and adaptation to novel habitats.

Zebrafish prefer habitats that consist mostly of shallow, stagnant or slow moving waters
[22]. They have been reported to occur in the Gangetic floodplain regions of north and eastern
India. This region is subjected to seasonal rainfall regimes with a relatively dry winter and year-
ly monsoons during the summer. The wild populations used in this study have been collected

Fig 2. Box-plot representing population-wisemeasurements of Aggression (total number of chases
initiated by individuals in a trial) in each tank treatment type (tank 1, tank 2, tank 3, and tank 4). Tank 1
(Flow, no vegetation), 2 (No Flow, vegetation), 3 (No flow, no vegetation) and 4 (Flow, Vegetation). Outliers
are shown as solid dots.

doi:10.1371/journal.pone.0125097.g002
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from habitats that are a part of the streams and waterbodies of the Gangetic drainage system.
During the monsoons (June- August) they are frequently subjected to sudden increase in water
flow while the drier (November- May) months often result in near drying up of these habitats.
There are corresponding changes to the vegetation in these habitats (higher vegetation during
the post monsoon months) (pers. obs.). For survival in such seasonally changing environmen-
tal conditions, wild zebrafish would be expected to exhibit an ability to switch behavioural

Fig 3. Box-plot representing population-wise measurements of Shoal distance (i.e. average distance of pairs of individuals in each shoal in cms.)
in each tank treatment type (tank 1, tank 2, tank 3, and tank 4). Tank 1 (Flow, no vegetation), 2 (No Flow, vegetation), 3 (No flow, no vegetation) and 4
(Flow, Vegetation). Outliers are shown as solid dots.

doi:10.1371/journal.pone.0125097.g003

Table 2. Repeatedmeasures ANOVA results.

Behaviour Test value (df) U PN SH

Latency to feed F (df) 3.48 (3,45) 1.20 (2,22.6) 3.06 (3,33)

p 0.02 0.32 0.04

Aggression F (df) 14.15 (3,45) 30.09 (1.8,19.7) 24.21 (2,22)

p 0.00 0.00 0.00

Shoaling distance F (df) 1.04 (3,45) 3.10 (3,33) 4.79 (1.6,17.6)

p 0.38 0.04 0.03

Within populations effects of tank treatment type on behaviour. Greenhouse-geisser corrected F values are shown wherever the data violated the

sphericity assumption.

doi:10.1371/journal.pone.0125097.t002
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responses several times within a generation. In our study, zebrafish populations responded to
changing contexts under laboratory conditions by exhibiting flexibility in aggression, but not
so much for feeding and shoaling. Aggression increased with both vegetation and water flow.
Earlier studies have indicated the role of habitat complexity (induced by vegetation) in reduc-
ing aggressive response (as complex habitats are more difficult to defend) in zebrafish [41]. A
later study however showed that reduction in aggression and monopolization of resources
could be a result of the extent of safety in these habitats and not just the effect of complexity
and reduced defendability [42]. We found that although there were no significant differences
between populations on overall aggression, both the wild and lab populations showed signifi-
cant variability across treatments. We found lowest aggression among zebrafish in unvegetated

Table 3. Paired comparisons of mean differences across tank treatment types (1, 2, 3 and 4) for (log transformed) Latency to feed, (square-root
transformed) Aggression and (log transformed) Shoaling distance measurements.

Tank Type Behaviour 1: Flow, No Veg 2: No Flow, Veg 3: No flow, No veg 4: Veg, Flow

1 Latency to Feed 0.86 1.43 0.007

Aggression 2.38 3.98 0.04

Shoaling Distance 0.20 0.33 0.40

2 Latency to Feed 0.28 0.86

Aggression 1.60 2.34

Shoaling Distance 0.13 0.20

3 Latency to Feed 1.14

Aggression 3.94

Shoaling Distance 0.06

4 Latency to Feed

Aggression

Shoaling Distance

Tank 1 (Flow, no vegetation), 2 (No Flow, vegetation), 3 (No flow, no vegetation) and 4 (Flow, Vegetation) for U population. Significant differences (after

bonferroni corrections for multiple comparisons) with p<0.01 are shown in bold.

doi:10.1371/journal.pone.0125097.t003

Table 4. Paired comparisons of mean differences across tank treatment types (1, 2, 3 and 4) for (log transformed) Latency to feed, (square-root
transformed) Aggression and (log transformed) Shoaling distance measurements.

Tank Type Behaviour 1: Flow, No Veg 2: No Flow, Veg 3: No flow, No veg 4: Veg, Flow

1 Latency to Feed 0.65 0.13 0.09

Aggression 1.57 2.52 3.10

Shoaling Distance 0.32 0.64 0.07

2 Latency to Feed 0.78 0.75

Aggression 4.08 1.53

Shoaling Distance 0.32 0.25

3 Latency to Feed 0.04

Aggression 5.62

Shoaling Distance 0.57

4 Latency to Feed

Aggression

Shoaling Distance

Tank 1 (Flow, no vegetation), 2 (No Flow, vegetation), 3 (No flow, no vegetation) and 4 (Flow, Vegetation) for PN population. Significant differences (after

bonferroni corrections for multiple comparisons) with p<0.01 are shown in bold.

doi:10.1371/journal.pone.0125097.t004
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still water tanks, for all three populations we tested. Unvegetated still water tanks might have
been perceived as more risky, and therefore resulted in lower aggression levels. This result cor-
responds with [43] which found that adult aggression can change with social context. This flex-
ibility in behavior across contexts suggests that there is an adaptive benefit of plasticity in
aggression. In zebrafish populations, the ability to increase or decrease aggression levels ac-
cording to the optimal requirement for a new environment can also help in their invasion of
novel habitats [33].

We found that fish from the lab SH population fed more quickly after a disturbance in every
tested treatment tank, confirming that this behavior is a good indicator of domestication, even
when measured in groups of fish rather than individuals [44]. Both the wild populations (U
and PN) showed significant differences from SH in each habitat type, while all comparisons be-
tween U and PN (except paired comparison in ‘still water-unvegetated’ tank) were not signifi-
cant. This finding makes intuitive sense, since the lab populations are usually kept in generally
resource rich environments and do not need to compete so hard with conspecifics for food. In
comparison, wild populations typically occurring in resource deprived environments tend to
feed more rapidly when food becomes available. Among the wild populations ‘U’ shoals exhib-
ited significant variation in feeding latencies across treatments, while ‘PN’ and ‘SH’ shoals did
not show significant variability.

Shoaling did not vary significantly across (habitat/environment) situations in any of the
wild populations tested. Indeed, recent studies on zebrafish show that shoaling preference de-
velops in juvenile zebrafish and once established, their preference remains stable across chang-
ing social environments [45]. SH fish do not shoal closely together, with larger distances
between fish in the shoal than either of the two wild populations. This result is consistent with
the greater ease with which SH fish left the vicinity of a shoal in comparison to two other
strains measured in Moretz et al. [44]. Shoal distances, however did not vary significantly
across tanks for any of the three populations. There are several advantages to shoaling and
therefore these advantages can far override the disadvantages through competition for re-
sources from conspecifics [46]. Indeed, Sih et al. [47] examined similar trends of correlated
antipredatory behavior across situations among individuals of sunfish showing limited (or less

Table 5. Paired comparisons of mean differences across tank treatment types (1, 2, 3 and 4) for (log transformed) Latency to feed, (square-root
transformed) Aggression and (log transformed) Shoaling distance measurements.

Tank Type Behaviour 1: Flow, No Veg 2: No Flow, Veg 3: No flow, No veg 4: Veg, Flow

1 Latency to Feed 0.20 1.10 0.52

Aggression 2.33 2.90 3.57

Shoaling Distance 0.42 0.70 0.22

2 Latency to Feed 1.30 0.70

Aggression 5.23 1.24

Shoaling Distance 0.28 0.20

3 Latency to Feed 0.59

Aggression 6.47

Shoaling Distance 0.48

4 Latency to Feed

Aggression

Shoaling Distance

Tank 1 (Flow, no vegetation), 2 (No Flow, vegetation), 3 (No flow, no vegetation) and 4 (Flow, Vegetation) for SH population. Significant differences (after

bonferroni corrections for multiple comparisons) with p<0.01 are shown in bold.

doi:10.1371/journal.pone.0125097.t005
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optimal) behavioral plasticity. These apparently ‘non-adaptive phenomena’ have been argued
as being maintained through behavioral correlations (across situations or contexts) that reflect
underlying proximate mechanism (e.g. pleiotropic genes, common endocrine pathways, etc.)
[32,48]. In our study, the consistent shoaling patterns observed across environmental contexts
among zebrafish populations suggest a behavioral correlation for this trait with changes in flow
and vegetation regimes.

To summarize, our findings indicate that expression of aggression is driven significantly by
context or environmental factors, irrespective of population. On the other hand, latency to feed
displayed significant dependence on population and not on environmental factors. Finally,
shoaling distance was found to not depend on either population or environmental context. In
this way, our experiments suggest differing levels of interactions between genetic (population
level) and environmental factors determining behavioral responses. Indeed, recent findings
suggest the importance of heritability in expression of aggression in zebrafish [49], as well as
the interplay of genes and environment on such traits [50]. Thus, further experiments which
study the effects of rearing conditions within genetically similar lines may shed more light on
the role of physiological and genetic mechanisms in shaping these traits.

Supporting Information
S1 File. Latency to feed (in seconds) measurements for each population (U, PN and SH)
across the four tank treatments (Tank1, Tank2, Tank3, Tank4).
(XLS)

S2 File. Aggression (number of chases) measurements for the populations (U, PN, SH)
across the four tank treatments (Tank1, Tank2, Tank3, Tank4).
(XLS)

S3 File. Shoal Distance (in centimeters) measurements for the populations (U, PN, SH)
across the four tank treatments (Tank1, Tank2, Tank3, Tank4).
(XLS)

Acknowledgments
We sincerely thank Cuau Vital, Saúl Nava, Mayté Ruiz and Candice Clark for their helpful
comments. Constructive criticisms from two anonymous reviewers helped in improving the
manuscript substantially.

Author Contributions
Conceived and designed the experiments: AB MMG EPM. Performed the experiments: AB
MMG. Analyzed the data: AB EPM. Contributed reagents/materials/analysis tools: EPM.
Wrote the paper: AB EPM.

References
1. West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Ann Rev Ecol Syst. 1989; 20:

249–278.

2. Chipps SR, Dunbar JA, Wahl DH. Phenotypic variation and vulnerability to predation in juvenile bluegill
sunfish (Lepomis macrochirus). Oecologia 2004; 38: 32–38.

3. Asbury DA, Adolph SC. Behavioral plasticity in an ecological generalist: microhabitat use by western
fence lizards. Evol Ecol Res. 2007; 9: 801–815.

4. Stearns SC. The evolutionary significance of phenotypic plasticity. Biosci. 1989; 7: 436–445.

5. Scheiner SM. Genetics and evolution of phenotypic plasticity. Ann Rev Ecol Syst. 1993; 24: 35–68.

Behavioural Plasticity among Zebrafish Populations

PLOS ONE | DOI:10.1371/journal.pone.0125097 April 30, 2015 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125097.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125097.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125097.s003


6. Foster S. The geography of behavior: an evolutionary perspective. Tr Ecol Evol. 1999; 14: 190–195.
PMID: 10322532

7. Schluter D. The Ecology of Adaptive Radiation. Oxford: Oxford University Press; 2000.

8. Salvanes AGV, Moberg O, Braithwaite VA. Effects of early experience on group behavior in fish. Anim
Behav. 2007; 74: 805–811.

9. Salvanes AGV, Braithwaite VA. Exposure to variable spatial information in the early rearing environ-
ment generates asymmetries in social interactions in cod (Gadus morhua). Behavi Ecol Sociobiol.
2005; 59: 250–257.

10. Salvanes AGV, Moberg O, Ebbesson LO, Nilsen TO, Jensen KH, Braithwaite VA. Environmental en-
richment promotes neural plasticity and cognitive ability in fish. Proc Roy Soc Ser B Biol Sci. 2013; 280:
20131331.

11. Järvi T, Uglem I. Predator training improves behavior of hatchery reared Atlantic salmon (Salmo radar)
smolt. Nord J Freshw Res. 1993; 68: 63–71.

12. Kelly JL, Magurran AE. Learned predator recognition and antipredator responses in fishes. Fish Fisher.
2003; 4: 216–226. PMID: 12801404

13. Brydges NM, Heathcote RJP, Braithwaite VA. Habitat stability and predation pressure influence learn-
ing and memory in populations of three-spined sticklebacks. Anim Behav. 2008; 75: 935–942.

14. Magurran AE, Higham A. Information transfer across fish shoals under predator threat. Ethology 1988;
78: 153–158.

15. Chivers DP, Smith RJF. Chemical recognition of risky habitats is culturally transmitted among flathead
minnows (Pimphalaes promelas). Ethology 1995; 99: 286–296.

16. Brown C, Warburton K. Differences in timidity and escape responses between predator-näive and
predator-sympatric rainbowfish populations. Ethology 1999; 105: 491–502.

17. Laland KN, Williams K. Shoaling generates social learning of foraging information in guppies. Anim
Behav. 1997; 53: 1161–1169. PMID: 9236013

18. Sundstrom LF, Johnsson JI. Experience and social environment influence the ability of young brown
trout to forage on live novel prey. Anim Behav. 2001; 61: 249–255. PMID: 11170714

19. Brown C, Davidson T, Laland K. Environmental enrichment and prior experience of live prey improve
foraging behavior in hatchery-reared Atlantic salmon. J Fish Biol. 2003; 63 (Supplement A): 187–196.

20. Brown C, Laland K. Social learning and life skills training for hatchery reared fish. J Fish Biol. 2001; 59:
471–493.

21. Odling-Smee L, Braithwaite VA. The influence of habitat stability on landmark use during spatial learn-
ing in the three-spined stickleback. Anim Behav. 2003; 65: 701–707.

22. Engeszer RE, Patterson LB, Rao AA, Parichy DM. Zebrafish in the wild: a review of natural history and
new notes from the field. Zebrafish 2007; 4: 21–40. PMID: 18041940

23. Bhat A. Diversity and composition of freshwater fishes in streams of Central Western Ghats, India. Envi-
ron Biol Fish. 2003; 68: 25–38.

24. Spence R, FatemaMK, Reichard M, Huq KA, Wahab MA, Ahmed ZF, et al. The distribution and habitat
preferences of the zebrafish in Bangladesh. J Fish Biol. 2007; 69: 1435–1448.

25. Barman RP. A taxonomic revision of the Indo-Burmese species of Danio rerio. Rec Zool Surv India Occ
Pap. 1991; 137: 1–91.

26. McClure MM, McIntyre PB, McCune AR. Notes on the natural diet and habitat of eight danionin fishes,
including the zebrafish, Danio rerio. J Fish Biol. 2006; 69: 553–570.

27. Pritchard VL, Lawrence J, Butlin RK, Krause J. Shoal choice in zebrafish, Danio rerio: the influence of
shoal size and activity. Anim Behav. 2001; 62: 1085–1088.

28. Lawrence C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 2007; 269: 1–20.

29. Spence R, Gerlach G, Lawrence C, Smith C. The behavior and ecology of the zebrafish, Danio rerio.
Biol Rev. 2007; 18: 13–34.

30. SPSS. SPSS User's Manual Release 11.5, SPSS, Chicago; 2006.

31. Hazlett BA. Behavioral plasticity as an adaptation to a variable environment. In: Chelazzi G et al. edi-
tors. Behavioral Adaptation to Intertidal Life. US: Springer; 1988. pp. 317–332.

32. Sih A. A behavioral ecological view of phenotypic plasticity. In: Dewitt TJ, Scheiner SM editors. Pheno-
typic Plasticity: Functional and Conceptual Approaches. Oxford: Oxford University Press. 2004: pp.
112–125.

33. Marks C, West TN, Bagatto B, Moore FB-G, Taylor CM. Developmental environment alters conditional
aggression in Zebrafish. Copeia 2005; 4: 901–908.

Behavioural Plasticity among Zebrafish Populations

PLOS ONE | DOI:10.1371/journal.pone.0125097 April 30, 2015 12 / 13

http://www.ncbi.nlm.nih.gov/pubmed/10322532
http://www.ncbi.nlm.nih.gov/pubmed/12801404
http://www.ncbi.nlm.nih.gov/pubmed/9236013
http://www.ncbi.nlm.nih.gov/pubmed/11170714
http://www.ncbi.nlm.nih.gov/pubmed/18041940


34. Via S, Lande R. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution
1985; 39: 505–522.

35. Agrawal AA. Phenotypic plasticity in the interactions and evolution of species. Science 2001; 294:
321–326. PMID: 11598291

36. West- Eberhard MJ. Developmental Plasticity and Evolution. New York: Oxford University Press;
2003.

37. Rehage JS, Barnett BK, Sih A. Behavioral responses to a novel predator and competitor in invasive
mosquitofish and their non-invasive relatives (Gambusia sp.). Behav Ecol Sociobiol. 2005; 57:
256–266.

38. Parrish JD. Behavioral, energetic, and conservation implications of foraging plasticity during migration.
Stud Av Biol. 2000; 20: 53–70.

39. Schlaepfer MA, RungeMC, Sherman PW. Ecological and evolutionary traps. Tr Ecol Evol. 2002; 17:
474–480.

40. Sih A, Bell A, Johnson JC. Behavioral syndromes: an ecological and evolutionary overview. Tr Ecol
Evol. 2004; 19: 372–378. PMID: 16701288

41. Basquill SP, Grant JWA. An increase in habitat complexity reduces aggression and monopolization of
food by zebra fish (Danio rerio). Can J Zool. 1998; 76: 770–772.

42. Hamilton IM, Dill LM. Monopolization of food by zebrafish increases in risky habitats. Can J Zool. 2002;
80: 2164–2169.

43. Moretz JA, Martins EP, Robison BD. The effects of early and adult social environment on zebrafish
(Danio rerio) behavior. Environ Biol Fish. 2007; 80: 91–101

44. Moretz JA, Martins EP, Robison BD. Behavioral syndromes and the evolution of correlated behavior in
zebrafish. Behav Ecol. 2007; 18: 556–562.

45. Engeszar RE, Da Barbiano LA, Ryan MJ, Parichy DM. Timing and plasticity of shoaling behavior in the
zebrafish, Danio rerio. Anim Behav. 2007; 74: 1269–1275. PMID: 18978932

46. Pitcher TJ. Functions of shoaling behaviour in teleosts. In: The behaviour of teleost fishes Springer
US; 1986. pp. 294–337.

47. Sih A, Kats LB, Maurer EF. Behavioral correlations across situations and the evolution of antipredator
behavior in a sunfish-salamander system. Anim Behav. 2003; 65: 29–44.

48. Ketterson ED, Nolan V Jr. Adaptation, exaptation, and constraint: a hormonal perspective. American
Naturalist 1999; 154: S4–S25.

49. Ariyomo TO, Carter M, Watt PJ. Heritability of boldness and aggressiveness in the zebrafish. Behav
Genet. 2013; 43: 161–167. doi: 10.1007/s10519-013-9585-y PMID: 23354973

50. NortonWHJ, Stumpenhorst K, Faus-Kessler T, Folchert A, Rohner N, Harris MP, et al. Modulation of
fgfr1a signaling in zebrafish reveals a genetic basis for the aggression—boldness syndrome. J Neu-
rosci. 2011; 31: 13796–13807. doi: 10.1523/JNEUROSCI.2892-11.2011 PMID: 21957242

Behavioural Plasticity among Zebrafish Populations

PLOS ONE | DOI:10.1371/journal.pone.0125097 April 30, 2015 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/11598291
http://www.ncbi.nlm.nih.gov/pubmed/16701288
http://www.ncbi.nlm.nih.gov/pubmed/18978932
http://dx.doi.org/10.1007/s10519-013-9585-y
http://www.ncbi.nlm.nih.gov/pubmed/23354973
http://dx.doi.org/10.1523/JNEUROSCI.2892-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21957242

